Original Article Genome-wide analysis of circular RNA expression profiles in patients with atrial fibrillation

Zhong-Bao Ruan, Fei Wang, Ting-Ting Bao, Qiu-Ping Yu, Ge-Cai Chen, Li Zhu

Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou 225300, P. R. China Received May 9, 2020; Accepted June 29, 2020; Epub August 1, 2020; Published August 15, 2020

Abstract: Atrial fibrillation (AF) is one of the most common clinical cardiac arrhythmias. This study was done to screen differentially expressed circular RNAs (circRNAs) in human monocytes from patients with AF and healthy controls using microarray, and preliminarily explore the role of circRNAs in the development of AF. The expression of circRNAs in peripheral blood monocytes of 4 AF patients and 4 healthy donors was detected by chip technology and validated by qRT-PCR. Differentially expressed genes were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify the function of differentially expressed genes and related pathways. Potential connections between circRNAs and miRNAs were explored by using Cytoscape. 120 differentially expressed circRNAs (FC≥2, P<0.05) were preliminarily screened by circRNA microarray, of which 65 were up-regulated and 55 down-regulated. All of 4 upregulated circRNAs (circRNA_0031, circRNA_1837, circRNA_5901 and circRNA_7571) and 3 out of 4 downregulated circRNAs (circRNA_5801, circRNA_7386 and circRNA_7577) were randomly confirmed by RT-PCR. GO and KEGG analysis suggested that differentially expressed circRNA-related genes are mainly involved in inflammation, immunity, and signaling transduction. CircRNA_7571, circRNA_4648, circRNA_4631 and circRNA_2875 were the first 4 circRNAs with the most binding nodes in the co-expression network. In addition, hsa-miR-328 was the highest positively correlated miRNA in the networks. Our findings demonstrated that there were differentially expressed circRNAs in human monocytes from AF patients. circRNA_7571, circRNA_4648, circRNA_4631 and circRNA_2875 were the first 4 circRNAs with the most binding nodes in the coexpression network. hsa-miR-328 was the largest node that interacted with circRNAs in the co-expression network. circRNAs-hsa-miR-328 network may play a critical role in the pathophysiology and mechanism of AF.

Keywords: circRNAs, atrial fibrillation, chip, expression profile

Introduction

Atrial fibrillation (AF) is one of the most common clinical cardiac arrhythmias. Its incidence is high and increases with age. The age-adjusted prevalence of AF is 0.60% for men and 0.37% for women. Annual incidence of AF is 0.78% for men and 0.40% for women. The lifetime risk of AF in men 40 years and older is 26% for men and 23% for women, while the incidence rate for elderly 60-74 years is as high as 8.0%-11% [1, 2]. At present, the pathogenesis of AF is mainly reflected in atrial structural remodeling, electrical remodeling, inflammation, and genes [3, 4], but the specific pathogenesis has not been clarified. Moreover, there is a lack of new biomarkers with strong specificity for the diagnosis and screening of AF.

With the rapid development of genetic information technology, a class of non-coding RNAs (ncRNAs) that does not encode proteins after transcription and was once considered as "noise" has attracted more attention [5, 6]. Research on ncRNAs associated with AF is currently focused on microRNA (miRNA) and longchain ncRNA (IncRNA). It has been found that miRNA and IncRNA may play important roles in occurrence and development of AF by regulating the atrial structural remodeling, electrical remodeling, and neural remodeling, and can also be used as biomarkers of AF [7-9]. Circular RNAs (circRNAs) are a family of ncRNAs formed by a special splicing mechanism, which has a closed circular structure and is abundant in eukaryotic transcriptomes. Despite other putative regulatory functions, circRNAs perform as

Gene name	circbase_id	Primer sequences	Fragment (bp)
GAPDH	-	F: 5'-TCTCTGCTCCTCCCTGTTCTA-3'	177
		R: 5'-ATGAAGGGGTCGTTGATGGC-3'	
circRNA_0031	hsa_circ_0008737	F: 5'-ACUGCCCUAAGUGCUCCUUCUGG-3'	179
		R: 5'-AGAGAAGGGGCCTGAGGGCAGA-3'	
circRNA_1837	-	F: 5'-GCUGGGAUUACAGGCAUGAGCC-3'	192
		R: 5'-GGCTCACGCCTGTAATCCCAGG-3'	
circRNA_5901	hsa_circ_0001240	F: 5'-CAGUGGCCAGAGCCCUGACGUG-3'	159
		R: 5'-TGCTGCCGGGAGCATCGGCCACTG-3'	
circRNA_7571	-	F: 5'-GGUCCAGAGGGCCGTCGT-3'	165
		R: 5'-ATCCCTGTCCATCTCTGGACC-3'	
circRNA_2773	-	F: 5'-GGGGUUCCUGGGGAUGGGAUUU	163
		R: 5'-TCAAAAAGAACCCTAGGAACCCc-3'	
circRNA_5801	hsa_circ_0062426	F: 5'-UGGGUAGAGAAGGAGCUCAGAGGA-3'	181
		R: 5'-CTCTCTGCAGCCCTTTGTCTACCCA-3'	
circRNA_7386	-	F: 5'-UGAGGCCCUUGGGGCACAGUGG-3'	166
		R: 5'-ACACTTAGTGCTTACAAGGGCCTCA-3'	
circRNA_7577	hsa_circ_0006109	F: 5'-UGCCCCACCUGCUGACCACCCUC-3'	166
		R: 5'-CCCGGTGG-CGGCTTGTGGGGCT-3'	

Table 1. Primer sequences for reverse transcription polymerase chain reaction

scavengers to capture other RNA molecules. Studies have shown that circRNAs can be used as a miRNA sponge to competitively bind miR-NAs, deregulate the regulation of target molecules by these miRNAs, and play an important role in transcription, post-transcription, and translation [10, 11].

Athough AF is associated with a high risk of stroke and death, few studies have performed to explore the role of circRNAs in AF. Whether circRNAs can be used as a diagnostic marker and therapeutic target has not been reported. Thus, in the current study, we evaluated the differential expression profiles of circRNAs in peripheral blood monocytes from AF patients and healthy donors by microarray. Quantitative reverse transcription PCR (qRT-PCR) for differentially expressed circRNAs was subsequently performed to validate the microarray results. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify the functions of differentially expressed genes and related pathways. Furthermore, the potential connections between circRNAs and miRNAs were explored by using Cytoscape.

Materials and methods

Study population and specimen collection

This study included 4 patients with AF diagnosed in the Department of Cardiovascular Medicine of Taizhou People's Hospital in October 2019 (AF group). All of them had paroxysmal atrial fibrillation, and 4 healthy subjects who excluded AF were used as controls (control group). The diagnosis of AF was mainly based on criteria listed in the 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS [12]. Patients with malignant tumor, acute infection, systemic immunity disease, thyroid disease, severe anemia, various organ transplantations and severe heart, lung, liver and renal insufficiency were excluded. About 10 ml of peripheral blood was drawn into ethylene diamine tetra-acetic acid (EDTA) anticoagulant tubes from each participant within 4 hours after admission. Monocytes were purified from PBMCs using Monocyte Isolation Kit II (Miltenyi Biotec, Tokyo, Japan) and frozen for analysis. This study was approved by the Ethics Committee of Taizhou People's Hospital. Written informed consent was obtained from AF patients and controls before entering this experiment.

Figure 2. Differentially expressed circRNAs (fold change >2, and P<0.05) between AF group and control group. A. M-A plot for negative binomially distributed simulation data. B. Volcano plots are displayed for visualizing the differential expression of circRNAs. The red and green points in the plot represent the differentially expressed circRNAs

with statistical significance. C. Box plots show the distribution of circRNAs for the two compared samples. The distributions were nearly the same after normalization. D. Hierarchical cluster analysis of all the deregulated circRNAs.

circRNA_id	circbase_id	circRNA_Chr	Туре	gene	FoldChange	P-Value
circRNA_0031	hsa_circ_0008737	Chr1	sense-overlapping	CAMTA1	3.34	0.031
circRNA_0095	-	Chr1	intronic	CAPZB	8.01	0.011
circRNA_0161	-	Chr1	antisense	THEMIS2	4.14	0.001
circRNA_0312	hsa_circ_0004877	Chr1	sense-overlapping	EPS15	4.06	0.011
circRNA_0544	-	Chr1	intergenic		10.15	0.017
circRNA_0685	hsa_circ_0000160	Chr1	sense-overlapping	SUCO	2.49	0.014
circRNA_1166	-	Chr10	intronic	JMJD1C	8.73	0.042
circRNA_1402	-	Chr11	sense-overlapping	IFITM2	5.78	0.049
circRNA_1415	hsa_circ_0000274	Chr11	sense-overlapping	NUP98	5.24	0.047
circRNA_1417	-	Chr11	intronic	NUP98	3.84	0.015
circRNA_1513	hsa_circ_0000302	Chr11	sense-overlapping	SPI1	3.06	0.040
circRNA_1741	hsa_circ_0005589	Chr11	sense-overlapping	ARCN1	4.21	0.012
circRNA_1837	-	Chr12	sense-overlapping	KLRC2	9.3	0.025
circRNA_2116	hsa_circ_0004901	Chr12	sense-overlapping	APAF1	3.88	0.037
circRNA_2294	hsa_circ_0007547	Chr13	sense-overlapping	SKA3	4.18	0.011
circRNA_2371	-	Chr13	sense-overlapping	ELF1	10.23	0.029
circRNA_2482	-	Chr13	sense-overlapping	SLAIN1	3.86	0.020
circRNA_2551	-	Chr14	intergenic		3.8	0.029
circRNA_2616	hsa_circ_0008002	Chr14	sense-overlapping	POLE2	3.24	0.030
circRNA_2681	hsa_circ_0032109	Chr14	sense-overlapping	PPM1A	3.54	0.020
circRNA_3140	hsa_circ_0003916	Chr15	sense-overlapping	PIAS1	5.52	0.002
circRNA_3337	hsa_circ_0000672	Chr16	sense-overlapping	CLEC16A	3.08	0.040
circRNA_3359	hsa_circ_0002771	Chr16	sense-overlapping	PARN	3.64	0.024
circRNA_3421	hsa_circ_0008223	Chr16	sense-overlapping	XP06	2.91	0.048
circRNA_3448	hsa_circ_0039161	Chr16	sense-overlapping	ITGAX	8.18	0.000
circRNA_4003	hsa_circ_0005347	Chr17	sense-overlapping	BPTF	5.73	0.034
circRNA_4284	hsa_circ_0008699	Chr18	exonic	ZNF516	5.63	0.008
circRNA_4314	hsa_circ_0004891	Chr19	sense-overlapping	CNN2	4.06	0.040
circRNA_4656	hsa_circ_0008847	Chr2	sense-overlapping	MBOAT2	3.76	0.015
circRNA_4657	hsa_circ_0000972	Chr2	sense-overlapping	MBOAT2	2.45	0.010
circRNA_4661	-	Chr2	sense-overlapping	MBOAT2	5.89	0.022
circRNA_4864	hsa_circ_0001006	Chr2	sense-overlapping	RTN4	3.43	0.029
circRNA_4959	-	Chr2	sense-overlapping	DYSF	3.69	0.026
circRNA_5325	-	Chr2	antisense	NOP58	3.21	0.045
circRNA_5335	hsa_circ_0003493	Chr2	sense-overlapping	CARF	3.55	0.026
circRNA_5399	hsa_circ_0058514	Chr2	sense-overlapping	AGFG1	3.89	0.014
circRNA_5664	-	Chr20	intronic	CTSZ	6.47	0.024
circRNA_5691	hsa_circ_0061286	Chr21	sense-overlapping	USP25	3.08	0.045
circRNA_5774	hsa_circ_0008021	Chr21	sense-overlapping	PDXK	13.23	0.004
circRNA_5897	hsa_circ_0008806	Chr22	sense-overlapping	CCDC134	5.19	0.022
circRNA_5901	hsa_circ_0001240	Chr22	exonic	NFAM1	6.34	0.033
circRNA_5988	hsa_circ_0001274	Chr3	sense-overlapping	PLCL2	8.66	0.046
circRNA_6087	hsa_circ_0001289	Chr3	sense-overlapping	SETD2	3.18	0.032
circRNA_6264	hsa_circ_0066959	Chr3	sense-overlapping	HCLS1	3.62	0.028

Table 2. Upregulation of circular RNA

circRNA_6360	-	Chr3	sense-overlapping	PLOD2	3.69	0.015
circRNA_6574	hsa_circ_0001394	Chr4	exonic	TBC1D14	4.04	0.004
circRNA_6624	-	Chr4	exonic	TLR6	3.43	0.033
circRNA_6644	-	Chr4	sense-overlapping	RBM47	3.13	0.050
circRNA_6903	hsa_circ_0071174	Chr4	sense-overlapping	LRBA	3.18	0.032
circRNA_6955	hsa_circ_0001460	Chr4	sense-overlapping	NEIL3	3.25	0.044
circRNA_6991	-	Chr5	intergenic		5.86	0.002
circRNA_7097	hsa_circ_0072697	Chr5	sense-overlapping	PPWD1	6.69	0.008
circRNA_7571	-	Chr6	sense-overlapping	HLA-A	28.22	0.005
circRNA_7672	hsa_circ_0003700	Chr6	sense-overlapping	FBXO9	6.12	0.030
circRNA_7952	hsa_circ_0004662	Chr6	sense-overlapping	SOD2	5.68	0.011
circRNA_7964	hsa_circ_0078665	Chr6	sense-overlapping	RNASET2	3.43	0.033
circRNA_8132	hsa_circ_0001707	Chr7	intronic	ABCA13	15.44	0.010
circRNA_8233	-	Chr7	sense-overlapping	ANKIB1	3.43	0.037
circRNA_8255	hsa_circ_0007940	Chr7	sense-overlapping	ARPC1B	3.62	0.028
circRNA_8317	hsa_circ_0082096	Chr7	sense-overlapping	ZNF800	4.88	0.031
circRNA_8548	hsa_circ_0006376	Chr8	sense-overlapping	HOOK3	3.31	0.043
circRNA_8895	hsa_circ_0003945	Chr9	sense-overlapping	UBAP2	3.37	0.015
circRNA_9098	hsa_circ_0008192	Chr9	sense-overlapping	PTBP3	4.22	0.014
circRNA_9396	hsa_circ_0001947	ChrX	exonic	AFF2	7.79	0.001
circRNA_9422	hsa_circ_0008297	ChrY	sense-overlapping	DDX3Y	5.27	0.037

Table 3. Downregulation of circRNA

	080000000000000000000000000000000000000	•				
circRNA_id	circbase_id	circRNA_Chr	Туре	gene	Fold Change	P-Value
circRNA_0259	hsa_circ_0009142	Chr1	sense-overlapping	CAP1	3.41	0.029
circRNA_0323	hsa_circ_0012553	Chr1	sense-overlapping	ZCCHC11	2.88	0.014
circRNA_0831	-	Chr1	sense-overlapping	LYPLAL1	4.38	0.024
circRNA_0835	hsa_circ_0004417	Chr1	sense-overlapping	LYPLAL1	9.69	0.023
circRNA_0947	hsa_circ_0002802	Chr1	sense-overlapping	ZNF124	6.37	0.042
circRNA_0995	hsa_circ_0000211	Chr10	sense-overlapping	SFMBT2	4.55	0.024
circRNA_1111	-	Chr10	sense-overlapping	CCDC7	2.94	0.028
circRNA_1292	-	Chr10	sense-overlapping	EXOSC1	3.23	0.015
circRNA_1335	hsa_circ_0000260	Chr10	sense-overlapping	SMC3	4.44	0.037
circRNA_1450	-	Chr11	sense-overlapping	SERGEF	3.47	0.010
circRNA_1496	-	Chr11	sense-overlapping	PRR5L	3.79	0.011
circRNA_1693	hsa_circ_0006208	Chr11	sense-overlapping	NPAT	7.11	0.003
circRNA_1786	hsa_circ_0002881	Chr12	sense-overlapping	KDM5A	3.08	0.019
circRNA_1787	hsa_circ_0024946	Chr12	sense-overlapping	KDM5A	3.82	0.009
circRNA_1800	-	Chr12	antisense	CACNA1C	5.31	0.005
circRNA_1834	-	Chr12	sense-overlapping	KLRC4-KLRK1	2.95	0.000
circRNA_2370	-	Chr13	exonic	ELF1	3.09	0.021
circRNA_2527	hsa_circ_0004096	Chr13	sense-overlapping	RASA3	4.44	0.001
circRNA_2683	hsa_circ_0032116	Chr14	sense-overlapping	MNAT1	3.67	0.007
circRNA_2773	-	Chr14	intergenic		12.02	0.043
circRNA_2875	-	Chr14	intergenic		3.06	0.030
circRNA_3138	-	Chr15	intronic	PIAS1	4.33	0.036
circRNA_3307	hsa_circ_0007788	Chr16	sense-overlapping	NMRAL1	10.03	0.023
circRNA_3807	-	Chr17	sense-overlapping	CCL3L3	7.42	0.016

circRNA_3830	-	Chr17	sense-overlapping	ERBB2	3.01	0.004
circRNA_4184	-	Chr18	sense-overlapping	RNF138	6.13	0.000
circRNA_4402	-	Chr19	sense-overlapping	ZNF564	3.51	0.014
circRNA_4581	hsa_circ_0003912	Chr19	exonic	DBP	4.63	0.005
circRNA_4624	-	Chr19	sense-overlapping	LILRA1	7.92	0.002
circRNA_4631	-	Chr19	sense-overlapping	KIR2DL1	8.77	0.009
circRNA_4648	-	Chr2	intergenic		4.41	0.007
circRNA_4737	-	Chr2	exonic	GTF3C2	4.23	0.011
circRNA_5440	hsa_circ_0001112	Chr2	sense-overlapping	DGKD	2.13	0.050
circRNA_5625	hsa_circ_0003998	Chr20	sense-overlapping	ARFGEF2	6.95	0.037
circRNA_5801	hsa_circ_0062426	Chr22	sense-overlapping	PPIL2	4.82	0.043
circRNA_5996	-	Chr3	intergenic		4.12	0.021
circRNA_6086	-	Chr3	sense-overlapping	SETD2	4.63	0.005
circRNA_6610	hsa_circ_0069397	Chr4	sense-overlapping	ARAP2	7.28	0.043
circRNA_6775	hsa_circ_0002782	Chr4	sense-overlapping	SLC39A8	5.38	0.019
circRNA_6810	hsa_circ_0007477	Chr4	sense-overlapping	PPA2	5.64	0.030
circRNA_7032	hsa_circ_0072380	Chr5	exonic	ZNF131	4.18	0.009
circRNA_7335	hsa_circ_0006716	Chr5	sense-overlapping	UBE2D2	3.66	0.032
circRNA_7386	-	Chr5	sense-overlapping	SGCD	4.37	0.007
circRNA_7577	hsa_circ_0006109	Chr6	sense-overlapping	C6orf136	2.29	0.028
circRNA_7599	-	Chr6	sense-overlapping	HLA-DRB1	3.16	0.042
circRNA_7797	hsa_circ_0001638	Chr6	sense-overlapping	MFSD4B	3.21	0.031
circRNA_8031	hsa_circ_0005519	Chr7	sense-overlapping	SNX13	8.57	0.045
circRNA_8108	-	Chr7	sense-overlapping	TARP	6.28	0.001
circRNA_8280	hsa_circ_0007395	Chr7	sense-overlapping	KMT2E	12.57	0.033
circRNA_8455	-	Chr8	intronic	ERI1	9.61	0.023
circRNA_8731	hsa_circ_0085438	Chr8	sense-overlapping	TBC1D31	5.03	0.002
circRNA_8841	-	Chr9	sense-overlapping	KIAA2026	3.34	0.025
circRNA_8857	hsa_circ_0008732	Chr9	sense-overlapping	BNC2	3.62	0.022
circRNA_9064	-	Chr9	sense-overlapping	NIPSNAP3A	7.75	0.000
circRNA_9326	hsa_circ_0091175	ChrX	sense-overlapping	BRWD3	3.69	0.020

Main reagents and instruments

Monocyte Isolation Kit II (Miltenyi Biotec, Tokyo, Japan), Trizol reagent (Ambion, USA), RNA purification kit (QIGEN, Germany), PrimeScript RT reagent kit with gDNA Eraser reverse transcription kit (TaKaRa, Japan), quantitative PCR detection kit (TaKaRa, Japan); gene chip detection (Agilent human IncRNA Array V2.0), ND-2000 spectrophotometer (NanoDrop, USA); high-speed refrigerated centrifuge, -80°C refrigerator, and other conventional instruments.

RNA extraction and quality control

Trizol reagent (Ambion, USA) was used to extract the total RNA in monocytes, and QIAGEN Rneasy® Mini Kit (QIGEN, Germany) was used to purify the RNA. The high purity and concentrations of the extracted RNA were tested with NanoDrop nn-2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA). RNA integrity was tested by using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

circRNAs microarry analysis

Sample labeling and microarray hybridization were performed by Outdo Bio-tech (Shanghai, P.R. China) by the same method as previously described [13]. Thus, double-stranded cDNA was synthesized from the qualified RNA by reverse transcription, and Cy3 fluorescently labeled cRNA was further synthesized. The fluorescence intensity of Cy3 in each sample was scanned by Axon microarray 4000B microarray scanner and the samples with RNA integrity

Figure 3. Quantitative reverse transcription-polymerase chain reaction analysis for validation of differentially expressed circRNAs. Compared with control group, *P<0.05 and **P<0.01.

id	Term	Category	ListHits	P-Value	Enrichment_score
G0:0036152	phosphatidylethanolamine acyl- chain remodeling	biological_process	3	1.93E-05	17.4619
GO:0036151	phosphatidylcholine acyl-chain remodeling	biological_process	3	3.45E-05	15.27917
G0:0008654	phospholipid biosynthetic process	biological_process	3	0.000187	10.18611
G0:0032436	positive regulation of proteasomal ubiquitin-dependent protein cata- bolic process	biological_process	4	0.000739	5.52467
GO:0006955	immune response	biological_process	4	0.000799	5.432593
GO:0010468	regulation of gene expression	biological_process	3	0.001816	5.685271
GO:0006364	rRNA processing	biological_process	3	0.002949	4.989116
GO:0045444	fat cell differentiation	biological_process	3	0.002949	4.989116
GO:0050776	regulation of immune response	biological_process	3	0.004489	4.444848
GO:0006954	inflammatory response	biological_process	4	0.004822	3.621728
GO:0035580	specific granule lumen	cellular_component	3	8.84E-05	12.22333
GO:0009986	cell surface	cellular_component	5	0.001757	3.880423
GO:0005576	extracellular region	cellular_component	6	0.013994	2.339394
GO:0031410	cytoplasmic vesicle	cellular_component	4	0.014215	2.785945
GO:0000151	ubiquitin ligase complex	cellular_component	3	0.02707	2.628674
GO:0005887	integral component of plasma membrane	cellular_component	5	0.062825	1.771498
G0:0005634	nucleus	cellular_component	38	0.064788	1.201621
GO:0005694	chromosome	cellular_component	3	0.071951	1.909896
GO:0005730	nucleolus	cellular_component	8	0.081944	1.509053
G0:0005886	plasma membrane	cellular_component	20	0.111773	1.245056
GO:0047144	2-acylglycerol-3-phosphate O- acyltransferase activity	molecular_function	3	1.39E-05	18.80513
G0:0004888	transmembrane signaling recep- tor activity	molecular_function	4	3.29E-05	10.5147
GO:0003841	1-acylglycerol-3-phosphate O- acyltransferase activity	molecular_function	3	4.47E-05	14.38039
G0:0001077	transcriptional activator activ- ity, RNA polymerase II proximal promoter sequence-specific DNA binding	molecular_function	4	0.006333	3.39537
GO:0046872	metal ion binding	molecular_function	21	0.011359	1.564229
GO:0004872	receptor activity	molecular_function	3	0.013905	3.216667
GO:0018024	histone-lysine N-methyltransfer- ase activity	molecular_function	3	0.015178	3.134188
GO:0003779	actin binding	molecular_function	5	0.019732	2.341635
G0:0008022	protein C-terminus binding	molecular_function	3	0.036288	2.396732
GO:0003714	transcription corepressor activity	molecular_function	3	0.058097	2.054342

Table 4. GO analysis of dysregulated circRNAs

number \geq 7 were subjected to the subsequent analysis on the Illumina sequencing platform (HiSeq 2500 or other platform) and 150/125 bp paired-end reads were generated. Junction reads of each sample were counted to evaluate the relative expression of circRNAs in different samples and normalized by DESeq software. The fold-change between different samples was calculated. The statistical significance was calculated by t test. circRNAs with fold-change >2 and P<0.05 were regarded as significant differential expression.

Figure 4. The results of Gene Ontology analysis. A. The top 10 neighbor coding genes of GO enrichment correspond to the upregulated circRNAs. B. The top 10 neighbor coding genes of GO enrichment correspond to the downregulated circRNAs. C. The top 10 neighbor coding genes of GO enrichment correspond to the total differentially expressed circRNAs.

Figure 5. Bubble map of top 20 pathway terms in KEGG enrichment analysis of dysregulated circRNAs. A. The top 20 pathway terms of the upregulated circRNAs. B. The top 20 pathway terms of the downregulated circRNAs. C. Top 20 pathway terms of the total differentially expressed circRNAs.

qRT-PCR validation of differentially expressed circRNAs

In order to confirm the results of microarray analysis, four upregulated circRNAs (circR-NA_0031, circRNA_1837, circRNA_5901 and circRNA_7571) and four downregulated circR-NAs (circRNA_2773, circRNA_5801, circRNA_ 7386 and circRNA_7577) were selected randomly for validation by gRT-PCR. Simply, 1 µl of cDNAs was added to 12.5 µl of SYBR-Green Gene Expression Master Mix (Applied Biosystems, Inc.), 10.5 µl of DEPC-treated water, and 0.5 µl of reverse and forward primers. The gene expression level of target circRNAs was normalized to the housekeeping gene GAPDH (Sangon Biotech, Shanghai, China) and calculated using the $(2^{-\Delta\Delta Ct})$ method. The primer sequences for RT-PCR are shown in Table 1.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis

GO analysis of differentially expressed circR-NAs, including the domains of biological processes, cellular components, and molecular function were further analyzed with the Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resource v6.8. KEGG analysis of differentially expressed circRNAs was performed to find the pathways they participated in by the KEGG Ontology-Based Annotation System (KOBAS) 2.0.

Construction of circRNA-microRNA networks

Functional sponging activity of circRNAs over miRNAs was analyzed by the prediction of miRNA target binding sites over the sequences of differentially expressed circRNAs. Enrichment results of total differentially expressed circRNAs were sorted by *p* value, and the potential connections between circRNAs and miRNAs were further explored by using Cytoscape 3.4.0 (http://cytoscape.org/).

Results

Analysis of differentially expressed circRNA

In total, 9426 circRNAs were detected by microarray, and the relevant characteristics are shown in **Figure 1**. There were 120 differentially expressed circRNAs between AF patients and controls (fold-change >2 and P<0.05) (**Figure 2**). Among these, 65 circRNAs were up-regulated (**Table 2**) and circRNAs 55 were down-regulated (**Table 3**).

qRT-PCR validation of differentially expressed circRNAs

Four upregulated circRNAs (circRNA_0031, circRNA_1837, circRNA_5901 and circRNA_7571) and four downregulated circRNAs (circRNA_2773, circRNA_5801, circRNA_7386 and circRNA_7577) were selected randomly for qRT-PCR validation to confirm the microarray results. As a result, all of 4 upregulated circRNAs (P<0.05 or P<0.01 for circRNA_00-31, circRNA_1837, circRNA_5901 and circRNA_7571, respectively) and 3 out of 4 downregulated circRNAs (P<0.05 or P<0.05 or P<0.01 for circRNA_7571, respectively) and 3 out of 4 downregulated circRNAs (P<0.05 or P<0.01 for circRNA_5801, circRNA_7386 and circRNA_7577, respectively) showed a significantly different expression (**Figure 3**), which was consistent with microarray results.

GO and KEGG analysis of dysregulated circRNAs

To explore the functions of dysregulated circRNAs in AF patients compared with normal controls, GO gene enrichment analysis and KEGG pathway analysis were underwent by using DAVID and KOBAS. GO analysis indicated that the largest enriched biologic processes include phosphatidylethanolamine acyl chain remodeling, phosphatidylcholine acyl chain remodeling and phospholipid biosynthesis. The largest enriched cell composition includes special particles, cell surfaces, and extracellular areas. The largest enriched molecular functions include: 2-acyl glycerol-3-phosphate acyltransferase activity, transmembrane signal receptor activity, 1-acyl glycerol-3-phosphate acyltransferase activity (Table 4; Figure 4). The bubble map of top 20 pathway terms in KEGG enrichment analysis is shown in Figure 5. Differentially expressed circRNAs and the comparison of all genes at KEGG Level 2 (including cell growth and death, transcription and development) are shown in Figure 6. According to

Figure 6. Results of KEGG enrichment analysis. A. The top 30 neighbor coding genes of KEGG enrichment correspond to the upregulated circRNAs. B. The top 30 neighbor coding genes of KEGG enrichment correspond to the downregulated circRNAs. C. The top 30 neighbor coding genes of KEGG enrichment correspond to the total differentially expressed circRNAs.

KEGG results, differentially expressed circRNArelated signaling pathways are mainly involved in inflammation and the immune system.

Construction of circRNA-miRNA co-expression network

According to the significantly altered circRNAs, the miRNA binding sites for each circRNA were explored by using Cytoscape and the significance of shared miRNAs for each circRNA-miR-NA pair was estimated to construct the circRNA-miRNA co-expression network. Finally, the top 300 networks of circRNA-miRNA were extracted and drawn according to the *p*-value of the enrichment results of the total dysregulated circRNAs (Figure 7). As shown in Figure 7, circRNA_7571, circRNA_4648, circRNA_4631, and circRNA_2875 are the first four circRNAS with the most binding nodes in the co-expression network, which suggests that the four circRNAs may play important roles in AF, and could be regarded as key circRNAs. In addition, hsa-miR-328 was the largest node that interacted with circRNAs in the co-expression network, which suggested that circRNA-hsa-miR-123p may play a key role in the pathogenesis of AF.

Discussion

circRNA has received attention in the field of non-coding RNAs in recent years, and was first discovered in RNA viruses. circRNA is different from linear RNA in that it does not have a 5' end cap and a 3' end tail structure. It has a covalent closed loop structure and is not easily degraded by exonuclease, so it can stably exist in tissue or body fluids. In addition, the circRNA sequence is highly conserved, with a certain timing and tissue specificity [14], which suggests that circRNA may be highly conserved among different species and play an important role in the occurrence and development of disease. It also has potential as a biomarker of disease.

AF is the arrhythmia with the highest clinical incidence, which can induce heart failure, stroke, peripheral vascular embolism and other

fatal cardiovascular and cerebrovascular diseases. So far, the pathogenesis of AF is still unclear, and specific biochemical diagnostic markers are also lacking [15, 16]. In recent years, the important role of ncRNAs in ontogenetic development and the occurrence and development of various diseases has become increasingly apparent. More and more studies have shown that ncRNAs are closely related to the occurrence and maintenance of AF [17, 18]. Further studies of circRNAs in AF patients can help clarify the pathogenesis of AF and find more stable AF markers. However, the relationship between circRNAs and AF is still unclear.

In this study, microarray was used to screen the differentially expressed circRNAs in peripheral blood monocytes between 4 AF patients and 4 healthy individuals. The results showed that 9426 circRNAs were abnormally expressed in AF patients, and 120 circRNAs were differentially expressed (fold-change >2 and P<0.05) compared with the healthy control group, of which 65 circRNAs were up-regulated and 55 circRNAs were down-regulated, indicating that these differentially expressed circRNAs may play an important role in the pathogenesis of AF. All of 4 upregulated circRNAs (circRNA_0031, circRNA_1837, circRNA_5901 and circRNA_7571) and 3 out of 4 downregulated circRNAs (circRNA_5801, circRNA_7386 and circRNA_7577) selected randomly for qRT-PCR validation showed a significantly different expression, which was consistent with microarray results. In order to further understand the roles of differentially expressed circRNAs in AF, the bioinformatics analysis of genes involved in the differentially expressed circRNAs was conducted. GO analysis of differentially expressed circRNAs suggests that the largest enriched biological process was mainly involved in phosphatidylethanolamine acyl chain remodeling, phosphatidylcholine acyl chain remodeling, and phospholipid biosynthesis. The largest enriched cell composition was mainly involved in special particles, cell surfaces, and extracellular areas. The largest enriched molecular functions were mainly involved in 2-acyl glycerol-3-phosphate acyltransferase activity, transmembrane signal

Figure 7. circRNA-miRNA coexpression network explored by using Cytoscape. The size of each node represents functional connectivity of each circRNA. The network consists of 37 circRNAs and 90 miRNAs. The red node represents circRNA and the green node represents miRNA. circRNA_7571, circRNA_4648, circRNA_4631 and circRNA_2875 were the four largest nodes in the network. hsa-miR-328 was the highest positive correlated miRNA in the networks.

receptor activity and 1-acyl glycerol-3-phosphate acyltransferase activity, etc. According to KEGG results, differentially expressed circRNAs-related signaling pathways were mainly involved in inflammation and the immune system. circRNA_7571, circRNA_4648, circRNA_4631 and circRNA_2875 were the first four circRNAs with the most combined nodes in the circRNAs-miRNA co-expression network. In addition, hsa-miR-328 was the largest node that interacts with circRNAs in the circRNAsmiRNA co-expression network. This suggests that circRNA-hsa-miR-328 may play a key role in the pathogenesis of AF. It has been reported that hsa-miR-328 plays a role in the proliferation and collagen production of atrial fibroblasts and is involved in the formation and maintenance of AF [19, 20], which is consistent with our findings.

At present, studies on the circRNAs of AF are just beginning; further experiments are needed to confirm these circRNAs and related pathways and biologic processes discovered. In this study, for the first time, the relationship between circRNAs and AF was explored. Specific circRNAs were found to be expressed in AF peripheral blood monocytes, which not only provided a reliable standard basis for the diagnosis of AF at the gene level, but also provided a new research direction for studying the pathogenesis and prognosis of AF at the molecular level. However, the numbers of samples in this study were small; large-sample clinical validation of RT-PCR would be required and further analysis of differentially expressed circRNAs in peripheral monocytes had not been further explored in the present study. Further analysis and related experimental studies will further clarify the role of these circRNAs in the occurrence and development of AF.

Acknowledgements

The study was supported by Jiangsu Provincial Medical Innovation Team (grant No. CXTD2017015). Jiangsu Commission of Health, China (grant No. H201665), the Talent Foundation of Jiangsu Province, China (grant No. WSN-20) and Taizhou science and technology support plan (grant No. TS201729). The authors are thankful to Hai-Hui Sheng for technical assistance.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Zhong-Bao Ruan, Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, P. R. China. Tel: +86-13401238518; E-mail: tzcardiac@163.com

References

- [1] Koziolova NA, Polyanskaya EA, Chernyavina Al and Mironova SV. Atrial fibrillation in patients on dialysis therapy: epidemiology, prognosis and choice of anticoagulant therapy. Kardiologiia 2019; 59: 72-83.
- [2] Komal S, Yin JJ, Wang SH, Huang CZ, Tao HL, Dong JZ, Han SN and Zhang LR. MicroRNAs: emerging biomarkers for atrial fibrillation. J Cardiol 2019; 74: 475-482.
- [3] Xue XD, Huang JH and Wang HS. Angiotensin II activates signal transducers and activators of transcription 3 via rac1 in the atrial tissue in permanent atrial fibrillation patients with rheumatic heart disease. Cell Biochem Biophys 2015; 71: 205-213.
- [4] Zhang J, Youn JY, Kim AY, Ramirez RJ, Gao L, Ngo D, Chen P, Scovotti J, Mahajan A and Cai H. NOX4-dependent hydrogen peroxide overproduction in human atrial fibrillation and HL-1 atrial cells: relationship to hypertension. Front Physiol 2012; 3: 140.
- [5] Kaikkonen MU, Lam MT and Glass CK. Noncoding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 2011; 90: 430-440.
- [6] Mathy NW and Chen XM. Long non-coding RNAs (IncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem 2017; 292: 12375-12382.
- [7] Boon RA, Jae N, Holdt L and Dimmeler S. Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 2016; 67: 1214-1226.
- [8] Beermann J, Piccoli MT, Viereck J and Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 2016; 96: 1297-1325.

- [9] Ruan, Z, Sun X, Sheng H and Zhu L. Long noncoding RNA expression profile in atrial fibrillation. Int J Clin Exp Pathol 2015; 8: 8402-8410.
- [10] Stępień E, Costa MC, Kurc S, Drożdż A, Cortez-Dias N and Enguita FJ. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 2018; 39: 1085-1099.
- [11] Holdt LM, Kohlmaier A and Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res 2018; 3: 75-98.
- [12] Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B and Vardas P. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016; 37: 2893-2962.
- [13] Ruan ZB, Chen GC, Zhang R and Zhu L. Circular RNA expression profiles during the differentiation of human umbilical cord-derived mesenchymal stem cells into cardiomyocyte-like cells. J Cell Physiol 2019; 2019: 1-12.
- [14] Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ. The RNAbinding protein quaking regulates formation of circRNAs. Cell 2015; 160: 1125-1134.

- [15] Ardhianto P and Yuniadi Y. Biomarkers of atrial fibrillation: which one is a true marker? Cardiol Res Pract 2019; 2019: 8302326.
- [16] Severino P, Mariani MV, Maraone A, Piro A, Ceccacci A, Tarsitani L, Maestrini V, Mancone M, Lavalle C, Pasquini M and Fedele F. Triggers for atrial fibrillation: the role of anxiety. Cardiol Res Pract 2019; 2019: 1208505.
- [17] Savelieva I and Camm J. Update on atrial fibrillation: part II. Clin Cardiol 2008; 31: 102-108.
- [18] Mikhailov AT and Torrado M. Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation. J Mol Med (Berl) 2018; 96: 601-610.
- [19] da Silva AMG, de Araújo JNG, de Oliveira KM, Novaes AEM, Lopes MB, de Sousa JCV, Filho AAA, Luchessi AD, de Rezende AA, Hirata MH and Silbiger VN. Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network. J Cardiovasc Electrophysiol 2018; 29: 1159-1166.
- [20] Masè M, Grasso M, Avogaro L, Nicolussi Giacomaz M, D'Amato E, Tessarolo F, Graffigna A, Denti MA and Ravelli F. Upregulation of miR-133b and miR-328 in patients with atrial dilatation: implications for stretch-induced atrial fibrillation. Front Physiol 2019; 10: 1133.