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Abstract: Atherosclerosis is a leading cause of cardiovascular diseases. Oxidized low-density lipoprotein (ox-LDL) is 
commonly used to construct atherosclerosis cell models. Macrophages-secreted pro-inflammatory factors play vital 
roles in the development of atherosclerosis. Tanshinone IIA (Tan) is an effective therapeutic agent for atherosclerotic 
cardiovascular diseases. However, the molecular mechanisms by which Tan protects against atherogenesis have 
not been thoroughly elucidated. In the present study, we aimed to search for microRNA targets of Tan in ox-LDL-
stimulated macrophages. Interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) levels were determined by 
matching ELISA commercial kits. RT-qPCR assay was conducted to measure microRNA-33 (miR-33) expression. We 
found that ox-LDL induced the secretion of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and the expression of mi-
croRNA-33 (miR-33) in THP-1 macrophages. Tan inhibited pro-inflammatory cytokine secretion and miR-33 expres-
sion in ox-LDL-stimulated THP-1 macrophages. Also, the depletion of miR-33 suppressed pro-inflammatory cytokine 
secretion in ox-LDL-stimulated THP-1 macrophages. Moreover, miR-33 upregulation abrogated the inhibitory effect 
of Tan on pro-inflammatory cytokine secretion in ox-LDL-stimulated THP-1 macrophages. In conclusion, Tan inhibited 
ox-LDL-induced pro-inflammatory cytokine secretion by downregulating miR-33 in THP-1 macrophages, hinting that 
Tan might exert its atheroprotective effects by targeting miR-33 and reducing pro-inflammatory responses. 
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Introduction

Atherosclerosis is the common pathogenesis of 
vascular diseases including ischemic heart dis-
ease (IHD), ischemic stroke, and peripheral 
arterial disease (PAD), bringing about massive 
social and economic burden for individuals, 
families, and society worldwide [1-3]. Mounting 
evidences show that the dysregulation of immu-
nity and inflammation is closely associated with 
the pathophysiology of atherosclerosis [4, 5]. 
Moreover, the accumulation of immune cells 
such as monocytes/macrophages and lympho-
cytes within the arterial wall is a major event in 
atherosclerosis [6, 7]. Macrophages, differenti-
ated from monocytes, have been identified as 
vital immune cells in all stages of atherosclero-

sis development, including lesion initiation, 
lesion expansion, and the formation of advan- 
ced plaques [8]. Oxidized low-density lipopro-
tein (ox-LDL) functions as a major risk factor in 
the initiation and development of atherosclero-
sis by inducing a series of atherogenic respons-
es of vascular wall cells (endothelial cells, mac-
rophages, and smooth muscle cells) [9, 10]. 
Moreover, ox-LDL can be taken up by macro-
phages, resulting in foam cell formation and 
inflammatory factor production [10, 11]. 

Tanshinones are the major effective compo-
nents of the Chinese medicinal herb Danshen 
(Salvia miltiorrhiza), which has been widely 
used in Asian countries to prevent and treat 
cardiovascular diseases (CVD) including athero-
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sclerosis, cardiac injury and hypertrophy [12, 
13]. Tanshinone IIA (Tan) is one of the most 
abundant bioactive constituents among the 
Tanshinones, possessing a lot of pharmacologi-
cal activities such as anti-oxidation, anti-inflam-
mation, anti-atherosclerosis, and cardio-cere-
brovascular protection [13-15]. For instance, 
Tan could reduce atherosclerotic lesion size 
and enhanced atherosclerotic plaque stability 
in Apolipoprotein-E knockout (ApoE-/-) mice [16-
18]. Tan inhibited atherosclerosis progression 
by enhancing non-amyloidogenic processing of 
amyloid precursor protein in platelets [19]. 
Moreover, Tan is a multi-target drug that can 
exert its therapeutic effects by regulating vari-
ous molecules such as scavenger receptors, 
miRNAs, and inflammatory mediators [20, 21]. 
For example, Tan attenuated Porphyromona- 
sgingivalis-induced atherosclerosis by reducing 
expression of miR-146b, miR-155, and pro-
inflammatory cytokines (e.g. interleukin (IL)-1β, 
IL-6, and tumor necrosis factor-α (TNF-α)) in 
Apolipoprotein E knockout mice [22]. 

In the present study, we aimed to investigate 
the miRNA targets of Tan in ox-LDL-excited ma- 
crophage inflammatory injury. 

Materials and methods

THP-1 macrophage culture

Human THP-1 monocytes were purchased from 
the cell bank of Chinese Academy of Sciences 
(Shanghai, China) and cultured in RPMI-1640 
medium (Thermo Fisher Scientific, Rockford, IL, 
USA) supplemented with 10% FBS (Thermo 
Fisher Scientific). THP-1 monocytes were stimu-
lated with 100 ng/mL phorbol 12-myristate 
13-acetate (PMA, Sigma-aldrich, St. Louis, MO, 
USA) for 72 h to differentiate into macroph- 
ages. 

THP-1 macrophage transfection and treatment 

THP-1 macrophages were transfected with or 
without miRNA mimic or inhibitor using FuGENE 
HD Transfection Reagent (Promega, Madison, 
WI, USA) following the protocols of manufactur-
er in the presence or absence of Tan (Sig- 
ma-aldrich) stimulation. Then, transfected or/ 
and Tan-treated cells were treated with ox-LDL 
(Beijing Biosynthesis Biotechnology Co., Ltd., 
Beijing, China) for corresponding time. 

RT-qPCR assay

Total RNA was isolated from macrophages 
using TRIzol® reagent (Thermo Fisher Scientific) 
according to the manufacturer’s instructions. 
Then, miR-33 expression level was measured 
using TaqMan MicroRNA assay system (Thermo 
Fisher Scientific) with U6 snRNA as the internal 
control. 

Enzyme-linked immunosorbent assay (ELISA) 

Secretion levels of cytokines such as IL-1β, IL-6 
and TNF-α were determined by ELISA assay. 
Briefly, at the indicated time points after trans-
fection or/and stimulation, cell supernatants 
were collected and the levels of cytokines in 
the supernatants were measured by corre-
sponding ELISA commercial kits (Thermo Fisher 
Scientific). 

Statistical analysis

All results were obtained from at least 3 inde-
pendent experiments and presented as mean 
values ± standard deviation (SD). Data analy- 
sis was performed using one-way ANOVA or 
Student’s t-test on GraphPad Prism software 
(La Jolla, CA, USA). P < 0.05 represented the 
difference was statistically significant.

Results

ox-LDL stimulation induced pro-inflammatory 
responses in THP-1 macrophages

The ELISA assay showed that ox-LDL treatment 
at the concentration range of 10-20 μg/ml 
induced IL-1β, IL-6 and TNF-α secretion in a 
dose-dependent manner in THP-1 macro-
phages (Figure 1A-C). The treatment of 20 μg/
ml ox-LDL resulted in a time-dependent in- 
crease of IL-1β, IL-6 and TNF-α levels in THP-1 
macrophages (Figure 1D-F). In a word, these 
data revealed that ox-LDL could enhance pro-
inflammatory responses in THP-1 macroph- 
ages. 

Tan alleviated ox-LDL-triggered pro-inflammato-
ry responses in THP-1 macrophages

Next, we further demonstrated that the intro-
duction of 10 μM Tan and 20 μM Tan markedly 
suppressed the secretion of IL-1β, IL-6 and 
TNF-α in ox-LDL-stimulated THP-1 macrophages 
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Figure 1. ox-LDL stimulation induced pro-inflammatory responses in THP-1 macrophages. A-C. THP-1 macrophages 
were exposed to different concentrations (0, 10, 20, 40 μg/ml) of ox-LDL for 24 h. Then, IL-1β, IL-6 and TNF-α levels 
in cell supernatant were determined by ELISA assay. D-F. THP-1 macrophages were treated with 20 μg/ml of ox-
LDL for different time. At the indicated time points (0, 12, 24, 48 h) after treatment, ELISA assay was conducted to 
measure IL-1β, IL-6 and TNF-α levels. *P < 0.05.

Figure 2. Tan alleviated ox-LDL-triggered pro-inflammatory responses in THP-1 macrophages. A-C. THP-1 macro-
phages were pre-treated with Tan (0, 5, 10, 20 μM) for 24 h, and then stimulated with 20 μg/ml of ox-LDL for 24 
h, followed by the measurement of IL-1β, IL-6 and TNF-α levels through ELISA assay. D-F. THP-1 macrophages were 
pre-treated with 10 μM of Tan for 0, 12, 24, or 48 h, and then treated with 20 μg/ml of ox-LDL for 24 h. Next, IL-1β, 
IL-6 and TNF-α levels were detected by ELISA assay. *P < 0.05.

(Figure 2A-C). Moreover, a reduction of IL-1β, 
IL-6 and TNF-α levels was noticed in ox-LDL-
treated THP-1 macrophages following the intro-
duction of Tan (10 μM) (Figure 2D-F). That was 
to say, Tan could relieve ox-LDL-induced pro-
inflammatory responses in THP-1 macroph- 
ages. 

Tan inhibited ox-LDL-induced miR-33 expres-
sion in THP-1 macrophages

Moreover, ox-LDL induced miR-33 expression 
in a dose- and time-dependent fashion in THP-1 
macrophages (Figure 3A and 3B). Additionally, 
the introduction of Tan resulted in a dose- and 
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Figure 3. Tan weakened the stimulatory effect of ox-LDL on miR-33 expres-
sion in THP-1 macrophages. A. THP-1 macrophages were treated with differ-
ent concentrations (0, 10, 20, or 40 μg/ml) of ox-LDL for 24 h. Then, miR-33 
level was examined by RT-qPCR assay. B. THP-1 macrophages were exposed 
to 20 μg/ml of ox-LDL for different time. At the indicated time points (0, 
12, 24, or 48 h) after ox-LDL treatment, RT-qPCR assay was carried out to 
measure miR-33 expression. C. THP-1 macrophages were pre-treated with 
different doses (0, 5, 10, 20 μM) of Tan for 24 h and then stimulated with 
20 μg/ml of ox-LDL for another 24 h, followed by the determination of miR-
33 level by RT-qPCR assay. D. THP-1 macrophages were pre-treated with 10 
μM of Tan for 0, 12, 24, or 48 h and then induced with 20 μg/ml of ox-LDL 
for 24 h. Then, miR-33 level was detected by RT-qPCR assay. *P < 0.05.

Figure 4. The deficiency of miR-33 reduced ox-LDL-triggered pro-inflam-
matory responses in THP-1 macrophages. (A-D) THP-1 macrophages were 
transfected with anti-miR-NC or anti-miR-33 for 24 h and then treated with 
20 μg/ml of ox-LDL for additional 24 h. (A) Then, miR-33 level was deter-
mined by RT-qPCR assay. (B-D) IL-1β (B), IL-6 (C), and TNF-α (D) levels were 
measured by ELISA assay. *P < 0.05. 

time-dependent downregulation of miR-33 
level in ox-LDL-treated THP-1 macrophages 

(Figure 3C and 3D), indicating 
that Tan abated the stimulato-
ry effect of ox-LDL on miR-33 
expression in THP-1 macropha- 
ges. 

The depletion of miR-33 re-
duced ox-LDL-triggered pro-
inflammatory responses in 
THP-1 macrophages

Then, transfection efficiency 
analysis revealed that the 
transfection of miR-33 inhibi-
tor resulted in the significant 
downregulation of miR-33 le- 
vel in ox-LDL-treated THP-1 
macrophages (Figure 4A). Mo- 
reover, the deficiency of miR-
33 suppressed the secretion 
of IL-1β, IL-6 and TNF-α in ox-
LDL-treated THP-1 macroph- 
ages (Figure 4B-D). Combined 
with above results, our data 
suggested that the depletion 
of miR-33 reduced ox-LDL-in- 
duced pro-inflammatory respo- 
nses in THP-1 macrophages.

Tan weakened ox-LDL-induced 
pro-inflammatory responses 
by downregulating miR-33 in 
THP-1 macrophages

Next, RT-qPCR assay further 
unveiled that miR-33 level was 
markedly increased in THP-1 
macrophages co-treated with 
Tan and ox-LDL following the 
introduction of miR-33 mimic 
(Figure 5A). Moreover, miR-33 
upregulation abrogated the in- 
hibitory effect of Tan on se- 
cretion of IL-1β, IL-6 and TNF-α 
in ox-LDL-stimulated THP-1 ma- 
crophages (Figure 5B-D), me- 
aning that Tan protected THP-1 
macrophages from ox-LDL-in- 
duced inflammatory damage 
by downregulating miR-33. 

Discussion

Atherosclerosis is a chronic arterial disease 
that involves multiple cellular and acellular pro-
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cesses including macrophage polarization, 
inflammatory factor generation, oxidative st- 
ress response, and plaque rupture [23]. More- 
over, copious data show that the activation of 
inflammation and high expression of inflamma-
tory cytokines can aggravate the development 
of atherosclerosis [24]. 

Previous studies showed that Tan could pre-
vent the initiation and progression of athero-
sclerosis by regulating cholesterol metabolism, 
inflammatory and oxidative responses, along 
with the development of macrophages and vas-
cular smooth muscle cells (VSMCs) [18, 22, 
25]. For instance, Liu et al. pointed out that Tan 
stimulation resulted in the downregulation of 
macrophage content and cholesterol accumu-
lation, and the inhibition of atherosclerotic 
plaque development in apolipoprotein E-defi- 
cient mice [26]. Moreover, Tan reduced ox-LDL 
uptake, inhibited ox-LDL-induced foam cell for-
mation and increased cholesterol efflux in 
human and mouse macrophages [26, 27]. Tan 
suppressed ox-LDL-induced apoptosis of VS- 
MCs and ox-LDL-induced proliferation and mi- 

serum of ApoE-/- mice [16, 18]. Also, Ma et al. 
showed that Tan inhibited the production of 
IL-1β and TNF-α in LPS-stimulated THP-1 mac-
rophages [29]. 

MicroRNAs (miRNAs), a group of small non-cod-
ing RNA transcripts with the length of about 22 
nucleotides, have emerged as vital modulators 
of ox-LDL-mediated signals in different vascular 
cells including macrophages [30]. For instance, 
the ectopic expression of microRNA-212 facili-
tated lipid accumulation and inhibited ATP bind-
ing cassette subfamily A member 1 (ABCA1)-
dependent cholesterol efflux by targeting sir-
tuin 1 (SIRT1) in ox-LDL-treated THP-1 macro-
phages [31]. MicroRNA-181a overexpression 
suppressed ox-LDL-induced foam cell forma-
tion, cell apoptosis, and pro-inflammatory fac-
tor expression by targeting toll like receptor 4 
(TLR4) in THP-1 macrophages [32]. Moreover, 
Fan et al. unveiled that Tan could exert its anti-
inflammatory activity by inactivating TLR4/
MyD88/NF-κB signaling pathway and regulat-
ing some cytokine and miRNA expression  
in LPS-induced RAW264.7 cells [33]. Hence, 

Figure 5. Tan suppressed ox-LDL-induced pro-inflammatory responses by 
downregulating miR-33 in THP-1 macrophages. (A-D) THP-1 macrophages 
were transfected with miR-NC or miR-33 mimic for 24 h in the absence or 
presence of Tan (10 μM), and then treated with 20 μg/ml of ox-LDL for 24 
h. (A) Next, miR-33 level was detected by RT-qPCR assay. (B-D) IL-1β (B), IL-6 
(C), and TNF-α (D) levels were determined by ELISA assay. *P < 0.05.

gration of RAW264.7 mouse 
macrophage cells [18]. 

IL-1β, IL-6 and TNF-α have 
been identified as pro-athero-
genic cytokines and can be 
secreted by lymphocytes, nat-
ural killer cells, macrophages 
and vascular smooth muscle 
cells [28]. In the present study, 
we aimed to further explore 
the roles and molecular basis 
of Tan on pro-atherogenic cyto-
kine secretion in ox-LDL-stimu-
lated THP-1 macrophages. 

Our data showed that Tan 
attenuated ox-LDL-induced se- 
cretion of pro-inflammatory fa- 
ctors (IL-1β, IL-6 and TNF-α) in 
human macrophages, indicat-
ing that Tan could mitigate ox-
LDL-induced inflammatory in- 
jury. Consistently, previous stu- 
dies showed that Tan inhibi- 
ted the production of pro-infl- 
ammatory cytokines (includ- 
ing IL-1β, IL-6 and TNF-α) in  
ox-LDL-stimulated RAW264.7 
THP-1 macrophages and the 
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miRNA targets of Tan were further investigated 
in ox-LDL-treated THP-1 macrophages. A prior 
report pointed out that Tan could inhibit lipid 
deposition and microRNA-33a (miR-33a) ex- 
pression in the livers of hyperlipidemic rats 
[34], indicating that Tan might can exert its 
function by targeting miR-33. 

MiR-33, located in the introns of sterol-regula-
tory element-binding protein (SREBP) genes, 
has been reported to be a player in multiple 
vital biological processes such as inflammation 
[35], metabolism [36] , and mitochondrial func-
tion [37]. Moreover, the depletion of miR-33 
could inhibit the development of atherosclero-
sis [38-41]. Additionally, the deficiency of miR-
33 induced the polarization of macrophages 
from an M1 to an M2 phenotype and attenuat-
ed lipid accumulation along with inflammatory 
responses in macrophages [41, 42]. Sun et al. 
further showed that endoplasmic reticulum 
(ER) stress induced lipid metabolism disorder 
of macrophages by regulating miR-33 in athero-
sclerosis [43], hinting the close link between 
miR-33 and macrophage function in ather- 
osclerosis.

Our present study showed that ox-LDL could 
induce the notable upregulation of miR-33 in 
macrophages, while this effect was weakened 
by Tan. Also, miR-33 loss inhibited the secre-
tion of pro-inflammatory cytokines (including 
IL-1β, IL-6 and TNF-α) in ox-LDL-stimulated mac-
rophages. Moreover, miR-33 overexpression 
reversed the inhibitory effect of Tan on pro-
inflammatory cytokine secretion in ox-LDL-stim-
ulated macrophages. 

Taken together, our data disclosed that Tan 
alleviated ox-LDL-induced inflammatory injury 
by targeting miR-33 in human macrophages, 
providing a novel miRNA target of Tan for the 
treatment of atherosclerosis and deepening 
our understanding on the etiology of Tan. 
However, our study only showed that Tan exerts 
atheroprotective effects by regulating miR-33. 
It is necessary to further dig out downstream 
targets of miR-33. Moreover, in vivo experi-
ments were also indispensable to further vali-
date our conclusion. Other indicators of athero-
sclerosis need to be further examined. 
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