Original Article

Exon sequencing reveals that missense mutation of *PBX1* gene may increase the risk of non-syndromic cleft lip/palate

Jian Ma^{1,2*}, Bin Yin^{1*}, Jia-Yu Shi³, Yan-Song Lin¹, Shi-Jun Duan¹, Bing Shi¹, Zhong-Lin Jia¹

¹State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Development of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, P.R. China; ²Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The General Hospital of Ningxia Medical University, Ningxia Province, Yinchuan, 750004, P.R. China; ³Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, USA. *Equal contributors.

Received April 23, 2019; Accepted May 24, 2019; Epub July 1, 2019; Published July 15, 2019

Abstract: Objective: Non-syndromic oral cleft (NSOC) is one of the most common multifactorial birth defects. A previous animal study showed *PBX1* gene knockout mice consequently exhibited complete cleft lip/palate (CL/P). However, little is known about the association between *PBX1* and NSOC in humans. This study investigated the role of the *PBX1* gene in NSOC in the Han Chinese population. Methods: In all, 287 NSOCs were recruited for this study. First, exons in the *PBX1* gene were sequenced among 50 non-syndromic cleft lip and palate cases to screen for variations by the Sanger sequencing method. Then, we selected four SNPs to replicate among 237 NSOC trios and analyzed the data by using TDT and parent of origin effect methods. Results: Exon sequencing identified six variants of the *PBX1* gene. Among them, four variants were common variants. TDT analysis revealed allele G at rs2275558 and allele T at rs3835581 were over-transmitted in NSCL/P (P=0.039 and 0.038, respectively), which could increase the risk for NSCL/P. Parent of origin effect analysis indicated that allele G at rs2275558 was paternally over-transmitted for NSCL/P (P=0.0091). Conclusion: This is the first report that the *PBX1* gene is associated with NSCL/P, which indicates that it is a promising candidate gene for NSCL/P.

Keywords: Non-syndromic oral cleft, Sanger sequencing, single nucleotide polymorphism, PBX1

Introduction

Non-syndromic oral cleft (NSOC) is one of the most common birth defects and exerts a heavy economic burden on families and society [1]. Birth prevalence rates of NSOC are very different across populations and geographic locations. In general, China is considered one of the high incidence countries with a rate of about 1.67 per thousand according to the latest epidemiological survey [2]. NSOCs are generally divided into non-syndromic cleft palate (NSCP), and non-syndromic cleft lip with or without cleft palate (NSCL/P). As a multifactorial disease, a complex etiology including genetic and environmental factors influences the risk of NSOC. With the wide application of high throughput sequencing technology, increasing numbers of susceptibility genes have been discovered by

several large genome-wide association studies (GWASs), but these can only explain a small part of the genetic effect. Furthermore, the heterogeneity of phenotypes and uncertain inheritance patterns further complicate the role of genetics in NSOC. Attractive GWAS findings from nine GWASs for CL/P [3-11], two GWASs for CPO [12, 13], and two GWAS meta-analyses [14, 15] have advanced our understanding of development of NSOC and provided new perspectives for future research. However, among several susceptibility genes found by GWASs that were statistically significant, the true biologic function is unknown. Multiple SNPs in ABCA4 achieved genome-wide significance, but the subsequent whole mount in situ hybridization analysis of ABCA4 and immunodetection of expressed ABCA4 carried out in mice indicated that ABCA4 was not positively expressed in the

Table 1. Characteristic of NSOCs patients

	NSCL/P	NSCP	NSOCs					
Severity								
Complete cleft	137	43	180					
Incomplete cleft	82	25	107					
Sex								
Male	145	32	177					
Female	74	36	110					

Note: NSCL/P, Non-syndromic cleft lip with or without palate; NSCP, Non-syndromic cleft palate; NSOCs, Non-syndromic Oral clefts (NSCL/P&NSCP).

palate [3]. Before the GWAS era, research on candidate genes based on animal models was the main method to find novel disease-causing genes. Although the process was time-consuming, it did find some true CL/P susceptibility genes that were confirmed in subsequent GWAS studies, such as *IRF6* [4, 16] and *TP63* [15, 17]. Therefore, association studies between CL/P susceptibility genes and the population based on animal models are more convincing.

PBX1 (Pre-B cell leukemia transcription homeobox 1), a member of PBX gene family, encodes TALE homeodomain-containing transcription factors (TF) [18]. The current research on PBX1 mainly focused on its role in metabolic abnormalities, cancer, and morphogenesis of the kidney and urinary tract [19-21]. Additionally, it was reported that loss of PBX genes (PBX1, PBX2 and PBX3) in mice may lead to CL/P phenotype [22]. Especially, PBX1 plays a more significant role in the formation of fully penetrant CL/P in comparison to the other two genes (PBX2 and PBX3) [23]. Another functional study indicated that PBX proteins could regulate the expressions of WNT, P63 and IRF6, subsequently control apoptosis, and finally affect the development of the midface [22]. Documented evidence showed that mutations of WNT, P63, and IRF6, downstream targets of PBX1, were associated with CL/P in both humans and mice [15, 24, 25]. Moreover, the PBX1 gene interacts with the ARHGAP29 gene which is a susceptibility gene for CL/P in Hispanic and non-Hispanic white (NHW) ethnicities [26]. Thus, we considered PBX1 as a promising candidate gene for NSOC.

No population study on the associations between the *PBX1* gene and NSOC had been re-

ported. The incidence of NSOC in the Western Han Chinese population is relatively high, and population mobility is quite low, making it is suitable for genetic research on NSOC. Thus, we first explored the association between the variations of *PBX1* gene and the occurrence of NSOC in a Han Chinese population in Western China.

Material and methods

Subjects

The samples included 237 NSOC cases, and 50 non-syndromic cleft lip and palate (NSCLP) cases (Table 1). All subjects were recruited between 2010 and 2013 from the Cleft Lip and Palate Surgery Department of the West China Hospital of Stomatology, Sichuan University. All patients recruited in this study were diagnosed with NSOC (without any other congenital malformation of the body or a family history of genetic disease) by a physician. All subjects were self-identified as Han Chinese and were asked about the history of oral clefts among their first- and second-degree relatives. Human subject study protocols were reviewed and approved by the institutional review board (IRB) of West China Hospital of Stomatology, Sichuan University in 2015 (WCHSIRB-D-2015-057). Informed consent was obtained from each participant prior to enrollment in the study.

DNA extraction and Sanger sequencing of exons in PBX1 gene

Genomic DNA was extracted from venous blood samples drawn from all participants by the phenol-chloroform extraction protocol. The exon sequences were downloaded from the UCSC database (http://genome.ucsc.edu/). The primers were designed to cover all nine exons of *PBX1* (**Table 2**). We performed PCR and sequencing by an ABI PRISM 3730 DNA Sequencer among fifty cases. The data were analyzed by the Sequence Scanner v1.0.

Genotyping

The four SNPs were genotyped by the ligase detection reaction method among 237 trios. We selected 10% of the samples at random to repeat the experiment. The genotypes were consistent with the previous ones.

Exon Forward (5' to 3') Reverse (5' to 3') PCR Product (bp) Exon 1 TGAAGACAAGCTTGAAGGATAAAA **GGCCGCTTTTGGATCAGT** 600 Exon 2 597 TGCCACAGAGTTAGGGTTGG ACAGTTTAGCACCCCCACAC Exon 3 TTCTCTCTTTTTCCAGCCTTTC GAATGCCTAGGTTTTTAACAGTTG 600 Exon 4 TTTGCACAAGTCTCTAGAAAAGC AAGACGCAACTGTAAAAGAGGT 600 Exon 5 **GCTTTTAGCGTTTGGTTTTTGG** ACACCTCACCCATTTGAAGC 596 Exon 6 TCGCATTTTATGTAGTTGTCCTTT ATGCAAACCTCCAGACAACC 569 Exon 7 GTTCCCTTTCTTGGCTTGAA ACTGAAAAGCCAGAGCCAAA 590 Exon 8 AGGGAAGAAAAATGGGGAGA TGGCATGACCGATACAGAAA 585 Exon 9-1 1213 CACTGGGAGGACCCAAACT GAGGTTGAAGGGTTTCACGA Exon 9-2 TCACTCGAATCCCTCACTCC CTGAGTGCTCCAGAGGTGGT 817 Exon 9-3 GGTCACTGACACAGAGAAGCA TCCCCTGACTTCGCATTTAC 697 Exon 9-4 TTGGTGCCTCATTTTCTTCA TCCAAGAGAACCCTTTTGTCTC 826 600 Exon 9-5 AAAGGCACTAGAAAGGTTGTGTC AGAAATCCTGGGGTGCATCT

Table 2. Exon sequencing primers of PBX1 gene

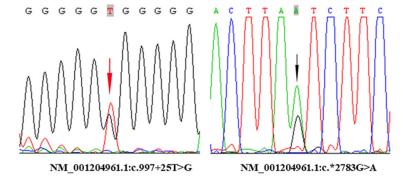


Figure 1. Sequence results of the two novel variants.

Table 3. *P*-values of Hardy-Weinberg equilibrium test in NSOC groups

SNP	Position (Hg19)	NSCL/P	NSCP	Control	
rs2275558	164529120	0.36	1	0.46	
rs3835581	164790567	1	0.35	0.9	
rs41266618	164816415	1	1	0.74	
rs3185695	164816956	0.75	0.83	0.073	

Note: NSOCs, Non-syndromic oral clefts (NSCL/P&NSCP); SNP, Single Nucleotide Polymorphism; NSCL/P, Non-syndromic cleft lip with or without cleft palate; NSCP, Non-syndromic cleft palate.

Statistical analysis

Hardy-Weinberg equilibrium (HWE) was assessed for all four SNPs among unaffected parents. TDT (transmission disequilibrium test) analysis and Pairwise LD (computed as both D' and r^2) for all SNPs were performed by the Haploview program. Parent-of-origin effect was assessed by PLINK to distinguish the parental preference of transmission.

Results

Exon sequencing of the *PB-X1* gene identified six variants, including two novel variants (NM_001204961.1:c. 997+25T>G and NM_001204961.1:c.*2783G>A) that are not listed in the public database (1000 Genome and ESP et al.), and four SNPs (rs22-75558, rs3835581, rs4126-6618 and rs3185695). NM_001204961.1:c.997+25T>G,

located in the intron of *PBX1* and NM_00120-4961.1:c.*2783G>A is in the 3' UTR of *PBX1* gene (**Figure 1**). This was detected only in two NSCLP cases.

To confirm whether *PBX1* gene is associated with NSOC, we selected four SNPs (rs22755-58, rs3835581, rs41266618 and rs3185695) based on their minor allele frequency, and validated them among 237 complete trios of NSOC. All SNPs conformed to HWE among the unaffected parents (P>0.05) (**Table 3**).

Allelic TDT analysis on case-parent trios with heterozygous informative parents showed that allele G at rs2275558 and allele T at rs3835-581 were over-transmitted for both of NSCL/P (P=0.039 and 0.038, respectively) and NSOC (P=0.036 and 0.014, respectively) (Table 4).

In view of the parental origin of the alleles, we performed parent-of-origin effect analysis to detect allelic transmission bias among parents.

Table 4. Allelic TDT Results for SNPs at PBX1 among NSOCs Trios

SNP	Minor Allele	NSCL/P			NSCP	NSOCs		
		T/U	Chisq (P-value)	T/U	Chisq (P-value)	T/U	Chisq (P-value)	
rs2275558	G	99/72	4.26 (0.039)	34/29	0.4 (0.53)	133/101	4.38 (0.036)	
rs3835581	T	104/77	4.03 (0.038)	42/30	1.70 (0.19)	146/107	6.01 (0.014)	
rs41266618	T	6/06	0 (1.04)	2/00	2 (0.16)	8/06	0.29 (0.59)	
rs3185695	Α	48/45	0.097 (0.76)	18/12	1.2 (0.27)	66/57	0.66 (0.42)	

Note: SNP, Single Nucleotide Polymorphism; NSCL/P, Non-syndromic cleft lip with or without cleft palate; NSCP, Non-syndromic cleft palate; NSCS, Non-syndromic oral clefts (NSCL/P&NSCP); T/U, transmitted/untransmitted; Chisq, Chi-Square; Bold characters indicate the items with *p*-value less than 0.05.

Table 5. Parent of origin effect of the SNPs at PBX1 among NSOC trios

Cleft type	SNP	A1/A2	Paternal			Maternal				
			T/U	CHISQ	Р	T/U	CHISQ	Р	- Z	Р
NSCL/P	rs2275558	G/A	58.5/33.5	6.79	0.0091	38.5/39.5	0.013	0.91	1.86	0.063
	rs3835581	T/C	51.5/40.5	1.32	0.25	50.5/39.5	1.34	0.25	-0.018	0.99
	rs41266618	T/C	3.5/4.5	0.12	0.72	0.5/3.5	2.25	0.13	1.01	0.31
	rs3185695	A/G	28/22	0.72	0.4	20/24	0.36	0.55	1.02	0.31
NSCP	rs2275558	G/A	15/12	0.33	0.56	19/17	0.11	0.74	0.22	0.83
	rs3835581	T/C	16/16	0	1	24/15	2.08	0.15	-0.97	0.33
	rs41266618	T/C	1/00	1	0.32	1/00	1	0.32	NA	NA
	rs3185695	A/G	9/06	0.6	0.44	9/05	1.14	0.29	-0.24	0.81
NSOCs	rs2275558	G/A	73.5/45.5	6.59	0.01	57.5/56.5	0.009	0.93	1.74	0.082
	rs3835581	T/C	67.5/56.5	0.98	0.32	74.5/54.5	3.10	0.08	-0.53	0.60
	rs41266618	T/C	4.5/4.5	0	1	1.5/3.5	8.0	0.37	0.72	0.47
	rs3185695	A/G	37/28	1.25	0.26	29/29	0	1	0.77	0.44

Note: SNP, Single Nucleotide Polymorphism; A1, Minor allele; A2, Major allele; NSCL/P, Non-syndromic cleft lip with or without cleft palate; NSCP, Non-syndromic cleft palate; NSOC, Non-syndromic orofacial clefts (NSCL/P&NSCP); T/U, transmitted/untransmitted; CHISQ, Chi-Square; P, p value; Z, vector of the large sample Z statistic; Bold characters indicate the items with p-value less than 0.05.

No significant difference was observed for any subgroup of NSOC. Yet, allele G at rs2275558 did show a paternal over-transmission for NS-CL/P (P=0.0091) and NSOC (P=0.01) (**Table 5**). There was no evidence of parental transmission bias in other SNPs.

To check whether the two associated SNPs travel together in the same LD block, we conducted pairwise linkage analysis, and the results showed very weak linkage between rs-2275228 and rs3835581 (Figure 2), indicating that they were independent of each other.

Discussion

NSOC is a complex congenital malformation with strong heterogeneity [27]. Recently, genome wide association study (GWAS), the most effective technique, found more than 50 sus-

ceptibility loci for NSOC in distinct populations [28]. Although GWAS has made amazing achievements in the research of NSOC, unfortunately, most of the susceptibility loci found by various GWASs contributed minimally to the risk of the disease, explaining only about 10%-20% of the genetic effects [29]. Therefore, we have reason to believe that the current discoveries are just the tip of the iceberg, and that there are still many potential pathogenic genes not discovered.

The mechanism of NSOC is the failure of disappearance of embryonic epithelium from the frontonasal prominence (fnp) and paired maxillary prominence (mxp), ultimately leading to the obstruction of fusion in prominences. It was found that *PBX1* mRNA is extremely rich in epithelium, thus *PBX1* mutants may disrupt the normal process of epithelial disappearance by

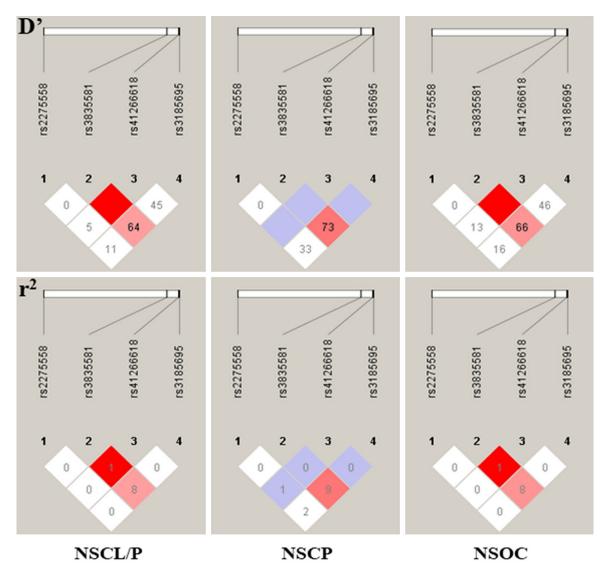


Figure 2. Linkage disequilibrium plots of the four SNPs of the PBX1 gene.

two ways. One is through the interference of *PBX* epithelial apoptosis, and the second is the destruction of PBX-SNAIL1--dependent Epithelial-Mesenchymal-Transition (EMT) [22, 23]. The above evidence strongly suggested that *PBX1* indeed is involves in the occurrence of NSOC. However, the results of animal research may not directly apply to humans [30]. Human etiology studies are needed to validate the association between the *PBX1* gene and NSOC.

In this study, we first screened for variants in all exons adjacent to intronic regions, the 3' UTR, and the 5' UTR of *PBX1* gene among 50 NSCLP patients. A total of two novel variants and four SNPs were identified. Subsequently, four SNPs were selected for evaluation by conducting a family-based association study.

Considering the influence of population background difference on genetic analysis, we conducted TDT and parent-of-origin effect analysis based on case-parent trios. We did find that allele G at rs2275558 and allele T at rs38355-81 were over-transmitted for NSCL/P (P=0.039 and 0.038, respectively) and NSOC (P=0.036 and 0.014, respectively) (Table 4). Similarly, no significant associations were found between all SNPs and NSCP. Parent-of-origin effects can reflect the influence of alleles from mother or father on phenotype [31]. This study showed that allele G at rs2275558 was significantly paternally over-transmitted among NSCL/P (Table 5). Statistical significance of the paternal transmission rather than of maternal transmission may be attributed to non-expression of the maternally derived alleles, which reflects underlying imprinting [32]. In summary, epigenetic effects such as imprinting are gradually being recognized as a significant source of variations in complex traits [33].

Although rs2275558 and rs3835581 were identified as associated loci for NSCL/P, they were independent with each other with lower D' and r² (Figure 2). Compared to other SNPs, the missense variant rs2275558 (p.G21S) located in the coding region of PBX1 which would change the structure of a protein, was previously reported to have an association with type 2 diabetes (T2DM) in a study on the Pima Indian population [34], but it was not associated with T2DM in Caucasians [35, 36]. The p.G21 residue is highly conserved among mammals including the mouse, rat, and chimpanzee, which indicates that it may play a important role. Although variation is conservative, the frequencies of alleles fluctuated across different populations. Therefore, multiracial populations need to be recruited to validate the association between rs2275558 and NSOC. Also, in vivo functional research of PBX1 variants should be conducted in animal models in a future study.

In addition to this common variant, two novel heterozygous variants were detected in the *PBX1* of two sporadic patients with NSCLP, namely, a one-year-old boy and a three-year-old girl. These variants were absent in multiple online human gene variation databases. Although they were not in the coding region, variants in non-coding sequences have been found to affect the level and form of mRNA transcripts. Several studies have also confirmed that the 3' UTR of a gene has an important role in gene expression by binding with miRNA [37].

In sum, we confirmed the role of the *PBX1* gene in orofacial deformity from Western Han Chinese, which is consistent with a previous animal study. This work provides new evidence for the future study of the etiology of NSCL/P.

Acknowledgements

The authors thank all the participants who donated samples in this study. This project was supported by the National Key R&D Program of China (No. 2016YFC0905200), National Natural Science Foundation of China (81600853) and Key Research, the National Science Funds of China (No. 81600849) and Development Plan of Ningxia Hui Autonomous Region (2016KJHM56).

Disclosure of conflict of interest

None.

Address correspondence to: Drs. Zhong-Lin Jia and Bing Shi, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Development of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, P.R. China. E-mail: zhonglinjia@sina.com (ZLJ); shibingcn@vip.sina.com (BS)

References

- [1] Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet 2009; 374: 1773-1785.
- [2] Fan D, Wu S, Liu L, Xia Q, Tian G, Wang W, Ye S, Wang L, Rao J, Yang X, Yu Z, Xin L, Li S, Duan Z, Zhang T, Wu S, Guo X, Liu Z. Prevalence of nonsyndromic orofacial clefts: based on 15, 094,978 Chinese perinatal infants. Oncotarget 2018; 9: 13981-13990.
- Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, Liang KY, Wu T, Murray T, Fallin MD, Redett RA, Raymond G, Schwender H. Jin SC, Cooper ME, Dunnwald M, Mansilla MA, Leslie E, Bullard S, Lidral AC, Moreno LM, Menezes R, Vieira AR, Petrin A, Wilcox AJ, Lie RT, Jabs EW, Wu-Chou YH, Chen PK, Wang H, Ye X, Huang S, Yeow V, Chong SS, Jee SH, Shi B, Christensen K, Melbye M, Doheny KF, Pugh EW, Ling H, Castilla EE, Czeizel AE, Ma L, Field LL, Brody L, Pangilinan F, Mills JL, Molloy AM, Kirke PN, Scott JM, Arcos-Burgos M, Scott AF. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat Genet 2010; 42: 525-9.
- [4] Birnbaum S, Ludwig KU, Reutter H, Herms S, Steffens M, Rubini M, Baluardo C, Ferrian M, Almeida de Assis N, Alblas MA, Barth S, Freudenberg J, Lauster C, Schmidt G, Scheer M, Braumann B, Bergé SJ, Reich RH, Schiefke F, Hemprich A, Pötzsch S, Steegers-Theunissen RP, Pötzsch B, Moebus S, Horsthemke B, Kramer FJ, Wienker TF, Mossey PA, Propping P, Cichon S, Hoffmann P, Knapp M, Nöthen MM, Mangold E. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat Genet 2009; 41: 473-477.
- [5] Fonseca RF, de Carvalho FM, Poletta FA, Montaner D, Dopazo J, Mereb JC, Moreira MAM, Seuanez HN, Vieira AR, Castilla EE, Orioli IM. Family-based genome-wide association study in Patagonia confirms the association of the DMD locus and cleft lip and palate. Eur J Oral Sci 2015; 123: 381-384.

- [6] Grant SF, Wang K, Zhang H, Glaberson W, Annaiah K, Kim CE, Bradfield JP, Glessner JT, Thomas KA, Garris M, Frackelton EC, Otieno FG, Chiavacci RM, Nah HD, Kirschner RE, Hakonarson H. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24. J Pediatr 2009; 155: 909-913.
- Leslie EJ, Carlson JC, Shaffer JR, Feingold E, Wehby G, Laurie CA, Jain D, Laurie CC, Doheny KF, McHenry T, Resick J, Sanchez C, Jacobs J, Emanuele B, Vieira AR, Neiswanger K, Lidral AC, Valencia-Ramirez LC, Lopez-Palacio AM, Valencia DR, Arcos-Burgos M, Czeizel AE, Field LL, Padilla CD, Cutiongco-de la Paz EM, Deleyiannis F, Christensen K, Munger RG, Lie RT, Wilcox A, Romitti PA, Castilla EE, Mereb JC, Poletta FA, Orioli IM, Carvalho FM, Hecht JT, Blanton SH, Buxó CJ, Butali A, Mossey PA, Adeyemo WL, James O, Braimah RO, Aregbesola BS, Eshete MA, Abate F, Koruyucu M, Seymen F, Ma L, de Salamanca JE, Weinberg SM, Moreno L, Murray JC, Marazita ML. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13. Hum Mol Genet 2016; 25: 2862-2872.
- [8] Mangold E, Ludwig KU, Birnbaum S, Baluardo C, Ferrian M, Herms S, Reutter H, Almeida de Assis N, Chawa TA, Mattheisen M, Steffens M, Barth S, Kluck N, Paul A, Becker J, Lauster C, Schmidt G, Braumann B, Scheer M, Reich RF, Hemprich A, Pötzsch S, Blaumeiser B, Moebus S, Krawczak M, Schreiber S, Meitinger M, Wichmann HE, Steegers-Theunissen RP, Kramer FJ, Cichon S, Propping P, Wienker TF, Knapp M, Rubini M, Mossey PA, Hoffmann P, Nöthen MM. Genome-wide association study identifies two susceptibility loci for non-syndromic cleft lip with or without cleft palate. Nat Genet 2010; 42: 24-26.
- [9] Sun Y, Huang Y, Yin A, Pan Y, Wang Y, Wang C, Du Y, Wang M, Lan F, Hu Z, Wang G, Jiang M, Ma J, Zhang X, Ma H, Ma J, Zhang W, Huang Q, Zhou Z, Ma L, Li Y, Jiang H, Xie L, Jiang Y, Shi B, Cheng J, Shen H, Wang L, Yang Y. Genomewide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat Common 2015; 6: 6414.
- [10] Wolf ZT, Brand HA, Shaffer JR, Leslie EJ, Arzi B, Willet CE, Cox TC, Mchenry T, Narayan N, Feingold E, Wang X, Sliskovic S, Karmi N, Safra N, Sanchez C, Deleyiannis FW, Murray JC, Wade CM, Marazita ML, Bannasch DL. Genome-wide association studies in dogs and humans identify ADAMTS20 as a risk variant for cleft lip and palate. PLoS Genet 2015; 11: e1005059.
- [11] Yu Y, Zuo X, He M, Gao J, Fu Y, Qin C, Meng L, Wang W, Song Y, Cheng Y, Zhou F, Chen G,

- Zheng X, Wang X, Liang B, Zhu Z, Fu X, Sheng Y, Hao J, Liu Z, Yan H, Mangold E, Ruczinski I, Liu J, Marazita ML, Ludwig KU, Beaty TH, Zhang X, Sun L, Bian Z. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat Commun 2017; 8: 14364.
- [12] Beaty TH, Ruczinski I, Murray JC, Marazita ML, Munger RG, Hetmanski JB, Murray T, Redett RJ, Fallin MD, Liang KY, Wu T, Patel PJ, Jin SC, Zhang TX, Schwender H, Wu-Chou YH, Chen PK, Chong SS, Cheah F, Yeow V, Ye X, Wang H, Huang H, Jabs EW, Shi B, Wilcox AJ, Lie RT, Jee SH, Chirstensen K, Doheny KF, Pugh EW, Ling H, Scott AF. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol 2011; 35: 469-478.
- [13] Leslie EJ, Liu H, Carlson JC, Shaffer JR, Feingold E, Wehby G, Laurie CA, Jain D, Laurie CC, Doheny KF, McHenry T, Resick J, Sanchez C, Jacobs J. Emanuele B. Vieira AR, Neiswanger K, Standley J, Czeizel AE, Deleyiannis F, Christensen K, Munger RG, Lie RT, Wilcox A, Romitti PA, Field LL, Padilla CD, Cutiongco-de la Paz EM, Lidral AC, Valencia-Ramirez LC, Lopez-Palacio AM, Valencia DR, Arcos-Burgos M, Castilla EE, Mereb JC, Poletta FA, Orioli IM, Carvalho FM, Hecht JT, Blanton SH, Buxó CJ, Butali A, Mossey PA, Adeyemo WL, James O, Braimah RO, Aregbesola BS, Eshete MA, Deribew M, Koruyucu M, Seymen F, Ma L, de Salamanca JE, Weinberg SM, Moreno L, Cornell RA, Murray JC, Marazita ML. A genome-wide association study of nonsyndromic cleft palate identifies an etiologic missense variant in GRHL3. Am J Hum Genet 2016; 98: 744-754.
- [14] Ludwig KU, Mangold E, Herms S, Nowak S, Reutter H, Paul A, Becker J, Herberz R, AlChawa T, Nasser E, Böhmer AC, Mattheisen M, Alblas MA, Barth S, Kluck N, Lauster C, Braumann B, Reich RH, Hemprich A, Pötzsch S, Blaumeiser B, Daratsianos N, Kreusch T, Murray JC, Marazita ML, Ruczinski I, Scott AF, Beaty TH, Kramer FJ, Wienker TF, Steegers-Theunissen RP, Rubini M, Mossey PA, Hoffmann P, Lange C, Cichon S, Propping P, Knapp M, Nöthen MM. Genomewide meta-analyses of non-syndromic cleft lip with or without cleft palate identify six new risk loci. Nat Genet 2012; 44: 968-971.
- [15] Leslie EJ, Carlson JC, Shaffer JR, Butali A, Buxó CJ, Castilla EE, Christensen K, Deleyiannis FW, Leigh Field L, Hecht JT, Moreno L, Orioli IM, Padilla C, Vieira AR, Wehby GL, Feingold E, Weinberg SM, Murray JC, Beaty TH, Marazita ML. Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate. Hum Genet 2017; 136: 275-286.

- [16] Ingraham CR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ, Malik MI, Dunnwald M, Goudy SL, Lovett M, Murray JC, Schutte BC. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet 2006; 38: 1335-1340.
- [17] Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714-718.
- [18] Moens CB and Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291: 193-206.
- [19] Alsadeq A and Schewe DM. Acute lymphoblastic leukemia of the central nervous system: on the role of PBX1. Haematologica 2017; 102: 611-613.
- [20] Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of *TALE*, *PREP1*, *PBX1*, and *MEIS1*: interconnections and competition in cancer. Bioessays 2017; 39.
- [21] Slavotinek A, Risolino M, Losa M, Cho MT, Monaghan KG, Schneidman-Duhovny D, Parisotto S, Herkert JC, Stegmann APA, Miller K, Shur N, Chui J, Muller E, DeBrosse S, Szot JO, Chapman G, Pachter NS, Winlaw DS, Mendelsohn BA, Dalton J, Sarafoglou K, Karachunski PI, Lewis JM, Pedro H, Dunwoodie SL, Selleri L, Shieh J. De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects. Hum Mol Genet 2017; 26: 4849-4860.
- [22] Ferretti E, Li B, Zewdu R, Wells V, Hebert JM, Karner C, Anderson MJ, Williams T, Dixon MJ, Depew MJ, Selleri L. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell 2011: 21: 627-641.
- [23] Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Development 2018; 145.
- [24] Li EB, Truong D, Hallett SA, Mukherjee K, Schutte BC, Liao EC. Rapid functional analysis of computationally complex rare human *IRF6* gene variants using a novel zebrafish model. PLoS Genet 2017; 13: e1007009.
- [25] Li Q, Kim Y, Suktitipat B, Hetmanski JB, Marazita ML, Duggal P, Beaty TH, Bailey-Wilson JE. Gene-gene interaction among WNT genes for oral cleft in trios. Genet Epidemiol 2015; 39: 385-394.

- [26] Letra A, Maili L, Mulliken JB, Buchanan E, Blanton SH, Hecht JT. Further evidence suggesting a role for variation in ARHGAP29 variants in nonsyndromic cleft lip/palate. Birth Defects Res Part A Clin Mol Teratol 2014; 100: 679-685
- [27] Grosen D, Chevrier C, Skytthe A, Bille C, Mølsted K, Sivertsen A, Murray JC, Christensen K. A cohort study of recurrence patterns among more than 54,000 relatives of oral cleft cases in Denmark: support for the multifactorial threshold model of inheritance. J Med Genet 2010; 47: 162-168.
- [28] Zhang BH, Huang N, Shi JY, Shi B, Jia ZL. Homozygote C/C at rs12543318 was risk factor for non-syndromic cleft lip only from Western Han Chinese population. J Oral Pathol Med 2018: 47: 620-626.
- [29] Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature 2009; 461: 747-753.
- [30] Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med 2009; 4: 2.
- [31] Lawson HA, Cheverud JM, Wolf JB. Genomic imprinting and parent-of-origin effects on complex traits. Nat Rev Genet 2013; 14: 609-617.
- [32] Weinberg CR. Methods for detection of parentof-origin effects in genetic studies of case-parents triads. Am J Hum Genet 1999; 65: 229-235.
- [33] Hager R, Cheverud JM, Wolf JB. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics 2008; 178: 1755-1762.
- [34] Thameem F, Wolford JK, Bogardus C, Prochazka M. Analysis of PBX1 as a candidate gene for type 2 diabetes mellitus in Pima Indians. Biochim Biophys Acta 2001; 1518: 215-220.
- [35] Duesing K, Charpentier G, Marre M, Tichet J, Hercberg S, Balkau B, Froguel P, Gibson F. Evaluating the association of common *PBX1* variants with type 2 diabetes. BMC Med Genet 2008; 9: 14.
- [36] Wang H, Chu W, Wang X, Zhang Z, Elbein SC. Evaluation of sequence variants in the pre-B cell leukemia transcription factor 1 gene: a positional and functional candidate for type 2 diabetes and impaired insulin secretion. Mol Genet Metab 2005; 86: 384-391.
- [37] Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. Ultraconserved elements in the human genome. Science 2004; 304: 1321-1325.