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Abstract: The aim of the study was to comprehensively evaluate the clinical value of miR-125b-5p in hepatocellular 
carcinoma (HCC) and its potential molecular mechanisms. MiR-125b-5p expression was remarkably lower as exam-
ined by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) in 95 paired HCC and non-
malignant liver tissues in house (P<0.001), which was in accord with the results from miRNA-sequencing data with 
371 cases of HCC. miRNA-chips from Gene Expression Omnibus (GEO) and ArrayExpress were screened. Among the 
seven included miRNA-chips, the relative expression of miR-125b-5p expression levels showed decreasing trends 
in HCC tissue samples compared with non-cancerous liver tissue samples. Altogether, A total of 655 cases of HCC 
tissues and 334 non-HCC liver tissues were included in the final meta-analysis. We observed that the expression of 
miR-125b-5p indeed decreased markedly in HCC tissues compared with the non-HCC tissues (SMD: -1.414, 95% CI: 
-1.894 to -0.935, P<0.001). The area under the SROC curve of lower expression of miR-125b-5p was 0.91 (95% CI: 
0.89 to 0.94). A Kaplan-Meier survival analysis indicated that the lower expression or the absence of miR-125b-5p 
may be a risk factor for the poor outcome of HCC patients. Furthermore, the potential target genes of miR-125b-5p 
from 11 miRNA target prediction databases were intersected with 1,486 differentially expressed genes (DEGs) as 
calculated by RNA-sequencing data. Finally, a total of 330 GEGs were collected and enriched in the pathways of 
lysosome, focal adhesion, and pathways in cancer. In conclusion, this study utilizes a variety of research methods to 
confirm the lower level of miR-125b-5p in HCC tissues. This lower expression level of miR-125b-5p is closely related 
to increased disease progression in HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is one of the 
leading causes of cancer-related death in solid 
tumors worldwide, with a particularly poor prog-
nosis in patients in the advanced stages [1-4]. 
However, because of the low diagnostic rate in 
the early stages of the disease, many patients 
unfortunately lose their chance to receive initial 
surgical treatment [5-8]. Improving the accura-
cy of diagnosis for HCC patients is therefore an 
urgent issue. Meanwhile, finding a way to moni-
tor the progress of HCC and reduce its recur-
rence is also an urgent need [9-12]. Novel sig-
naling pathways and reliable biomarkers, which 
are involved in the occurrence of tumorigenesis 

and the progression of the disease, therefore 
need to be identified.

MicroRNAs (miRNAs) are a class of small non-
coding RNAs endogenously expressed; they 
can suppress or degrade their target messen-
ger RNAs (mRNAs) by binding to them [13-17]. 
Through the mechanisms of post-transcription-
al regulation, certain miRNAs have been found 
to exert critical functions as tumor suppressors 
or oncogenes across diverse biological pro-
cesses in the initiation and progression of 
malignancies [18-25]. One of these miRNAs, 
miR-125b-5p (previous name: miR-125b), which 
has the sequence of ucccugagacccuaacuugu-
ga, has been studied in the tumorigenesis and 
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progression of HCC. The expression levels of 
miR-125b-5p have been measured by several 
groups but with small sample sizes, and the 
results have been inconsistent [26-30]. A study 
with a large sample size, combined with the use 
of various detection methods (RT-qPCR, miRNA 
sequencing and miRNA-chip, etc.) to confirm 
the clinical implication of miR-125b-5p in HCC, 
has not been conducted. Furthermore, only 
several target genes of miR-125b-5p have been 
determined thus far, including sirtuin6 (SIRT6) 
[24], eva-1 homolog A, a regulator of program- 
med cell death (EVA1A) [29], ETS proto-onco-
gene 1, transcription factor (Ets1) [30], angio-
poietin 2 (Angpt2) [25], sirtuin7 (SIRT7) [27], 
and transcriptional coactivator with PDZ-bind- 
ing motif (TAZ) [28], to name a few. As miRNAs 
can have diverse target genes through sequ- 
ence-complementary relationships, many other 
target genes may be unidentified for miR-125b-
5p in HCC. Currently, the development of in-
silico research has provided the possibility  
of identifying potential miR-125b-5p target 
genes with the consideration of differentially 
expressed genes (DEGs) of HCC. Studies that 
explore comprehensive miR-125b-5p target 
genes have not yet been conducted either. 

In this study, we therefore evaluated the expres-
sion of miR-125b-5p based on evidence from 
three sources, which are in-house data by 
quantitative reverse transcription-polymerase 
chain reaction (RT-qPCR), miRNA sequencing 
data from The Cancer Genome Atlas (TCGA), 
and public miRNA-chip data from Gene Expres- 
sion Omnibus (GEO) and ArrayExpress. Mean- 
while, the potential targets of miR-125b-5p 
were obtained by overlapping the predicted 
candidates and DEGs of HCC. The potential sig-
naling pathways of miR-125b-5p were explored 
via in-silico methods, such as gene ontology 
(GO) analysis, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway annotation, and 
protein-protein interaction (PPI) analysis, thus 
providing a guide to acquire insights into the 
potential molecular mechanisms by which miR-
125b-5p mediates the tumorigenesis and pro-
gression of HCC.

Materials and methods

Clinical significance of miR-125b-5p in clinical 
HCC samples 

This study utilized a retrospective group of HCC 
patients receiving initial surgical resection with-

out any chemotherapy or radiotherapy in the 
First Affiliated Hospital of Guangxi Medical Uni- 
versity from March 2010 to December 2011. 
Formalin-fixed paraffin-embedded (FFPE) tis-
sue samples of HCC and paired nonmalignant 
liver tissues from 95 cases of HCC patients 
were randomly selected. All patients were aged 
29 to 82 years (mean age: 52 years), with tumor 
sizes ranging from 1 to 11 cm (mean size: 6.4 
cm). Three pathologists contributed to the 
pathological diagnoses independently. The stu- 
dy was legally authorized by the Ethical Com- 
mittee of the First Affiliated Hospital of Guangxi 
Medical University.

To detect the expression of miR-125b-5p in 
FFPE tissues, we conducted RT-qPCR, as previ-
ously reported in June 2012 [31-38]. The aver-
age level of RUN6B and RUN48 was utilized  
as the internal reference in this study. The prim-
ers of miR-125b-5p and the stable internal  
controls were included in the TaqMan® Micro- 
RNA Assays (4427975, Applied Biosystems, 
Life Technologies, Grand Island, NY, USA). The 
expression of miR-125b-5p was then comput-
ed with formula 2-Δcq in this experiment.

MiR-125b-5p expression originating from 
miRNA sequencing data

To extend the scope of the study, we download-
ed level 3 miRNA sequencing data from the 
TCGA database and focused on the expres-
sions and associations between the clinical 
parameters of miR-125b-5p. The data down-
loaded included 49 adjacent non-cancerous 
tissues and 371 HCC tissues, and they were 
log2 transformed for further analysis.

MiR-125b-5p expression from miRNA-chip 
data

To inquire into the profiling expression of miR-
125b-5p in HCC from microarray studies, we 
searched the GEO and ArrayExpress databas-
es. The keywords used in the search strategies 
were as follows: miR*, microRNA, non-coding 
RNA; liver, hepatic, hepatocellular, HCC; malig-
nan*, neoplas*, cancer, carcinoma, tumor, or 
tumour. All included studies should be designed 
with a control group of human non-cancerous 
liver tissues and a case group of human HCC 
tissues. Only studies with proper groups and 
available or calculable expression data of 
miRNA were included. Finally, we obtained se- 
ven eligible miRNA microarray profiles in this 
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study, which were GSE21362 [39], GSE10694 
[40], GSE12717 [41], GSE31383 [42], GSE54- 
751 [43], GSE67882, and GSE69580.    

Comprehensive meta-analyses of the clinical 
characteristics of miR-125b-5p in HCC

To further evaluate the veracity of data from the 
three resources (in-house RT-qPCR, miRNA-
seq, and miRNA chips), we performed meta-
analyses using Stata software version 15.1 
(StataCorp, College Station, TX, USA) in order to 
calculate both the standard mean difference 
(SMD) and the summary receiver operating 
characteristic curve (SROC). The continuous 
outcomes were evaluated with SMD with a 95% 
confidence interval (95% CI). The heterogeneity 
of the analysis was assessed with a Q test (chi-
squared test) and the I2 statistic value. A ran-
dom-effect model was used when heterogene-
ity existed (P<0.05 or I2>50%); otherwise, a 
fixed-effect model was chosen. Forest plots of 
SMDs with CIs of miR-125b-5p in each group 
were calculated and pooled. The publication 
bias was tested using Begg’s or Egger’s funnel 
plots. A two-sided P value over 0.05 indicates 
no publication bias. Forest plots were built to 
show the results. The published bias was 
detected with Deeks’ funnel plot. To support 
the findings shown by SMD, we used SPSS 23.0 
software in order to analyze the true positive, 
false positive, false negative, and true negative 
of the individual dataset, as well as to describe 
the receiver operating characteristic (ROC) 
curve. The SROC curve was generated with 
STATA software [44-47].

Prognostic value of miR-125b-5p in HCC

We next focused on the prognostic value of 
miR-125b-5p in HCC, as assessed by the mod-
ule miRpower for liver cancer in Kaplan-Meier 
plotter (http://kmplot.com) [48-52]. This newly 
updated module provides platforms of “miRNA-
seq from TCGA” with 412 miRNAs and 421 
cases, “CapitalBio miRNA Array” with 119 miR-
NAs and 156 cases (GSE10694), “Non-com- 
mercial spotted” with 525 miRNAs and 166 
cases (GSE31384), and “OSU-CCC” with 209 
miRNAs and 481 cases (GSE6857). Overall sur-
vival (OS) and disease-free survival were used 
for the survival evaluation.  

Probable targets of miR-125b-5p in HCC

In this study, the potential targets of the candi-
date miRNA consisted of two parallel parts, 

which are both predicted and are DEGs from 
HCC tissues. To achieve the predicted target 
mRNAs of miR-125b-5p, 11 miRNA target pre-
diction databases (DIANA microT-CDS, miRan-
da, miRWalk, miRDB, miRNAMap, PicTar, PITA, 
PolymiRTS Database, RNAv22, TargetScan 
v7.1, and TargetMiner) were used, and the 
mRNAs that overlapped at least four times 
were selected. The validated targets were also 
included through in-silico databases, such as 
DIANA TarBase v7.0 and miRTarBase. The pos-
sible targets of miR-125b-5p predicted by at 
least three datasets were obtained from miR-
walk database. As miR-125b-5p expression 
was declined in HCC tissues, we extracted up-
regulated genes in HCC from the TCGA and 
GTEx databases; these genes were prepared 
with a gene expression profiling interactive 
analysis (GEPIA) [53-61]. A total of 369 cases 
of HCC tissues and 160 cases of non-HCC liver 
controls were involved. The |Log2FC| cutoff 
was 1, and the q-value Cutoff was 0.01. ANOVA 
was used to select the DEGs. 

Gene functional enrichment and network 
analysis 

To assess the latent function and relative sig-
naling pathways of the potential target mRNAs 
of miR-125b-5p in HCC, we performed the GO 
analysis and KEGG pathway annotation with 
the Metascape database [62, 63]. The inter-
section of the two above sources, including 
GEPIA and miRwalk, was submitted to the clus-
terProfiler package in R software for functional 
enrichment analysis [64-69]. The interaction 
network among the target mRNAs of miR-125b-
5p was built with STRING [70-74]. The mRNA 
and protein expression levels of one hub gene 
of the target genes of miR-125b-5p were shown 
with GEPIA and The Human Protein Atlas proj-
ect (THPA) databases [75-77].

Statistical analysis

In this study, SPSS software v 23.0 was utilized 
to conduct most of our statistical analyses. The 
outcomes were presented as means and stan-
dard deviations. The parametric statistics of 
the different groups were examined with Stu- 
dent’s t-test or one-way ANOVA. The degree of 
difference in the microarray studies was indi-
cated by the fold change on a log2 scale. The 
area under curve (AUC) of the ROC curves was 
used to assess the distinguishing capacity of 
miR-125b-5p for HCC. A p value less than 0.05 
was considered statistically significant.
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Figure 1. Expression and clinicopathological significance of miR-125b-5p based on in-house RT-qPCR in HCC. A, B: 
HCC vs. non-tumor; C, D: Clinical TNM stages I-II vs. III-IV; E, F: Complete capsule vs. no capsule; G, H: Single tumor 
node vs. multiple tumor nodes. 

Figure 2. Expression and clinicopathological value of 
miR-125b-5p in miRNA sequencing data. A, B: HCC 
vs. non-tumor, C, D: Histology grades I-II vs. III-IV; E, F: 
Clinical T stage T1 vs. T2-4; G, H: Clinical TNM stages 
I-II vs. III-IV; I, J: None vascular invasion vs. micro-
invasion vs. macro-invasion. 
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Results

Expression and clinicopathological signifi-
cance of miR-125b-5p based on in-house RT-
qPCR in HCC

In this study, the relative expression of miR-
125b-5p was remarkably lower in HCC tissues 
than in adjacent non-cancerous liver tissues 
(P<0.001, Figure 1). Furthermore, the AUC of 
miR-125b-5p was 0.9293 (95% CI: 0.894-
0.9647, P<0.001). The expression of miR-
125b-5p was also found to be correlated with 
several clinical features. It was largely lower in 

patients with the following clinicopathological 
characteristics: occurrence of advanced tumor 
(T)-lymph nodes (N)- and metastasis (M, TNM) 
stages and a tumor with incomplete capsular 
and multi-tumor nodes (P<0.05, Figure 1).

Expression and clinicopathological value of 
miR-125b-5p in the TCGA database in HCC

Consistent with our in-house findings, the 
expression of miR-125b-5p was pronouncedly 
lower in HCC tissues than in non-HCC liver tis-
sues (P<0.001, Figure 2). Additionally, the AUC 
of miR-125b-5p was 0.9133 (95% CI: 0.8848-

Figure 3. miR-125b-5p expression levels in the 
miRNA chip data in HCC. Scatter plots (A, C, E, G, I, 
K, M) and receiver operating characteristic (ROC) 
curves (B, D, F, H, J, L, N) were used to show the 
125b-5p expression levels in HCC samples. 



Decreased miR-125b-5p in HCC

26 Int J Clin Exp Pathol 2019;12(1):21-39

Figure 4. Meta-analyses of miR-125b-5p expression levels in HCC. A: The forest plot of the standard mean difference (SMD) indicated that miR-125b-5p was signifi-
cantly down-regulated in HCC samples compared with non-tumor tissues; B: Begg’s funnel plot indicated that there was no publication bias. CI: confidence interval.
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0.9417, P<0.001, Figure 2). Regarding the clini-
cal performance of miR-125b-5p, significant 
differences exist between different groups, as 
classified by the clinicopathological parame-
ters. The expression levels of miR-125b-5p 
were notably lower in patients with poorly dif-
ferentiated grades, clinical T stage, advanced 
stages (III-IV), and vascular invasion (P<0.05, 
Figure 2). 

miR-125b-5p expression levels in microarray 
data in HCC

Among the seven included microarrays, the  
relative expression of miR-125b-5p expression 
levels showed decreasing trends in the HCC tis-
sue samples compared with the non-cancerous 
liver tissue samples (Figure 3).

Comprehensive meta-analyses from RT-qPCR, 
miRNA-seq, and miRNA-microarrays 

To further confirm the expression of miR-125b-
5p in HCC, we conducted two types of meta-
analyses by integrating the information from 
our RT-qPCR, TCGA program, and GEO databas-
es. A total of 655 cases of HCC tissues and 334 
non-HCC liver tissues were included. The ran-
dom-effect model was used because of the 
presence of heterogeneity. We observed that 
the expression of miR-125b-5p decreased mar- 

kedly in HCC tissues compared with non-HCC 
tissues (SMD=-1.414; 95% CI: -1.894 to -0.935, 
P<0.001) (Figure 4). However, Begg’s test 
showed publication bias in the current meta-
analysis (z=0.251, P=0.464) (Figure 4). 

The area under the SROC curve was 0.91 (95% 
CI: 0.89 to 0.94, Figure 5). The combined sen-
sitivity, specificity, positive likelihood ratio, neg-
ative likelihood ratio, diagnostic score, and 
odds ratio were 0.83, 0.86, 6.04, 0.20, 3.40, 
and 29.92, respectively (Figure 6). Furthermore, 
no publication bias was detected in Deeks’ fun-
nel plot (Figure 5).

Prognostic consequence of miR-125b-5p in 
HCC

From the KM plot, in both RNA-seq and 
CapitalBio miRNA array, patients with higher 
miR-125b-5p levels tended to have a more 
favorable OS, with a hazard ratio (HR) of 0.54 
and 0.55, respectively (Figure 7), indicating 
that the lower expression or the absence of 
miR-125b-5p may be a risk factor for the poor 
outcome of HCC patients. No significant rela-
tionships between miR-125b-5p and survival 
were noted from the cohort of “Non-commercial 
spotted”. No data were available from the other 
cohorts. 

Figure 5. Summary receiver operating characteristic (SROC) curves for the assessment of miR-125b-5p expression 
in HCC. A. SROC curves for the assessment of miR-125b-5p expression in HCC; the area under the curve was 0.91; 
B. Deeks’ funnel plot to detect publication bias. No publication bias was found.
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Potential targets of miR-125b-5p in HCC

In this study, we obtained the predicted targets 
of miR-125b-5p via 11 computational algori- 

ganization (n=19), and response to endoplas-
mic reticulum stress (n=15). For the cellular 
component in Figure 10, 102 terms were sig-
nificant, such as vacuole (n=36), lytic vacuole 

Figure 6. Forest plots showing the sensitivity, specificity, positive likelihood ra-
tio, negative likelihood ratio, diagnostic score, and odds ratio of miR-125b-5p 
in HCC. The combined sensitivity, specificity, positive likelihood ratio, negative 
likelihood ratio, diagnostic score, and odds ratio were 0.83, 0.86, 6.04, 0.20, 
3.40, and 29.92, respectively. 

thms. We achieved a total 
of 16,000 mRNAs selected 
by their present frequen-
cies during the process  
to increase the reliability  
of our study; only 6,388 
mRNAs were selected after 
the duplicates were exclud-
ed. In addition, 1,486 HCC-
related over-expressed ge- 
nes were identified with 
GEPIA. Finally, the potent- 
ial targets of miR-125b-5p 
in HCC were extracted by 
combining the predicted or 
validated targets and the 
ones specifically express- 
ed in HCC. A total of 330 
mRNAs were extracted for 
GO term annotation and 
KEGG pathway analysis in 
the next step (Figure 8).

GO functional enrich-
ment analysis and KEGG 
pathway annotation of the 
chosen targets

To further describe the po- 
tential molecular mecha-
nisms of the miR-125b-5p 
function in the develop-
ment of HCC, we conduct- 
ed the GO analysis and 
KEGG pathway annotation 
by using the chosen mRNAs 
in Metascape. As for the 
biological process in Figure 
9, 333 GO terms were sta-
tistically significant, as bo- 
th P values and FDR q val-
ues were less than 0.01, of 
which the prospective tar-
gets of miR-125b-5p were 
remarkably enriched in mi- 
totic nuclear division (n= 
17), extracellular matrix 
organization (n=18), regula-
tion of protein serine/threo-
nine kinase activity (n=22), 
extracellular structure or- 
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(n=32), lysosome (n=32), vacuolar part (n=30), 
Golgi membrane (n=27), anchoring junction 
(n=27), and adherens junctions (n=23). 

To further explore the potential signaling path-
ways during the carcinogenesis of HCC, we per-
formed KEGG pathway annotation, and 42 sig-
nificant pathways were identified accordingly. 
Among these were lysosome (n=12), focal 
adhesion (n=14), pathways in cancer (n=20), 
small cell lung cancer (n=9), bacterial invasion 
of epithelial cells (n=8), glioma (n=7), endocrine 
resistance (n=8), spliceosome (n=9), and viral 
carcinogenesis (n=11). The visualization of 
KEGG annotations is shown in Figure 11. 

Furthermore, the interaction network among 
the targets of miR-125b-5p was built and visu-
alized in Figure 10. We selected the top target, 
UBA52, as an example to show its mRNA and 

protein level. The UBA52 mRNA level was in- 
deed significantly up-regulated in HCC tissues, 
and we could only observe a high expression 
level of UBA52 based on the THPA database 
because of the limited number of cases avail-
able (Figure 12). 

Discussion

Although the expression level and target genes 
of miR-125b-5p in HCC have been documented 
by several groups, its clinical role has been 
investigated using a small sample size with a 
single detecting method, and only a single tar-
get was identified in each study. The novelty of 
the current study is that we combined multiple 
detecting methods, such as in-house RT-qPCR, 
miRNA-seq, and miRNA chips, to examine the 
clinical role of miR-125b-5p in HCC. The larger 
sample size also led to more convincing find-
ings that the down-regulation of miR-125b-5p 
may play a vital role in the carcinogenesis  
and progression of HCC. Furthermore, with the 
advantages of in-silico tools, we constructed a 
network of the prospective target genes of miR-
125b-5p in HCC. More unconfirmed targets of 
miR-125b-5p were shown and are worthy of fur-
ther in-depth investigation.

As a novel biomarker, miR-125b-5p has been 
studied in several types of malignancies, such 
as nasopharyngeal carcinoma [78, 79], mela-
noma [80], laryngeal squamous cell carcinoma 
[81], colorectal cancer [82], gallbladder cancer 
[83], breast cancer [84], acute myeloid leuke-
mia [85], acute lymphoblastic leukemia [86], 
osteosarcoma [87], and gastric cancer [88]. 
The expression of miR-125b-5p was found to 

Figure 7. Prognostic role of miR-125b-5p in HCC. A: 
miRNA-seq data from TCGA; B: CapitalBio miRNA Ar-
ray from GSE10694.

Figure 8. Overlapping miR-125b-5p target genes in 
HCC. A total of 330 potential targets were achieved.
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Figure 9. Biological process (BP) annotations of potential miR-125b-5p targets in HCC in gene ontology (GO) analysis. P value <0.05.
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Figure 10. Cellular component (CC) annotations of potential miR-125b-5p targets in HCC in GO analysis. P value <0.05.
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Figure 11. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential miR-125b-5p targets in HCC. P value <0.05. 
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be decreased in melanoma [80], laryngeal 
squamous cell carcinoma [81], and gallbladder 
cancer [83], but it was increased in nasopha-
ryngeal carcinoma [78, 79], gastric cancer [88], 
colorectal cancer [82], breast cancer [84], 
acute myeloid leukemia [85], and acute lym-
phoblastic leukemia [86]. The clinical role and 
molecular mechanism of miR-125b-5p may be 
disease specific. 

The expression level of miR-125b-5p was found 
by several groups to be reduced in HCC tissues 
compared with non-cancerous liver tissues 
based on the small size of cases [24, 26-28]. In 
the current study, we first investigated the 
expression level of miR-125b-5p, as detected 
by a single method using multiple statistical 
approaches, including the performance of the t 
test and the drawing of ROCs. Interestingly, all 
the RT-qPCR, miRNA-seq, and miRNA-chip data 
demonstrated a consistent decreasing trend 
for miR-125b-5p in HCC tissues. More convinc-
ingly, the subsequent meta-analyses also sup-
ported the finding, as the SMD was -1.16 and 
the AUC of the SROC was 0.91 for miR-125b-5p 
in HCC, indicating that the loss of miR-125b-5p 
is closely related to the tumorigenesis of HCC. 
Recently, the level of plasma miR-125b-5p was 
also documented to be markedly down-regulat-
ed in HCC cases compared with healthy con-
trols. An AUC of  0.891 was achieved for plasma 
miR-125b-5p to diagnose HCC [89]. The detec-
tion of circulating miR-125b-5p has the poten-
tial to be a non-invasive marker for the screen-
ing of HCC, but this hypothesis needs to be 
verified. 

The loss of miR-125b-5p also influences the 
development of HCC after the tumor is formed. 
Several publications have shown that a lower 
miR-125b-5p level leads to early recurrence 
and worse five-year HCC survival based on a 
small sample size of patients [24, 90]. In the 
current study, we also observed that the 
decreased level of miR-125b-5p was closely 
related with clinical TNM stages and vascular 
invasion by both in-house detection and miR-
NA-seq data from TCGA. The prognostic signifi-
cance of the low level of miR-125b-5p was also 
verified with the miRNA-seq data and miRNA-

chip data, as evidenced by K-M plots. Therefore, 
the feature of miR-125b-5p to inhibit tumor 
cells continues throughout the progression of 
the tumor, and miR-125b-5p may play a con-
stant role in the process of tumor growth. Such 
characteristics of miR-125b-5p also make it a 
potential indicator for HCC prognosis predic-
tion. Non-invasive detection is more assess-
able in the clinic, and interestingly, the exosom-
al miR-125b-5p level could also predict the 
recurrence and survival of HCC patients with an 
AUC of 0.739 [91]. A larger sample size will be 
required to test the prognostic value of exosom-
al miR-125b-5p in the near future. 

MiR-125b-5p may exert its tumor suppressive 
role by modulating different targets. Thus far, 
only a couple of verified target genes of miR-
125b-5p have been confirmed in HCC, includ-
ing SIRT6 [24], EVA1A [29], Ets1 [30] Angpt2 
[25], SIRT7 [27], and TAZ [28]. In fact, there 
could be many possible targets of miR-125b-5p 
in HCC that have not been discovered. In this 
study, we also aimed to discover new targets of 
miR-125b-5p in HCC. We overlapped the pre-
dicted target genes with the highly expressed 
genes in HCC tissues to obtain a more specific 
target gene group that influences the develop-
ment of HCC. The expression levels of some 
target genes may, of course, change only at the 
protein level and may not be altered at the 
mRNA level. Unfortunately, this study could not 
obtain the expression data of HCC differential 
proteins, which is also a limitation of bioinfor-
matics research. Nevertheless, the 330 poten-
tial target genes we eventually obtained could 
narrow the scope of future research. Unsur- 
prisingly, these target genes are concentrated 
in those pathways that have a classical role in 
tumorigenesis, such as the lysosome, focal 
adhesion, and pathways in cancer. We also 
selected one hub gene, UBA52, from the PPI 
analysis to show its expression levels. The 
expression levels of UCA52 are the opposite of 
miR-125b-5p, which has an over-expression 
trend in both mRNA and protein levels. Our 
group will also choose UCA52 for the next step 
in vivo and in vitro studies, as this has never 
been examined in HCC.

Figure 12. Protein-protein interaction network of the potential miR-125b-5p targets in HCC. The String program was 
used to construct the PPI network. The PPI network displayed the interacting relationships among these genes. A: 
PPI network; B: Bar plots showing the top hub genes; C: The mRNA level of the top hub gene, UBA52, based on 
TCGA and GTEx RNA-seq data; D: Protein level of UBA52, as assessed by immunohistochemistry with the antibody 
HPA049132 (×400). 
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In conclusion, this study utilized a variety of 
research methods to confirm the lower level of 
miR-125b-5p expression in HCC tissues. This 
lower expression level of miR-125b-5p is close-
ly related to the more progressive condition of 
HCC patients. Furthermore, the low expression 
level of miR-125b-5p is also an independent 
prognosticator of poor prognosis in patients 
with HCC. However, the specific target genes 
and molecular mechanisms of miR-125b-5p 
remain to be further studied.
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