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Abstract: Chronic inflammation is a key contributor to obesity-related insulin resistance and type 2 diabetes (T2D). 
NLRP3 inflammasome activation plays an important role in impairing insulin signaling and insulin sensitivity. Adi-
ponectin is an adipocyte-derived cytokine that has been shown to promote insulin sensitivity and exert anti-in-
flammatory properties, yet the detailed mechanism is still unclear. In this study, we aimed to investigate the anti-
inflammatory effect of adiponectin on lipopolysaccharide (LPS) plus palmitic acid (PA)-induced THP-1 cells and to 
identify the underlying mechanism. We report here that adiponectin was able to inhibit interleukin (IL)-1β and IL-18 
by suppressing NLRP3 inflammasome activation. Furthermore, we, for the first time, describe that adiponectin at-
tenuates NLRP3 inflammasome activation by modulating the AMPK-ROS signaling pathway. These findings provide 
insight suggesting that adiponectin and NLRP3 inflammasome be considered molecular targets for the develop-
ment of new treatment for T2D and the related metabolic diseases.
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Introduction

The incidence of obesity, which gives rise to a 
state of chronic, low-grade inflammation that 
contributes to insulin resistance and type 2 dia-
betes, has increased dramatically and is a seri-
ous threat to global health [1-5]. Recent investi-
gations suggest that obesity, obesity-linked 
insulin resistance, type 2 diabetes, and meta-
bolic syndrome are chronic inflammatory dis-
eases characterized by decreased adiponectin 
in the plasma [6, 7]. Adiponectin is an adipo-
cyte-derived cytokine that exerts anti-diabetic 
and anti-atherogenic properties. Adiponectin 
also has been shown to enhance insulin sensi-
tivity and promote lipid metabolism in obesity-
linked diseases through its anti-inflammatory 
action [8]. However, the detailed mechanism of 
the anti-inflammatory effect of adiponectin 
remains to be clarified.

A number of reports have established that 
hypoadiponectinemia is related to higher levels 
of inflammatory markers including IL-1β and 
IL-18. Ahonen et al. have suggested that a low 
adiponectin level and high IL-1β level in plasma 
predict the development of metabolic syn-

drome [9]. Kamio et al. demonstrated that pre-
treatment with 2 µg/ml adiponectin significant-
ly reduced LPS-induced IL-1β mRNA expres- 
sion [10]. In addition, Chandrasekar et al. have 
demonstrated that adiponectin can block IL- 
18-mediated vascular injury and inflamma- 
tion through AMP-activated protein kinase 
(AMPK) activation [11]. The opposing relations 
of adiponectin with IL-1β and IL-18 led us to  
try to identify the underlying molecular me- 
chanisms. 

Numerous studies have shown that the synthe-
sis and processing of IL-1β as well as IL-18 are 
tightly controlled by a molecular platform called 
NLRP3 inflammasome, which is composed of 
the Nod-like receptor protein NLRP3, the adap-
tor protein ASC, and pro-caspase-1 [12]. Upon 
stimulating by stimulators, NLRP3 protein is 
activated and recruits ASC and pro-caspase-1 
to assemble the NLRP3 inflammasome, then 
triggers proteolytic cleavage of pro-caspase-1 
into active caspase-1, which subsequently con-
verts pro-IL-1β and pro-IL-18 into mature and 
biologically active forms IL-1β and IL-18 [13]. 
Interestingly, Wen et al. demonstrated that the 
AMPK-ROS signaling axis is involved in NLRP3 
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inflammasome activation in macrophages sti- 
mulated by LPS plus PA [14]. 

In the present study, we found that in patients 
with T2D, the circulating levels of adiponectin 
correlate inversely with IL-18. On this basis, we 
determined whether adiponectin attenuates 
IL-1β and IL-18 secretion from LPS+PA-induc- 
ed THP-1 cells in vitro. In addition, we hypothe-
size that adiponectin inhibits IL-1β and IL-18 by 
suppressing NLRP3 inflammasome activation. 
Further, we investigate whether adiponectin 
exerts this biological effect via the AMPK-ROS 
pathway.

Materials and methods

Subjects and blood sampling

Thirty T2D patients (15 men and 15 women) 
within 5 years diagnosis were recruited from 
the Diabetes Clinic in the Third Xiangya Hospital 
of the Central South University. Twenty healthy 
subjects (10 men and 10 women) were match- 
ed for age and sex with the diabetic group. 
None of the subjects had evidence of infec-
tious, allergic or other autoimmune diseases 
recently, and they did not use immunomodula-
tory drugs in the 6 months before sampling. 
The study was approved by the Ethics Com- 
mittee of the Third Xiangya Hospital of the 
Central South University. Written informed con-
sent was obtained from all study participants. 

Venous blood from fasting subjects was col-
lected between 6.00 and 8.00 a.m. to minimize 
possible circadian variations. Blood samples 
were allowed to clot at room temperature and 
the serum were immediately separated by cen-
trifugation and stored in aliquots at -80 until 
analysis.

IL-18 and adiponectin assays

IL-18 and adiponectin levels were measured by 
enzyme-linked immunosorbent assay (ELISA) 
method according to manufacturer sugges-
tions. IL-18 was determined by ELISA kit from 
MBL (No.7260) and adiponectin concentration 
was measured by ELISA kit from R&D Systems 
(No.DRP 300).

Cell culture and treatments

Monocytic THP-1 cells obtained from the 
American Type Culture Collection (ATCC) were 
grown at 37°C, under 5% CO2 in RPMI 1640 
medium (Hyclone) supplemented with 10% 

fetal bovine serum (FBS), penicillin (100 units/
ml), streptomycin (100 mg/ml) and L-Glutamine 
(2.05 mM). The cells were cultured as a single-
cell suspension and seeded onto 12-well plates 
at a density of 4 × 105 cells well-1. LPS and PA 
were supplemented to activate NLRP3 inflam-
masome with or without adiponectin.

Enzyme-linked immunosorbent assay for IL-1β 
and IL-18

THP-1 cells were pretreated with 100 ng/ml 
LPS for 3 h and then stimulated with 0.5 mM PA 
for another 8 h in the absence or presence of 2 
µg/mL adiponectin. Supernatants were collect-
ed and stored at -80°C until used for cytokine 
determination. IL-1β and IL-18 were determined 
by enzyme-linked immunosorbent assay (ELISA) 
according to the manufacturer’s instructions 
(R&D Systems).

Western blotting assay

Cells were harvested at the indicated time. Cell 
extracts (30 μg) were separated on a 10% so- 
dium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) and transferred to 
polyvinyldene fluoride membranes (Millipore). 
Primary antibodies against NLRP3 (CST), AMPK 
(CST), phospho-AMPKα (CST), pro-caspase-1 
(Abcam) and ASC (Abcam) were applied over-
night at 4°C with a dilution of 1:1000. β-actin 
(1:5000 Sigma-Aldrich) was used as an internal 
control for equal protein loading. After primary 
antibody incubation, the blots were incubated 
with specific HRP-conjugated second antibody 
for 1 h at room temperature. The presence of 
bound antibody was detected using an ECL kit 
as the manufacturer’s manual.

Caspase-1 activity detection assay

Activity of caspase-1 was detected by using 
Caspase-1 activity assay kit (Beyotime, Shang- 
hai China) according to the manufacturer’s pro-
tocol. The samples were read at 405 nm in a 
microtiter plate reader.

Small interfering RNA (siRNA) transfection

We designed several short-hairpin RNA frag-
ments that might bind to the mRNA coding 
sequence of AMPKα1 and chose the one that 
most effectively inhibited AMPKα1 expres- 
sion. The sense siRNA sequence targeting 
AMPKα1 was 5’-CGGGAUCAGUUAGCAACUAT- 
TUAGUU-GCUAACUGAUCCCGTT-3’ (GenePhar- 
ma). The inhibitory efficiency of siRNA probes 
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was assessed by western blot analysis of 
AMPKα1 protein levels. In brief, cells were cul-
tured for 24 h and grown to about 70% conflu-
ence. After this, cells were transfected with 
scramble siRNA or AMPKα1 siRNA by using  
of oligofectamine transfection reagent (Invitro- 
gen, Carlsbad, CA, USA) according to the manu-
facturer’s protocol. All assays were performed 
72 h after transfection of siRNA.

Measurement of reactive oxygen species

We measured mitochondrial ROS using Mi- 
toSOX (Molecular Probes). LPS-primed cells 
were treated with palmitate in the presence or 
absence of adiponectin. Cells were loaded with 
5 µM MitoSOX for 15 min and washed twice 
with sterile PBS. Mean fluorescence intensity 
was determined using a CyAn ADP flow cytom-
eter (DAKO). The ROS inhibitor NAC (N-acetyl-
cysteine) was added 1 h before the addition of 
LPS. The ROS generation was assessed by the 
dichlorofluorescein fluorescence intensity (FL-
1,530 nm) from 20,000 cells. 

Statistical analysis

All data are presented as mean ± standard 
deviation values. The comparisons among dif-
ferent groups were made by one-way analysis 
of variance (ANOVA) followed by least signifi-
cant difference (LSD) test as post hoc compari-
sons. Significant differences between groups 
were evaluated using SPSS 18.0 software 
(SPSS Inc., Chicago, IL). Differences with P < 
0.05 were considered significant. Each experi-
ment was repeated at least 3 times with similar 
results.

Results

Adiponectin concentration was negatively cor-
related with the level of IL-18

As shown in Figure 1, IL-18 level was signifi-
cantly higher in T2D patients compared to the 
healthy control group (P < 0.01). Level of adipo-
nectin was significantly lower in the diabetic 
patients when compared with healthy controls 
(P < 0.01). Notably, we found that the adiponec-
tin concentrations were negatively correlated 
with IL-18 concentrations in both nondiabetic 
and diabetic subjects (r = -0.6386, P < 0.01). 
These results prompted us to ask whether adi-
ponectin inhibits IL-18 in vitro. To address this 
question, we investigate the effect of adiponec-
tin on LPS+PA-induced IL-18 and IL-1β produc-
tion in THP-1 cells. 

Adiponectin significantly inhibited LPS+PA-
induced IL-18 and IL-1β production from THP-1 
cells

The THP-1 cells were stimulated with LPS+PA in 
the absence or presence of 2 µg/ml adiponec-
tin. IL-18 and IL-1β levels in the suspensions 

Figure 1. Adiponectin concentration was negatively 
correlated with the level of IL-18. (A) IL-18 and (B) 
adiponectin concentrations in serum of 30 diabetic 
patients and 20 non-diabetic subjects. Plots show 
mean ± SD by two-sided Student’s t-test. **P < 0.01 
vs. the control group. (C) Scatter plots showing the 
correlation between adiponectin concentrations and 
IL-18 concentrations. Correlation coefficient r and P 
value were calculated by the Spearman’s rank cor-
relation coefficient test.
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were examined using ELISA in different groups. 
Compared to an untreated control group, THP-1 
cells showed a significant increase in expres-
sion of IL-18 and IL-1β after LPS+PA stimulation 
(both P < 0.01; Figure 2), indicating that LPS 
and PA were effective stimulators of IL-18 and 
IL-1β secretion. However, in the adiponectin 
group, we saw that the secretion of IL-18 and 
IL-1β were significantly inhibited by adiponectin 
(P < 0.01; Figure 2). This result revealed that 
adiponectin has an effect of anti-IL-18 and 
anti-IL-1β.

Adiponectin attenuates LPS+PA-induced 
NLRP3 inflammasome activation in THP-1 
cells

Since the NLRP3 inflammasome is required to 
induce the maturation and secretion of IL-18 
and IL-1β, we further asked whether adiponec-
tin attenuates IL-18 and IL-1β secretion by 
impairment of the NLRP3 inflammasome, for 

which western blot analysis and caspase-1 
activity detection assay were performed. As 
shown in Figure 3A-C, LPS+PA treatment sig-
nificantly up-regulated NLRP3 and pro-cas-
pase-1 expression, while did not modulate the 
expression level of ASC in comparison to un- 
treated cells (P < 0.01 for both A and B; P > 
0.05 for C). Interestingly, THP-1 cells co-incu-
bated with LPS+PA and adiponectin exhibited 
significantly lower levels of NLRP3 and pro-cas-
pase-1 compared to those exposed to LPS+PA 
only, although with no significant effect on ASC 
expression (Figure 3A-C). Similarly, LPS+PA 
stimulation showed a marked enhancement  
of caspase-1 activity in THP-1 cells and this ri- 
se in caspase-1 activity was significantly de- 
creased by adiponectin treatment (Figure 3D). 
Taken together, these observations provide a 
mechanistic basis whereby adiponectin can 
attenuate LPS+PA-induced NLRP3 inflamma-
some activation in THP-1 cells.

Adiponectin attenuates NLRP3 inflamma-
some activation through an AMPK-dependent 
mechanism

It has been demonstrated that adiponectin 
could ameliorate inflammation and insulin re- 
sistance through the activation of AMPK, and 
phosphorylation of AMPK is used as an indica-
tion of AMPK activation [15, 16]. From Figure 
4A we found that co-incubation with LPS+PA 
and adiponectin significantly increased the 
phosphorylation of AMPK in THP-1 cells com-
pared with LPS+PA treatment only. In order to 
investigate if adiponectin inhibits NLRP3 in- 
flammasome through an AMPK-dependent 
mechanism, we transfected THP-1 cells with 
siRNA directed against AMPKα1, which is a 
dominant form of AMPKα. The efficiency of siR-
NA-mediated AMPK downregulation was con-
firmed by western blotting showing reduced 
level of phosphorylated AMPK in siRNA-trans-
fected cells (Figure 4B). As expected, NLRP3 
was markedly increased in both scramble and 
AMPKα1 siRNA THP-1 cells stimulated with 
LPS+PA. Interestingly, we found adiponectin 
treatment inhibited NLRP3 expression in siCon-
trol THP-1 cells but not in siAMPKα1-transfect- 
ed THP-1 cells (Figure 4C). Similarly, LPS+PA 
treatment significantly up-regulated caspase-1 
activity in both scramble and AMPKα1 siRNA 
THP-1 cells in comparison to mock-treated 
cells. However, adiponectin reduced LPS+PA-

Figure 2. Effect of adiponectin on the LPS+PA in-
duced secretion of IL-18 and IL-1β from THP-1 cells. 
Adiponectin group was pretreated with 2 μg/ml 
adiponectin for 12 h, and then stimulated with 100 
ng/ml LPS for 3 hours and 0.5 mM PA for another 
8 hours. Release of IL-18 and IL-1β was determined 
by ELISA. All data represent the mean ± SD of three 
independent experiments. **P < 0.01 vs. the control 
group; ##P < 0.01 vs. the LPS+PA group.
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mediated caspase-1 activation in scramble 
siRNA THP-1 cells but not in AMPKα1 siRNA 
THP-1 cells (Figure 4E). These findings indi- 
cate that adiponectin impaired NLRP3 infla- 
mmasome activation in an AMPK-dependent 
manner. 

Adiponectin attenuates NLRP3 inflammasome 
activation by modulating AMPK-ROS signaling

Previous studies have demonstrated that NR- 
LP3 inflammasome activation involves AMPK-

ROS signaling, and mitochondrial generated 
reactive oxygen species (ROS) are essential for 
inflammasome activation [14, 17]. To explore 
the effect of adiponectin on intracellular ROS 
generation and test whether adiponectin exer- 
ts a biological effect via the AMPK-ROS path-
way, we determined the intracellular level of 
ROS using MitoSOX staining. As shown in Fig- 
ure 5A, LPS+PA treatment substantially in- 
creased ROS production in THP-1 cells; howev-
er, adiponectin treatment significantly decr- 
eased the production of ROS. To examine fur-

Figure 3. Effect of adiponectin on LPS+PA induced 
NLRP3 inflammasome activation in THP-1 cells. A. Ex-
pression of NLRP3 protein was detected by western 
blotting in different groups. Adiponectin treated group 
expressed lower level of NLRP3 protein than LPS+PA 
treated group. B and D. Level of pro-caspase-1 protein 
and caspase-1 activity were also lower in adiponectin 
treated group than LPS+PA treated group. C. Adiponec-
tin has no effect on LPS+PA-induced ASC protein ex-
pression in THP-1 cells. All data represent the mean ± 
SD of three independent experiments. **P < 0.01 vs. 
the control group; #P < 0.05 vs. the LPS+PA group.
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Figure 4. siRNA knockdown of AMPKα1 affects adiponectin by modu-
lating LPS+PA-induced NLRP3 inflammasome activation. A. p-AMPK 
level was elevated in adiponectin treated group. B. p-AMPK and AMPK 
protein levels in Si-NC and Si-AMPKa THP-1 cells. C and E. The inhi-
bition of NLRP3 protein and caspase-1 activity by adiponectin were 
abolished in Si-AMPKa THP-1 cells. D. Adiponectin has no effect on 
ASC protein expression in Si-NC and Si-AMPKa THP-1 cells. All data 
represent the mean ± SD of three independent experiments. **P < 
0.01 vs. the control group; ##P < 0.01 vs. the LPS+PA group.



Adiponectin inhibits NLRP3 inflammasome

3344	 Int J Clin Exp Pathol 2018;11(7):3338-3347

ther whether the decreased ROS production  
is AMPK-related, we assessed the LPS+PA-
triggered generation of ROS in scramble and 
AMPKα1 siRNA THP-1 cells. As observed in 
Figure 5B, adiponectin significantly decreased 
ROS generation in scramble THP-1 cells but 
with no significant effect in AMPKα1 siRNA 
THP-1 cells, indicating that siRNA knockdown of 
AMPKα1 abolished the adiponectin-inhibited 

ve proposed that AMPK has emerged as an 
essential mediator of fatty acid metabolism, 
and it suppresses ROS production [22, 23]. 
AMPK has also been shown to have an anti-
inflammatory function in macrophages and it 
plays an important role during inflammasome 
activation by palmitate [24]. Thus, an AMPK-
ROS signaling axis that regulates NLRP3 inflam-
masome activation was revealed [25].

Figure 5. Effect of adiponectin on LPS+PA induced mitochondrial ROS pro-
duction in Si-NC and Si-AMPKa THP-1 cells. A. Adiponectin inhibits mitochon-
drial ROS generation. The ROS inhibitor NAC (N-acetyl-cysteine) was added 
1 hour before the addition of LPS as a positive control. B. THP-1 cells were 
transfected with scramble or AMPKα1 siRNA for 72 h, followed by stimula-
tion with LPS (100 ng/mL) for 3 h and then treated with PA (0.5 mM) for 8 
h with or without 2 μg/mL adiponectin. All data represent the mean ± SD of 
three independent experiments. **P < 0.01 vs. the control group; #P < 0.05 
vs. the LPS+PA group; ##P < 0.01 vs. the LPS+PA group.

ROS activation in LPS+PA-
induced THP-1 cells. Taken 
together, these observations 
provide insight into how adi-
ponectin attenuates NLRP3 
inflammasome activation by 
modulating AMPK-ROS sig- 
naling.

Discussion

Recent investigations suggest 
that obesity is a strong risk 
factor for insulin resistance 
and type 2 diabetes and is 
characterized by infiltration of 
adipose tissue by inflamma-
tory cells and elevated levels 
of pro-inflammatory cytokines 
including Interleukin 1β (IL-
1β), tumor necrosis factor α 
(TNFα), and Interleukin-6 (IL-
6) [18]. It is demonstrated 
that the NLRP3 inflamma-
some senses obesity-associ-
ated ‘danger-signals’ and con-
tributes to obesity-induced 
inflammation and insulin re- 
sistance. NLRP3 inflamma-
some can be activated by 
metabolic danger signals su- 
ch as extracellular ATP, glu-
cose, islet amyloid polypep-
tide (IAPP), free fatty acids, 
oxidized LDL, crystals of cho-
lesterol, and uric acid [19]. 
Recently, progress has been 
made revealing a critical role 
for ROS in NLRP3 activation 
[20]. Some studies also have 
shown that LPS+PA causes 
ROS production and then 
induces the activation of the 
NLRP3 inflammasome [21]. 
Several previous studies ha- 
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Accumulating evidence has illustrated that adi-
ponectin has positive actions on obesity-linked 
metabolic complications. Because of these 
beneficial effects, adiponectin has attracted 
tremendous scientific interest in recent years, 
and has been extensively studied both in 
human and animal models [26]. Both Freebies 
et al. and Berg et al. observed that injection of 
recombinant adiponectin in diabetic mice 
reduces plasma glucose to a near normal level 
[27], and adiponectin directly stimulates glu-
cose utilization and improves insulin sensitivity 
via the activation of AMPK. Guo et al. reported 
that adiponectin knockout mice featuredhigh 
fat accumulation in the liver even with con-
sumption of normal chow, which may result in 
dysfunction of mitochondria [28]. However, su- 
pplementation of adiponectin can rescue the 
mitochondria function with lowering the accu-
mulation of ROS [29]. But the underlying mech-
anism remains unknown.

Here, we demonstrated that LPS+PA stimula-
tion induced caspase-1 activation with IL-1β 
and IL-18 secretion. Moreover, we confirmed 
that adiponectin treatment significantly re- 
duced the expression of NLRP3 and pro-cas-
pase-1 and significantly inhibited caspase-1 
activation in LPS+PA induced THP-1 cells. 
Considering the observed effect of adiponec-
tin, we hypothesize that adiponectin most likely 
inhibits the production of IL-1β and IL-18 
through the up-regulation of AMPK phosphory-
lation. Therefore, we confirmed the effect of 
AMPK phosphorylation on the anti-inflammato-
ry influence of adiponectin in AMPKα1 knock-
down THP-1 cells. Interestingly, we observed 
that adiponectin-triggered NLRP3 inflamma-
some activation was efficiently abolished by 
AMPKα1 siRNA, as compared with that of 
scramble THP-1 cells. 

It has been reported that PA-enhanced ROS 
generation is negatively regulated by AMPK 
activation, which results in an increased β- 
oxidation of PA in mitochondria and decreas- 
ed overall lipid load inside cells. Moreover, 
AMPK upstream can inhibit ROS generation. 
Consistent with these previous studies, our 
study found that LPS+PA treatment induces 
ROS generation in THP-1 cells, which is prevent-
ed by adiponectin or an antioxidant NAC. 
Enhanced ROS generation is attenuated by adi-
ponectin, suggesting that adiponectin can 
inhibit ROS generation. We further found that 

siRNA knockdown of AMPKα1 efficiently abol-
ished adiponectin-inhibited ROS activation in 
comparison with that of scramble THP-1 cells, 
indicating that adiponectin attenuates NLRP3 
inflammasome activation by modulating the 
AMPK-ROS pathway. 

In conclusion, we observed a negative correla-
tion between adiponectin and IL-18. Moreover, 
for the first time to our knowledge, we de- 
monstrated that adiponectin inhibits LPS+PA-
induced IL-1β and IL-18 secretion in THP-1 cells, 
at least in part, by acting at the NLRP3 inflam-
masome. In addition, we provided evidence 
that adiponectin suppresses NLRP3 inflamma-
some activation by modulating AMPK-ROS  
signaling. This is an important observation in 
that it suggests that adiponectin may control 
inflammation by up-regulating AMPK phosph- 
orylation, and then reducing the ROS-initiat- 
ed inflammatory response. Since adiponectin 
appears to affect multiple cytokines and inflam-
matory factors, our research suggests that tar-
geting adiponectin may be an efficient therapy 
to modulate inflammatory responses in obesi-
ty-related disorders.
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