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Abstract: Gastric cancer is a commonly found malignant tumor, yet research on biomarkers of gastric cancer still 
face tremendous challenges. This study is the first to use gas chromatography-mass spectrometry (GC-MS) to mea-
sure and compare the metabolic profiles of gastric cancer cell lines with varying degrees of differentiation (MKN-28, 
SGC-7901, and AGS) with that of a normal gastric epithelial cell line (GES-1). OPLS-DA models were established to 
distinguish gastric cancer cell lines from a normal gastric epithelial cell line. In this study, we identified 278 metabo-
lites, of which 111 show similarity scores greater than 700. Most notably, 6 metabolites (alanine, α-ketoisocaproic 
acid, proline, glyceric acid, pantothenic acid, and adenosine) showed varying expression levels between gastric can-
cer cell lines and a normal gastric epithelial cell line. These metabolites are potential biomarkers of gastric cancer 
and may be of great significance for the diagnosis, treatment and prognosis of gastric cancer patients.
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Introduction

Gastric cancer is 4th most common and 2nd 
most deadly malignant tumor worldwide. Gas- 
tric cancer is asymptomatic in its early stages 
and there is no effective diagnostic method. 
Because of this, gastric cancer is usually only 
discovered at a more advanced stage and 
patients with advanced gastric cancer have 
poor prognoses. The five-year survival rate in 
advanced gastric cancer is lower than 10%, 
whereas gastric cancer detected at an earlier 
stage has a post-surgical survival rate of up to 
90%.

Currently, endoscopy is one of the common 
screening methods for early stage gastric can-
cer. However, this method is invasive and the 
results are not definitive. There is a need for 
noninvasive methods and more effective tumor 
biomarkers in screening for early stage gastric 
cancer. Currently used biomarkers are pepsino-
gen, CEA, and CA199, all of which are not suffi-
ciently accurate for early gastric cancer diag- 
nosis. 

Metabolomics is an extension of the fields of 
genomics, transcriptomics, and proteomics, 
and is considered as the final destination of 
“omics” research. It is a hot area of research in 
the post-genomics era. The growth and devel-
opment of tumors are intimately linked to 
abnormal metabolic processes, as metabolic 
products are the final products of cellular gene 
expression. Small changes in gene expression 
can become amplified in the resulting metabo-
lites and the study of metabolomics can further 
expand the scope of research in life sciences. 
Metabolomic techniques have been used in the 
study of ovarian, colon, and pancreatic tumors 
[1-3]. In recent years, the use of mass spec-
trometry (MS) and nuclear magnetic resonance 
(NMR) has increased in research on human 
gastric cancer tissue, blood, and urinary metab-
olites [4-6]. However, these techniques have 
thus far not been used in the study of gastric 
cancer cell lines at varying degrees of differen-
tiation and their metabolic profiles in vitro.

This article reports for the first time that the use 
of GC-MS to compare the metabolic profiles of 

http://www.ijcep.com


Metabolic profiles of gastric cancer cell lines

870	 Int J Clin Exp Pathol 2018;11(2):869-875

gastric cancer cell lines at varying degrees of 
differentiation and a normal gastric epithelial 
cell line. The OPLS-DA models were established 
to distinguish between gastric cancer cell lines 
with varying degrees of differentiation and a 
normal gastric epithelial cell line. The metabo-
lites identified in this study may be potential 
markers of clinical gastric cancer.

Materials and methods

Cell culture and collection

The cell lines used in this study were gastric 
cancer cell lines MKN-28 (well-differentiated), 
SGC-7901 (moderately differentiated), and AGS 
(poorly differentiated), as well as the normal 
gastric epithelial cell line GES-1. The cell lines 
were obtained from Beijing Institute for Cancer 
Research (Beijing, China). The culture medium 
for MKN-28, SGC-7901, and GES-1 cells was 
RPMI 1640/10% Newborn Calf Serum/1% anti-
biotic (Gibco). The culture medium for AGS cells 
was F-12K/10% Newborn Calf Serum/1% anti-
biotic (Gibco). The incubation environment was 
5% CO2, 37°C. The inoculation concentration 
was 1 × 106 cells/mL, and the cells were grown 
to approximately 90% confluence. Ten EP tubes 
were collected for each cell line (1 × 107 cells/
tube). The tubes were frozen with liquid nitro-
gen and stored at -80°C.

Cell metabolite extraction

One mL of extraction solution, a mixture of 
methanol-chloroform (3:1, v/v) was added to 
each cell-containing EP tube. Twenty μL of L-2-

chlorophenylalanine (1 mg/mL stock in dH2O) 
was added to each tube and the mixture was 
vortexed for 30 s. Porcelain beads were added 
and a 45 Hz mill was used to process the sam-
ple for 4 min. The sample was placed on an ice 
water bath and sonicated for 5 min and sonica-
tion was repeated five times. The sample was 
then centrifuged at 13,000 rpm for 15 min at 
4°C and 0.89 mL of the supernatant was care-
fully pipetted into a 2 mL sample vial. The 
extract was dried in a vacuum concentrator and 
30 μL methoxy amination hydrochloride (20 
mg/mL in pyridine) was added to each tube of 
dried metabolites, gently mixed, then placed in 
an oven and incubated at 80°C for 30 min. 40 
μL of BSTFA (containing 1% TMCS, v/v) was 
added to each sample and the mixture was 
incubated at 70°C for 1.5 h. The samples were 
then cooled to room temperature and 5 μL 
FAMEs (Standard mixture of fatty acid methyl 
esters, C8-C16: 1 mg/mL; C18-C24: 0.5 mg/
mL in chloroform) was added to each vial. All 
samples were then analyzed by GC-MS.

GC-MS analysis

GC-MS analysis was performed using an Agilent 
7890A gas chromatograph system coupled 
with a Pegasus HT time-of-flight mass spec-
trometer (LECO, St Joseph, MI, USA). The sys-
tem was equipped with a DB-5MS capillary  
column coated with 5% diphenyl cross-linked 
with 95% dimethylpolysiloxane (30 m × 250 μm 
inner diameter, 0.25 μm film thickness; J&W 
Scientific, Folsom, CA, USA). Each 2-μL aliquot 
was injected in splitless mode with helium as 

Figure 1. PCA analysis of GC-MS metabolite profiles. A. PCA score plot for gastric epithelial and cancer cells (n = 10 
for each group). The X-axis, PC [1], and Y-axis, PC [2], indicate the first and second principal components, respec-
tively. B. 3-D score plot of the PCA analysis.
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Figure 2. Metabolic profiling between various differentiation grades of gastric cancer cells and normal controls. A. PCA score plots based on various differentiation 
grades of gastric cancer cells and normal controls. B. OPLS-DA scores plots based on various differentiation grades of gastric cancer cells and normal controls. C. 
Statistical validation of the corresponding OPLS-DA models using permutation analysis (200 times). 
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the carrier gas at a flow rate of 1 mL/min. The 
temperature at 50°C was kept for 1 min in the 
beginning, and then it was gradually increased 
up to 310°C at a rate of 10°C/min, finally main-
tained at 310°C for 5 min. The temperatures of 
injection, transfer line, and ion source were 
280°C, 270°C, and 220°C respectively. The 
electron energy was -70eV in impact mode. The 
MS data, which was with the m/z range of 
50-500, and at a rate of 12/s spectra after a 
solvent delay of 370 s, were acquired in full-
scan mode.

Data processing

Data were processed and analyzed using Chro- 
ma T0F4.3X software (LECO) and compared 
against the LECO-Fiehn Rtx5 database [7]. 
Comparison with standards in the database 
yielded a similarity score for identified metabo-
lites. A perfect match between standard and 
sample spectra had a similarity score of 1000. 
If the similarity score for a metabolite was 
above 700, then the identification was consid-
ered credible. If the similarity score was below 
200, then the identification was used as an 
“analyte”. If the similarity score was between 
200 and 700, then the identification was in- 
ferred to be based on some evidence. The half 
of minimum value method was used to model 
any missing values in the raw data. The data 
were filtered data and noise removed by remov-
ing data containing over 80% null values. The 
filtered data was normalized using an internal 
standard and SIMCA-P + 14.0 software (Ume- 
trics, Umea, Sweden) was used to further ana-
lyze the processed data. Principal component 
analysis (PCA) modeling was applied to visual-
ize the data and to separate data from each 
sample, and an initial grouping was performed. 
In order to obtain a higher level of group sepa-
ration and get a better understanding of vari-

ables responsible for classification, supervised 
orthogonal projections to latent structures- 
discriminate analysis (OPLS-DA) were applied. 
Then, we further validated the method using 
sevenfold cross-validation and a 200 permuta-
tion test, and the goodness of fit parameter (R2) 
and the goodness of prediction parameter (Q2) 
values were used to assess the quality of the 
models, respectively. Finally, the VIP value of 
the first principal component of variable impor-
tance in the projection was calculated and the 
P value was calculated using Student’s t-test. 
The standard selection threshold for differen-
tial metabolites was set at VIP > 1.0 and P < 
0.05 [7, 8]. 

Results

Development of a predictive model for gastric 
cancer cells with various differentiation grades

PCA showed the original distribution of two  
sets of data. The PCA model established in this 
experiment can fully separate the gastric can-
cer cells from the normal gastric epithelial cells 
(Figures 1 and 2A); indicating that when com-
pared with normal gastric epithelial cells, gas-
tric cancer cells show significant changes in 
intracellular metabolites.

Through multivariate statistical analysis of the 
metabolomic data from gastric cancer cells and 
that from normal gastric epithelial cells, many 
significant differences were found. Using these 
data, the OPLS-DA model could completely sep-
arate gastric cancer cells, regardless of degree 
of differentiation, from normal gastric epithelial 
cells (Figure 2B). 

Permutation analysis of the corresponding 
OPLS-DA is shown in Figure 2C. The parame-
ters for different gastric cancer cell lines were 

Table 1. Potential biomarkers of various differentiation grades of gastric cancer identified by GC-MS

Name
MKN-28/GES-1 SGC-7901/GES-1 AGS/GES-1

VIP* Fold change P-value VIP* Fold change P-value VIP* Fold change P-value
Alanine 1.75 1.91 0.000 2.00 1.66 0.000 2.02 2.25 0.000
Proline 1.49 0.66 0.002 1.44 1.28 0.006 1.53 0.68 0.001
Adenosine 2.17 9.66 0.000 2.33 3.15 0.000 2.22 10.66 0.000
Pantothenic acid 1.04 1.70 0.040 2.36 0.20 0.000 2.03 2.71 0.000
Glyceric acid 2.20 0.06 0.000 2.39 0.14 0.000 2.15 0.12 0.000
α-ketoisocaproic acid 1.36 2.35 0.003 1.37 2.19 0.007 1.30 2.12 0.010
*VIP, variable importance for the projection.
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as follows: MKN-28: R2Y = 0.988, Q2 = 0.943; 
SGC-7901: R2Y = 0.991, Q2 = 0.903 and AGS: 
R2Y = 0.997, Q2 = 0.951, which indicated the 
excellence of the model.

Multivariate statistical analysis between gas-
tric cancer cells with various differentiation 
grades and normal controls

A total of 138 distinct metabolites were identi-
fied by multivariate analysis (VIP > 1, P < 0.05). 
Of these, six metabolites showed significant 
differences between gastric cancer cells and 
normal gastric epithelial cells (Table 1). Alanine, 
α-ketoisocaproic acid and adenosine were  
elevated in all three gastric cancer cell lines. 
Glyceric acid was lower in all three gastric can-
cer cell lines. Proline was significantly increased 
in the moderately differentiated gastric cancer 
cell line, but was lower in highly differentiated 
and poorly differentiated gastric cancer cell 
lines. Pantothenic acid was lower in moderately 
differentiated gastric cancer cell lines, but ele-
vated in highly differentiated and poorly differ-
entiated gastric cancer cell lines. 

Discussion

To our knowledge, this is the first study to 
undertake a metabolomic study of gastric can-
cer cell lines at varying degrees of differentia-
tion (highly, moderately, and poorly differenti-
ated) and to compare their metabolic profile to 
that of a normal gastric epithelial cell line.

Amino acid levels in gastric cancer cell lines 
showed serious metabolic disruptions. Alanine 
and α-ketoisocaproic acid levels were elevated 
in all three gastric cancer cell lines when com-
pared with the normal gastric epithelial cell 
line. α-ketoisocaproic acid may be produced 
through the action of reversible aminotransfer-
ase (AT) on leucine. Proline was significantly 
elevated in moderately differentiated gastric 
cancer cell line, but was reduced in highly dif-
ferentiated and poorly differentiated gastric 
cancer cell lines. Previous studies have report-
ed that alanine, leucine and proline levels in tis-
sue from gastric cancer patients are signifi-
cantly higher than those found in healthy indi-
viduals [9]. However, patients with different 
types of tumors can also have different blood 
amino acid levels [10]. In our experiments, the 
elevated levels of three amino acids observed 
may be due to a lack of amino acids in the 

tumor microenvironment, resulting in high rates 
of protein breakdown. The reduction of proline 
levels in the highly and poorly differentiated 
gastric cancer cell lines may be due to exces-
sive energy consumption by tumor cells, shunt-
ing proline into the tricarboxylic acid cycle. 
Therefore, we speculate that in gastric cancer 
patients, the amino acid changes are not only 
associated with tumor type, but also with the 
degree of tumor differentiation.

The level of glyceric acid decreased in all three 
gastric cancer cell lines. Glyceric acid is an 
intermediate of serine degradation and is phos-
phorylated to produce glycerate 3-phosphate, 
which is involved in glycolysis, an important 
source of energy for tumor cells. Researchers 
have found that glyceric acid is present at lower 
levels in highly metastatic breast cancer cells 
when compared to low metastatic breast can-
cer cells [11]. Glyceric acid levels are also de- 
creased in the blood of patients with advanced 
pancreatic cancer [12]. Therefore, we can 
ascertain that in tumor development, different 
stages of tumor differentiation will involve 
changes in glyceric acid content.

Adenosine levels were elevated in all three dif-
ferentiated gastric cancer cell lines. Previous 
studies suggest that adenosine levels were 
also increased in blood from gastric cancer 
patients, in tissues and urine from colon can-
cer patients, and in the urine of lung cancer 
patients [13, 14]. Adenosine is one of the four 
major mononucleotides, and the metabolite via 
which energy is transferred in the body. Tumor 
cells consume a large quantity of adenosine  
triphosphate (ATP) to maintain their growth, 
resulting in the accumulation of excess adenos-
ine, and the production of adenosine also pro-
vides raw materials for tumor nucleic acid 
synthesis.

Pantothenic acid levels were increased in high-
ly differentiated and poorly differentiated gas-
tric cancer cell lines, but decreased in the mod-
erately differentiated gastric cancer cell line. 
Increased pantothenic acid in tumor cells can 
increase the production of CoA, promote the 
production of phospholipids, and protect again- 
st lipid peroxidation. At the same time, panto-
thenic acid also increases the content of GSH 
in cells. Both metabolic routes have a protec-
tive effect for tumor cells [15, 16]. The reduc-
tion of pantothenic acid in the moderately dif-
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ferentiated gastric cancer cell line may be due 
to the over-proliferation of tumor cells, resulting 
in depletion of pantothenic acid.

Tumor prediction models and biomarkers have 
been reported in a number of studies. Recent 
studies have shown that circulating tumor cells 
are linked to different types of tumor metasta-
sis and spread [17, 18]. Certain studies claim 
that circulating tumor DNA can be used as a 
diagnostic marker for early stage gastric can-
cer [19]. In metabolomics research, Chen and 
colleagues [20] used GC-MS in combination 
with surface-enhanced Raman scattering to 
test the composition of exhaled gas from gas-
tric cancer patients (early and advanced stage) 
and from healthy individuals, and found differ-
ences in 14 volatile organic compounds which 
may be used to diagnose early stage gastric 
cancer. Wang [4] and colleagues used 1HNMR 
to study the metabolic profiles of gastric cancer 
tissues from different TNM stages. Forty-eight 
different metabolites were found, of which 13 
expressed changes with the progression of 
gastric cancer. The numerical model estab-
lished in that study showed that the AUC value 
of gastric cancer diagnosis was 0.945.

In this study, the OPLS-DA model that we estab-
lished using GC-MS was able to distinguish the 
metabolic profiles of gastric cancer cells at dif-
ferent degrees of differentiation from normal 
gastric epithelial cells. All metabolite data were 
used to establish the model. Multivariate analy-
sis established that our model has better pre-
dictive value and accuracy than traditional uni-
variate analysis.

Our study also found that gastric cancer cell 
lines show significant changes in their meta-
bolic processes when compared to a normal 
gastric epithelial cell line, including metabolism 
of carbohydrates, amino acids, purines, fatty 
acids, and other small molecules. With the 
establishment of our model, six metabolites 
were screened as potential tumor biomarkers 
for gastric cancer, which is of great significance 
for the early diagnosis and treatment of gastric 
cancer. However, in the end, whether these 
putative metabolic markers of gastric cancer 
are clinically relevant will require further valida-
tion in large multicenter clinical studies.

Metabolomic analysis can be used to discover 
potential tumor biomarkers and complement 

genomic and proteomic research. The tech-
nique used in this study was GC-MS. In the 
future, metabolic profiling of gastric cancer 
cells can also be performed using techniques 
such as LC-MS and NMR. Different detection 
technologies have different sensitivity and 
accuracy for the detection of metabolites. The 
range of detection of metabolites will not be 
the same. “Precision Medicine” is gaining more 
and more attention in cancer treatment. By 
combining the areas of metabolomics, proteo- 
mics, and genomics, individualized treatment 
programs can tailored to guide clinical practice. 
Therefore, accelerating metabolomic research 
in cancer is of great significance for the screen-
ing, treatment, and prevention of tumors.
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