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Abstract: Objective: To examine whether the expression levels of endogenous H2S synthases and hedgehog (Hh) 
signaling pathway components correlate with the clinicopathological characteristics of papillary thyroid cancer (PTC) 
patients. Methods: A retrospective analysis was conducted of clinicopathological data obtained from 176 patients 
diagnosed with PTC, and immunohistochemical methods were used to detect the expression levels of endogenous 
H2S synthases cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransfer-
ase (MPST), as well as three molecules in the Hh signaling pathway: sonic hedgehog (SHH), patched (PTCH), and 
smoothened (SMO). Specimens of PTC tissue (n=176) and normal para-cancerous thyroid tissue (n=134) were 
obtained from 176 patients who underwent a total thyroidectomy or thyroid glandular follicle and isthmus resec-
tion and analyzed by immunohistochemical methods for their levels of CSE, CBS, MPST, SHH, PTCH, and SMO 
expression. Results: We found that CSE was overexpressed in PTC tissues, while CBS and MPST were only slightly 
expressed in PTC tissues at levels similar to those in adjacent normal tissues. The levels of CSE expression were 
positively correlated with tumor size, extrathyroidal extension (ETE), and lymph node metastasis (LNM), but were not 
correlated with patient gender, age, or TNM stage. SHH, PTCH, and SMO Hh signaling pathway components were 
widely expressed in PTC tissues, and their expression correlated with larger tumor size, ETE, and LNM, but not with 
patient gender, age, or TNM stage, suggesting that activation of the Hh signaling pathway is involved in thyroid tu-
mor progression. Conclusions: These data suggest that a high level of CSE expression accompanied by Hh signaling 
pathway activation is involved in the pathogenesis and progression of PTC. 
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Introduction

Thyroid cancer is the most common malignancy 
of the human endocrine system, and head and 
neck tumors are becoming the most frequent 
types of solid tumors seen in the clinic [1, 2]. 
Since 2010, thyroid cancer has been the fifth 
most common malignancy among females in 
the United States, and ~56,000 new cases of 
thyroid cancer are diagnosed annually [3]. In 
Italy, thyroid cancer is the second most com-
mon cancer among females aged <45 years 
[4]. In 2011, thyroid cancer was the most preva-
lent malignant tumor in South Korea [5]. The 
China Cancer Registration Center 2012 annual 
report showed that thyroid cancer was the 

fourth most prevalent malignancy found in 
urban areas, and from 2003 to 2007, had an 
annual increase of 14.5%. Nearly 90,000 new 
cases of thyroid cancer were reported in China 
in 2015, and ~6,800 people died of the dis-
ease. Particularly noteworthy is the finding was 
that thyroid cancer is the most frequently diag-
nosed malignancy among women <30 years old 
[6].

Many studies have suggested that extrathyroi-
dal extension (ETE) and lymph node metastasis 
are responsible for the significant increase in 
the risk of death among patients with thyroid 
cancer [7-9]. Although the majority of papillary 
thyroid cancers (PTCs) have a favorable progno-
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sis, ~10% of PTCs have a poor prognosis due  
to the presence of distant metastases and a 
loss of cellular differentiation.

Hydrogen sulfide (H2S) is an important gas sig-
naling molecule with numerous biologic effects 
[10]. Meng JL et al. confirmed that H2S helps  
to protect nerve cells against hypoxia-induced 
oxidative stress injuries [11]. In recent years, 
studies have shown that H2S plays an impor-
tant role in the pathophysiology of tumors [12]. 
Increased levels of cystathionine β-synthase 
(CBS) [13] or cystathionine γ-lyase (CSE) expres-
sion occur in a variety of tumor cells [14]; fur-
thermore, tumor cell survival depends on the 
H2S produced by CBS [15] or CSE [16]. Studies 
have shown that endogenous H2S can promote 
proliferation, invasion, and migration in tumor 
cells, including colon cancer [17, 18] and breast 
cancer [19] cells. However, another report sug-
gested that increasing H2S concentrations can 
also exert an anti-tumor effect [20, 21]. Szabo 
pointed out that reduced levels of H2S produc-
tion or increased H2S concentrations over a 
certain threshold exert an anti-tumor effect 
[22]. In this study, we explored how endoge-
nous H2S affects the invasion and migration of 
PTC cells.

The sonic hedgehog (Hh) pathway is activated 
in several types of malignancy and plays im- 
portant roles in tumorigenesis and tumor cell 
proliferation [23-27]. However, the roles of the 
Hh signaling pathway and endogenous H2S ac- 
tivation and their association in PTC patients 
with different clinicopathological features have 
not yet been well documented. Thus, the pres-
ent study was undertaken to examine the ex- 
pression levels of three different H2S-producing 
enzymes (CBS, CSE, and MPST) and Hh signal-
ing pathway molecules (SHH, PTCH, and SMO) 
to elucidate their clinical significance in PTC 
and further explore their association.

Materials and methods 

Patients and tissue samples

Specimens of PTC tissue (n=176) and normal 
para-cancerous thyroid tissue (n=134, located 
2 cm from the edge of the tumor tissue) were 
obtained from 176 patients (mean age 39.68± 
12.56 y, age range 16-77 y) who had under-
gone a thyroidectomy or thyroid glandular folli-
cle and isthmus resection at the Traditional 

Chinese Medicine-Integrated Hospital of Sou- 
thern Medical University from September 2014 
to December 2016. The specimens were from 
46 male patients (26%) and 130 female pa- 
tients (74%). A signed written Informed Consent 
was obtained from each subject. The patholog-
ic diagnosis of each sample was confirmed by 
at least two independent experienced path- 
ologists.

Histopathological examination

An immunohistochemical staining analysis of 
endogenous H2S synthases CSE, CBS, and 
MPST and three molecules in the Hh signaling 
pathway (SHH, PTCH, and SMO) was performed 
on sections of 10%-neutral-formalin-fixed, par-
affin-embedded (FFPE) thyroid tissue that were 
of 2 µm thickness. After the sections were de- 
waxed, their antigens were retrieved, and the 
slides with tissue sections were treated with 
3% hydrogen peroxide for 15 min. The sections 
were then incubated with normal goat serum 
for 30 min to block nonspecific-binding sites. 
Next, the tissue sections were then incubated 
with primary antibodies against CBS (1:200) 
(Abnova, Taipei City, Taiwan), CSE (1:200) (Ab- 
nova), MPST (1:100) (Santa Cruz Biotechno- 
logy, Dallas TX, USA), SHH (EP1190Y; Novus 
Biologicals, Inc., Littleton, CO, USA), PTCH (H0- 
267, sc-9016; Santa Cruz Biotechnology,), and 
SMO (H-300, sc-13943; Santa Cruz Biote- 
chnology) overnight at 4°C. The slides were 
then washed with phosphate-buffered saline 
containing 0.1% v/v Tween-20 and incubated 
with horse radish peroxidase-conjugated goat 
anti-mouse immunoglobulin (Santa Cruz Biote- 
chnology) for 20 min at room temperature. Fi- 
nally, the slides were treated with peroxidase-
conjugated streptavidin and stained with DAB. 
Images were photographed using a confocal 
microscope (Olympus, Tokyo, Japan). Staining 
intensity was scored as “-” (negative), “+” (mod-
erate) or “++” (strong). The extent of staining 
was scored as “-” (<10% of thyroid cells stain- 
ed), “+” (10%-50% stained) or “++” (>50% stain- 
ed). The immunohistochemistry results were 
evaluated by two independent pathologists. 

Statistical analysis

All data were analyzed using IBM SPSS Sta- 
tistics for the Social Sciences, Version 20 (IBM 
Corp., Armonk, NY, USA). P-values <0.05 were 
considered statistically significant. Descriptive 
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statistics were applied based on the distribu-
tion of the variables. The X2 test or Fisher’s ex- 
act test was used to determine whether there 
were significant differences in the levels of 
CSE, CBS, MPST, SHH, PTCH, and SMO expres-
sion in the PTC tissues vs. the adjacent normal 

PTC tissue with CSE staining intensities graded 
as negative (-), moderate (+), and positive (++) 
are shown in Figure 1. As shown in Table 1, 
there was a selective upregulation of CBS 
expression in PTC tissues. Overall, CSE was 
expressed in 86.93% of the PTC tissue speci-
mens vs. 23.88% of the adjacent non-cancer-
ous tissue specimens. However, expression  
of the other two H2S-producing enzymes (CSE 
and MPST) was not upregulated in the tu- 
mor tissues. The positive expression rates for 
CBE and MPST were 29.55% (52/176) and 
26.70% (47/176), respectively, in PTC tissues, 
and 20.15% (27/134) and 26.87% (36/134), 
respectively, in adjacent normal thyroid tiss- 
ues.

Expression of Hh signaling pathway compo-
nents was upregulated in PTC tissue

IHC staining was performed to analyze the 
expression of three molecules in the Hh path-
way (SHH, PTCH, and SMO) in PTC tissues. SHH, 
PTCH, and SMO were present mostly in the 
cytoplasm. Examples of negative (-), moderate 

Figure 1. Immunohistochemical staining of CSE, SHH, PTCH, and SMO. The 
expression levels of CSE and three Hh signaling molecules in PTC tissues 
were analyzed by IHC staining performed using specific antibodies against 
PTC. The expression profiles of CSE and three Hh signaling molecules in 
PTC tissues were graded as “-” (negative), “+” (moderate), or “++” (strong) 
(×400).

Table 1. Extent of CBS, CSE, and MPST 
staining in PTC tissues and adjacent normal 
tissues

PTC (n=176) Adjacent normal 
tissues (n=134) p-value

CSE - 23 102 0.000
+ 48 26

++ 105 6
CBS - 124 107 0.117

+ 43 24
++ 9 3

MPST - 129 98 0.975
+ 37 23

++ 10 13
“-” (negative, <10% positive cells); “+” (moderate, 10-
50% positive cells); “++” (strong, >50% positive cells).

thyroid tissues. Those tests 
were also used to determine 
whether there were significant 
differences in CSE, SHH, PT- 
CH, and SMO expression am- 
ong patients of different age 
and gender, and whether CSE, 
SHH, PTCH, and SMO expres-
sion correlated with tumor si- 
ze, the presence of ETE and 
LNM, and TNM stage. Spear- 
man’s correlation test was 
used to assess the associa-
tion between CSE expression 
and the expression of Hh sig-
naling pathway molecules. 

Results

CSE was overexpressed in 
PTC tissue

Immunohistochemical stain-
ing was performed to detect 
endogenous CSE, CBS, and 
MPST expression, and the re- 
sults showed that all three of 
these H2S synthesizing enzy- 
mes were present mostly in 
the cytoplasm. Examples of 
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(+), and positive (++) staining for SHH, PTCH, 
and SMO expression in PTC tissues are shown 
in Figure 1. As shown in Table 2, the positive 
expression rates for SHH, PTCH, and SMO in 
samples of PTC tissue were 63.07%, 67.61%, 
and 59.66%, respectively, whereas those ra- 
tes in adjacent normal thyroid tissues were 
18.66%, 17.16%, and 26.87%, respectively. Th- 
ese results showed that expression of Hh sig-
naling pathway components SHH, PTCH, and 
SMO was upregulated in PTC specimens, when 
compared to their expression in adjacent nor-
mal tissues, and the differences were statisti-
cally significant (all P values <0.001) (Table 2).

Correlation between upregulation of CSE and 
clinicopathological parameters in PTC patients

The clinicopathological characteristics (gender, 
age, tumor size, ETE, LNM, and tumor stage) of 
the PTC patients who provided the 176 PTC 
lesions and the CSE expression levels in those 
lesions as determined by IHC were analyzed, 
and the results are shown in Table 3. We found 
that CSE expression was positively correlated 
with tumor size (P=0.011), ETE (P=0.048), and 
LNM (P=0.005). No significant associations 
were found between CSE expression and gen-
der (P=0.616), age (P=0.355), and TNM stage 
(P=0.416) of the PTC patients.

Relationship between activation of the Hh sig-
naling pathway and clinicopathologic charac-
teristics of PTC patients

As shown in Table 4, we found that expression 
of the Hh signaling pathway components SHH, 
PTCH, and SMO was positively correlated with 
tumor size (P=0.010, P=0.047, P=0.026, re- 
spectively), ETE (P=0.024, P=0.020, P=0.028, 
respectively), and LNM (P=0.008, P=0.0268, 
P=0.013, respectively). SHH, PTCH, and SMO 
expression were not significantly associated 
with gender (P=0.726, P=0.583, P=0.227, re- 
spectively), age (P=0.418, P=0.736, P=0.424, 
respectively) or TNM stage (P=0.455, P=0.436, 
P=0.578, respectively) of the PTC patients.

Relationship between upregulation of CSE 
and an aberrant Hh signaling pathway in PTC 
tissue

Our results showed that high levels of CSE 
expression in PTC tissues were accompanied 
by an activated Hh signaling pathway, as sig- 
nificant positive correlations between CSE ex- 
pression and SHH, PTCH, and SMO expression 
were found in PTC tissues (r=0.266, P<0.001; 
r=0.225, P<0.001; r=0.295, P<0.001, respec-
tively) (Tables 3 and 4).

Discussion

Hydrogen sulfide (H2S) is a colorless and highly 
water soluble gas with an irritating smell. Al- 
though atmospheric H2S gas is toxic, endoge-
nous H2S, whose formation is catalyzed by  
cystathionine β-synthase (CBS), cystathionine-
γ-lyase (CSE) derived from L-cysteine (L-Cys), 
and 3-mercaptopyruvate sulphur transferase 

Table 2. Expression of CSE and three Hh signal-
ing pathway components in PTC tissues

PTC (n=176) Adjacent normal 
tissues (n=134) p-value

SHH - 65 109 0.000
+ 59 13

++ 52 12
PTCH - 57 111 0.000

+ 71 13
++ 48 10

SMO - 71 98 0.000
+ 74 27

++ 31 9
“-” (negative, <10% positive cells); “+” (moderate, 10-50% 
positive cells); “++” (strong, >50% positive cells).

Table 3. Associations between CSE expression 
and the clinical/pathological characteristics of 
PTC patients

Total CSE (-/+) 2 p-value
Gender Female 130 16/114 0.253 0.616

Male 46 7/39
Age <45 115 13/102 0.909 0.355

≥45 61 10/51
Tumor size ≤2 cm 111 20/91 6.482 0.011

>2 cm 65 3/62
ETE Yes 25 0/25 4.380 0.048

No 151 23/128
LNM Yes 106 7/99 9.804 0.003

No 70 16/54
TNM stage I+II 138 20/118 1.142 0.416

III+IV 38 3/35
P-values are based on chi-square test; “-” (negative), “+” 
(positive). ETE, extrathyroidal extension; LNM, lymph node 
metastasis.
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(MPST, also known as 3-MST) through one-car-
bon metabolism and the trans-sulphuration 
pathway, is now considered the third gasotrans-
mitter, along with nitric oxide (NO) and carbon 
monoxide (CO) [28-31]. Increasing evidence su- 
ggests that H2S is closely associated with the 
occurrence and development of tumors. Stu- 
dies show that different H2S-associated path-
ways are involved in various types of cancer, 
and that the pathways utilized to promote cell 
proliferation, survival, and death are depen-
dent on the tumor cell type [13]. Increased H2S 
production, mainly from CBS, but in other cell 
lines also from CSE, plays an essential role in 
the proliferation of colon and ovarian cancer 
cells [32, 33]; furthermore, CBS silencing in 
glioma cells accelerates tumor cell proliferation 
[34]. However, the expression of endogenous 
H2S synthases CSE, CBS, and MPST has never 
been studied in PTC cells. In this study, we  
used immunohistochemical staining methods 
to analyze CSE, CBS, and MPST expression in 
samples of PTC tissue and adjacent normal  
thyroid tissue. Our results provide histopatho-
logic evidence that endogenous H2S, synthe-
sized by CSE, is overexpressed in PTC tissue. 
The other two H2S synthases (CBS and MPST) 
were only slightly expressed in tumor tissues at 
levels similar to those in adjacent normal tis-
sues, which was not accordance with findings 
in other tumor tissues [32, 35]. In our study, the 
levels of CSE expression were positively corre-

late deletion mutations that change its func-
tion, or SMO may acquire mutations that prom- 
ote its abnormal sustained activation in the ab- 
sence of the ligand SHH [36, 37]. Also, the self-
synthesis of SHH ligands in tumor cells may 
permit autocrine or paracrine signaling hormo- 
nes to activate the Hh signaling pathway [38].

Proper function of the Hh signaling pathway is 
essential for thyroid organogenesis. The thyroid 
primordium fails to form two lobes in SHH-/- 
mice [39]. The Hh signaling pathway is activat-
ed in thyroid neoplasms, and contributes to 
increased cell proliferation [40, 41]. Hh path-
way-stimulated thyroid tumor cell motility and 
invasiveness are largely mediated by activat- 
ed AKT and c-Met, with little involvement of  
the epithelial-mesenchymal transition process 
[42]. In the present study, we found that SHH, 
PTCH, and SMO were widely expressed in PTC 
tissues, but only slightly expressed in adjacent 
normal thyroid tissues. These observations su- 
ggest that the Hh signaling pathway is activat-
ed during thyroid tumorigenesis. This notion is 
consistent with the results of several other 
studies that showed increased expression of 
several Hh signaling pathway components in 
malignant tumors, such as breast cancer, en- 
dometrial adenocarcinoma, and ovarian car- 
cinoma.

We also found that SHH, PTCH, and SMO were 
concomitantly upregulated in PTC tissues and 

Table 4. Associations between expression of the Hh signaling path-
way components and the clinical/pathological characteristics of PTC 
patients

Total SHH 
(-/+) p-value PTCH 

(-/+) p-value SMO 
(-/+) p-value

Gender Female 130 47/83 0.726 44/86 0.583 56/74 0.227
Male 46 18/28 13/33 15/31

Age <45 115 40/75 0.418 36/79 0.736 49/66 0.424
≥45 61 25/36 21/40 22/39

Tumor size ≤2 cm 111 49/62 0.010 42/69 0.047 52/59 0.026
>2 cm 65 16/49 15/50 19/46

ETE Yes 25 4/21 0.024 3/22 0.020 5/20 0.028
No 151 61/90 54/97 66/85

LNM Yes 106 34/72 0.008 32/74 0.026 38/68 0.013
No 70 37/33 33/37 39/31

TNM stage I+II 138 49/89 0.455 47/91 0.436 54/84 0.578
III+IV 38 16/22 10/28 17/21

P-values based on the chi-square test; “-” (negative), “+” (positive). ETE, extrathyroidal 
extension; LNM, lymph node metastasis.

lated with tumor size, ETE, 
and LNM; however, they did 
not significantly correlate 
with patient gender, age, or 
tumor TNM stage.

In the canonical Hh path- 
way, SHH binding to patch- 
ed (PTCH), a 12-passtrans-
membrane receptor, leads 
to the release of smooth-
ened (SMO), a 7-pass trans- 
membrane protein, and the 
subsequent activation of 
GLI transcription factors. 
Several different mecha-
nisms may activate Hh sig-
naling pathways needed 
for tumor development. For 
example, the Hh signaling 
pathway component PTCH 
in tumor cells may accumu-
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positively correlated with a larger tumor size, 
ETE, and LNM, but not with patient gender, age 
or tumor TNM stage. These findings suggest 
that activation of the Hh signaling pathway may 
be involved in thyroid tumor progression. 

Conclusion

In conclusion, our results suggest that high lev-
els of CSE expression accompanied by an acti-
vated Hh signaling pathway can promote the 
development and progression of PTC.
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