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Abstract: Background: Ovarian cancer (OC) is the most lethal malignancy of women. Unlimited proliferation is a fun-
damental feature of OC cells. The genes associated with cell proliferation may be histopathologic biomarkers and 
targets of anti-tumor therapeutic strategies. The present study aimed to identify proliferation-associated biomarkers 
with prognostic, diagnostic, and therapeutic value and reveal the underlying molecular mechanism of candidate 
genes involved in OC by a combination of bioinformatic and experimental methods. Results: KIF15 was upregulated 
in early-stage OC tissues and could predict poor prognosis of patients of Stage I and II. The knockdown of KIF15 
significantly inhibited cell proliferation, tumor formation, and growth as well as promoting apoptosis of OC cells. A 
combination of experimental and bioinformatic analyses revealed KIF15 knockdown promoted cell apoptosis by 
activating crosstalk of multiple pathways in OC. Conclusion: KIF15, an early-stage prognostic gene, was identified 
as a candidate histopathologic biomarker and therapeutic target of OC.

Keywords: Ovarian neoplasms, kinesin, prognosis, early diagnosis, molecular targeted therapy, cell proliferation, 
apoptosis

Introduction

OC ranks as the most lethal tumor in female 
reproductive organs. The incidence of this 
gynecological malignancy has been continu-
ously increasing each year. In 2018, there were 
approximately 22,240 newly diagnosed OC 
cases and 14,070 deaths of OC in the United 
States [1]. The poor prognosis of OC is mainly 
due to the lack of reliable diagnostic and prog-
nostic biomarkers especially in early stages. 
The two serum biomarkers of OC, Cancer 
Antigen 125 (CA125) and Human Epididymis 
Protein 4 (HE4), are used to detect the fatal  
disease. Although the specificity of CA125+ 
HE4 reaches to 82.85% and the sensitivity is 
92.18%, their combined use does little for ear- 
ly diagnosis and prognosis of OC [2]. Thus, al- 
though surgical techniques have been improv- 
ed and new chemotherapeutic agents such as 
PARP inhibitors [3] have been applied to clinical 

treatment, the improvement of OS in OC pa- 
tients is still unsatisfactory. Biomarkers of early 
prognostic indicators are needed, as well as 
novel histopathologic diagnostic biomarkers 
and therapeutic targets.

With genomic technologies rapidly developing 
in recent years, large amounts of high-through-
put data have been generated. Genome-wide 
RNA expression analysis has become a fre-
quently-used tool for researchers to screen and 
understand genes that play key roles in tumori-
genesis and progression. A variety of high-
throughput platforms such as GEO [4] and the 
Cancer Genome Atlas (TCGA) [5] can identify 
genes that might serve as early prognostic and 
histopathological biomarkers or even contrib-
ute to targeted therapy. Also, integrated analy-
sis by multiple bioinfomatic methods can also 
provide crucial clues for a better understand- 
ing of the molecular mechanism of candidate 
genes involved in a certain tumor.

http://www.ijcep.com
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Researchers have focused on identifying prog-
nostic and diagnostic biomarkers as well as 
therapeutic targets of OC by bioinformatic 
methods. Being an important part of tumor 
growth and progression, proliferation-associat-
ed genes have been considered diagnostic and 
therapeutic targets for years [6]. Multiple previ-
ous bioinformatic studies have confirmed that 
proliferation-associated genes are an impor-
tant component of differentially expressed 
genes (DEGs) screened between normal ovari-
an and OC tissues. In a bioinformatic study 
using GEO datasets, researchers found that up-
regulated DEGs between normal and OC tis-
sues were mainly enriched in the GO category 
of cell proliferation [7]. Another study reported 
that up-regulated DEGs between normal and 
OC samples were mainly associated with cell 
cycle and cell division, which were also closely 
related to cell proliferation. Four genes (BUB1B, 
BUB1, TTK and CCNB1) were then identified as 
proliferation-associated biomarkers with prog-
nostic value [8]. Furthermore, by using topolog-
ic methods, researchers obtained 6 hub genes 
(DTL, DLGAP5, KIF15, NUSAP1, RRM2, and 
TOP2A) among the DEGs from OC datasets, all 
of which were strongly linked to cell cycle and 
cell division [9]. A similar study also report- 
ed that three proliferation-associated gene 
BUB1B, KIF20A, and KIF11 were hub genes 
with both prognostic value of OS and PFS [10], 
further indicating the crucial role of cell prolif-
eration. As shown above, different datasets 
and bioinformatic methods used in the study  
as well as varying researchers’ interests may 
generate novel biomarkers, which is a vital 
characteristic of high throughput data mining. 
However, no matter what data-processing 
methods, analytical tools and gene screening 
criteria the researchers use, proliferation-asso-
ciated genes are an important part of the OC 
DEGs compared to normal tissues. Thus, we 
expect that we can obtain therapeutic targets 
with an early prognostic and histopathologic 
diagnostic value from the proliferation signa-
tures to better understand the pathogenesis 
and to improve the survival of OC. To identify 
more reliable biomarkers, an integrated bioin-
formatic analyses combined with experimental 
verification should be performed.

In the present research, we identified 40 prolif-
eration-associated genes from 190 consistent 
DEGs between ovarian cancer and non-tumor 

specimens by analyzing the gene expression 
profiling of four GEO datasets. The Kalplan-
Meier Plotter [11] was used to identify survival-
related candidate genes. Thus, we obtained 
only two genes (KIF15 and BUB1 Mitotic Ch- 
eckpoint Serine/Threonine Kinase B [BUB1B]) 
that were overexpressed and had a significant 
effect on OS in early-stage OC patients. Oth- 
erwise, we found KIF15 had a higher expres-
sion level in early stages than that of late stag-
es, suggesting it may be an early-stage histo-
pathologic biomarker for prognosis and dia- 
gnosis. Therefore, KIF15 was selected to be 
bioinformatically and functionally analyzed sub-
sequently. Our study confirmed that KIF15 was 
a proliferation-associated gene useful in early 
prognosis and diagnosis of OC. Knockdown of 
KIF15 activated OC cell apoptosis through 
crosstalk among multiple pathways, indicating 
the possibility for KIF15 to be a therapeutic  
target in OC. These findings can provide reliable 
evidence for early diagnosis, prognosis and 
development of targeted therapies in OC.

Material and methods

Ethical statement

All animal experiments are in accordance with 
the “Regulations on the Administration of La- 
boratory Animals” (The National Science and 
Technology Commission of the People’s Re- 
public of China, March 1, 2017, revised edition) 
and the National Institutes of Health Laboratory 
Animal Care and Use Guidelines (ISBN: 13: 
978-0-309-15400-0, revised in 2011) to en- 
sure the animal welfare of experimental ani-
mals. This study was approved by the Human 
Research Ethics Committees of Southwest 
Hospital, Army Medical University (AMU). 

OC datasets selection from the GEO database

We selected and downloaded the raw data of 
four OC datasets from the GEO database. 
GSE40595 [12] contained 63 high grade se- 
rous ovarian cancer samples and 14 normal 
ovarian samples. GSE18520 [13] contained 53 
advanced stage, high-grade primary tumor 
samples, and 10 normal ovarian samples. 
GSE38666 [14] contained 25 serous ovarian 
cancer samples and 20 para-cancer samples. 
GSE36668 [15] contained 4 serous ovarian 
borderline tumor samples, 4 well-differentiat- 
ed serous ovarian carcinomas, and 4 normal 
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ovarian samples. The four datasets were all 
based on the platform GPL570 (Affymetrix Hu- 
man Genome U133 Plus 2.0 Array) to reduce 
variability from the different experimental set-
ups. Quality analysis was performed on raw 
data of the selected GEO datasets respectively 
by using the affyPLM package [16] in R soft-
ware. Three tumor samples in GSE40595, one 
tumor sample in GSE18520, and one tumor 
sample in GSE38666 datasets were removed 
from the data processing because of variance 
of sample quality. Thus, there were 155 tumor 
samples and 57 non-tumor samples included 
in our subsequent analysis in total.

Identification of proliferation-associated genes 
from the DEGs

To screen the DEGs in each GEO dataset, the 
limma package [17] was used with cutoff crite-
ria of |log2 Fold Change (FC)| > 1.5 and adjust-
ed p-value<0.05. The heatmaps were drawn by 
the tools in the Omicshare platform (https://
www.omicshare.com/). For visualization, an 
online Venn diagram tool (http://bioinformat-
ics.psb.ugent.be/webtools/Venn/) was used to 
show the overlapping part of DEGs in the four 
GEO datasets. The GO and Kyoto Encyclo- 
pedia of Genes and Genomes (KEGG) analy-
sis was conducted by DAVID (Resource 6.8) 
[18]. The top 10 GO categories with the small-
est p-value and the genes in five proliferation-
associated categories (“cell division”, “mitotic 
nuclear division”, “cell proliferation”, “mitotic 
sister chromatid segregation”, “chromosome 
segregation”) were visualized by GOplot pack-
age in R [19]. The results of pathway enrich-
ment analysis were visualized by using Omic- 
share tools.

Identification of candidate genes with early 
prognostic value

The overall survival analysis of the prolifera- 
tion-associated genes was conducted by the 
Kaplan-Meier Plotter in all OC patients in the 
database. To obtain genes with more signifi-
cant prognostic value, P<0.01 was set as the 
screening criterion. Survival analysis was also 
performed on the previously obtained prognos-
tic genes only in Stage I-II patients with a cutoff 
of P<0.05. The different expression among 
stages of the selected genes with early-stage 
prognostic value was analyzed in the Gene 
Expression Profiling Interactive Analysis (GEPIA) 

database [20]. KIF15 was selected to be bioin-
formatically analyzed and functionally verified 
in a subsequent study.

Bioinformatic verification of the expression 
level of KIF15 in normal and OC tissues

The RNA-seq data of the OC samples in TCGA 
and normal ovarian samples in GTEx were 
downloaded from the UCSC Xena project 
(https://xena.ucsc.edu/). The OC samples (N= 
379 for cystic, mucinous, and serous neo-
plasms) were limited to RNA-seq data of FPKM 
with HTseq and the GTEx samples (n=88 for 
normal ovarian tissue) were limited to RNAseq 
data of FPKM. The downloaded RNA-Seq data 
of both datasets have been recomputed to  
minimize differences from distinct sources 
based on a standard pipeline. The correspond-
ing clinical information of the OC dataset was 
downloaded from the TCGA database (https://
portal.gdc.cancer.gov/). The data of KIF15 ex- 
pression in multiple normal tissue samples of 
females were extracted and visualized by the 
ggpubr package in R. The differential expres-
sion of KIF15 was visualized by the beeswarm 
package in R. The analysis of KIF15 differential 
expression in five kinds of female-specific 
malignancies was conducted by the GEPIA 
online tool. The RNA-seq data of KIF15 expres-
sion in ovarian cancer cell lines were download-
ed from the Cancer Cell Line Encyclopedia 
(CCLE, https://portals.broadinstitute.org/ccle) 
[21].

Immunohistochemistry on OC tissue microar-
ray

The tissue microarrays (Alenabio, Xi’an, China) 
used in the study contained a total of 100  
samples, including 80 ovarian cancer tissue 
samples of different histologic types, 10 lymph 
node metastasis samples, and 10 non-tumor 
ovarian samples. Anti-KIF15 rabbit polyclonal 
antibody (Sigma-Aldrich Cat# HPA035517) was 
used to conduct the immunohistochemical 
staining at a dilution of 1:100. The positive 
staining was quantified and classified into 5 
levels: negative staining for 0 score; 1%-25% 
positive staining cells was scored as 1; 26%-
50% positive was a 2; 51%-75% positive was a 
3 and 76%-100% positivewas a 4. Staining 
intensity was scored as negative (0), weak (1), 
moderate (2), and robust (3). All the pathologic 
sections were independently reviewed by two 
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pathologists and the expression levels were 
graded by the product of positive staining per-
centage score and staining intensity score.

Cell culture

The cell lines used in the study, including ovari-
an cancer cell lines SKOV3, OVCAR-3, A2780, 
and HO8910, cervical cancer cell lines Hela, 
Siha and C33A, lung adenocarcinoma cell line 
A549, pancreatic cancer cell line PANC-1 and 
glioblastoma cell line U87, were all purchased 
from the cell bank of Chinese Academy of 
Science (Shanghai, China). The cell lines were 
cultured according to the instructions online 
(http://www.cellbank.org.cn/). 

Lentivirus transfection

Human KIF15 knocking down (KD) lentiviruses 
and negative control (NC) lentiviruses were 
constructed by Genechem (Shanghai, China). 
SKOV3 and HO8910 cells were seeded in 6- 
well plates the day before transduction to 
ensure the cells would grow to 30% to 40%  
confluence the next day, and then infected with 
lentivirus for 24 h at a Multiplicity of Infection 
(MOI) of 20 and 10 respectively in the presence 
of polybrene (5 mg/mL, Genechem).

qRT-PCR analysis

The qRT-PCR was performed as previously 
reported [22]. The 2ΔΔcT method was used to 
determine the expression of the KIF15 gene. All 
experiments were carried out in triplicate. The 
primers were purchased from Sangon Biotech 
(Shanghai, China).

KIF15: Forward 5’-CTCTCACAGTTGAATGTCCT- 
TG-3’; Reverse 5’-CTCCTTGTCAGCAGAATGAAG- 
3’; GAPDH: Forward 5’-TGACTTCAACAGCGACA- 
CCCA-3’; Reverse 5’-CACCCTGTTGCTGTAGCCA- 
AA-3’.

Western blot analysis

Western blot was performed as previously 
described [22]. GAPDH was used as a loading 
control. The KIF15 rabbit polyclonal antibody 
(1:100) and GAPDH monoclonal antibody (1: 
1000, Santa Cruz Biotechnology Cat# sc- 
32233) were used.

Cell growth analysis by Celigo method

SKOV3 and HO8910 cells were transfected 
with KIF15-KD or NC lentivirus. The transfected 

cells were collected and then seeded into 
48-well plates, 2000 cells per well respectively. 
The number of cells with green fluorescence in 
each well was measured by a Cellomics Array- 
Scan System (Nexcelom, USA) once a day. The 
variable data of the green fluorescence signal 
were obtained for statistical analysis to con-
struct 5-day cell proliferation curves. The gr- 
een-fluorescence cells were also scanned to  
be counted by image analysis software. The 
count of green-fluorescence cells at each time 
point was compared with that of day 1 to cal- 
culate the cell proliferation ratio for each time 
point and each experimental group. The fold 
change of cell proliferation was obtained to 
construct cell growth curves.

The cell proliferation ratio was computed as  
follows: fold change (NC vs. experimental group) 
= proliferation ratio on day 5 for the NC group/
proliferation ratio on day 5 for the experimental 
group. A fold change of proliferation ratio equal 
to or greater than 2 indicated that cell prolifera-
tion was significantly slowed.

Cell counting Kit-8 (CCK8) assay 

SKOV3 and HO8910 cells were plated into 
96-well plates at 2000 cells per well and trans-
fected with the KIF15-KD or NC lentivirus. Cell 
proliferation was measured by using CCK8 
Reagent (DOJINDO, Japan) respectively on days 
1, 2, 3, 4, and 5 after transfection. The assays 
were performed in triplicate.

FACS assay by flow cytometry

Cells were seeded into 6-well plates and cul-
tured in serum-free medium at 37°C for 24 h. 
Cells were transfected with the KIF15-KD or NC 
lentiviruses. Then the cells were harvested and 
analyzed by an AnnexinV-APC apoptosis kit 
(eBioscience, USA). Apoptosis was determin- 
ed using the Guava InCyte software (Millipore, 
USA). All experiments were conducted in trip- 
licate.

Caspase 3/7 activity assay

To assess the activity of caspases 3 and 7, the 
Caspase-Glo 3/7 Assay (Promega, Germany) 
was conducted following the manufacturer’s 
instructions. The Caspase-Glo 3/7 Assay is 
based on the cleavage of the DEVD sequence 
of a luminogenic substrate by the caspases 3 
and 7 and results in a luminescent signal. The 
fluorescence signal was measured at an excita-
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tion wavelength of 485 nm and an emission 
wavelength of 527 nm.

Subcutaneous transplantation of human OC 
cells in Balb/c nude mice

Female Balb/c nude mice of four weeks old 
were used in this experiment. A total of 2×107 
transfected SKOV3 cells were subcutaneously 
injected into the right armpit of each mouse. 
The body weight and tumor diameter of each 
mouse were measured every week after cell 
transplantation. All mice were sacrificed on the 
41st day after cell injection. Before the mice 
were killed, the fluorescence images of xeno-
graft tumors were photographed under a 
whole-body fluorescent imaging system (Lu- 
mina LT, Perkin Elmer, USA). Tumors were 
observed by both gross and microscopic 
methods.

mRNA expression profiling

The SKOV3 cells of KIF15-KD and NC group 
were collected for mRNA expression profiling. 
Total RNA was isolated from cell samples by 
using an Agilent RNA 6000 Nano Kit (Agilent, 
USA), and the quality of total RNA was analyzed. 
Both the KIF15-KD and NC cell samples had 
three replicates. The mRNA expression profiling 
was conducted by using GeneChip prime view 
humans (901838, Affymetrix, USA). RNA label-
ing and hybridization were performed with a 
GeneChip Hybridization Wash and Stain Kit 
(Agilent, USA). The raw data obtained from 
mRNA expression profiling was quality-analyz- 
ed using R software as in the aforementioned 
methods in Paragraph 2.2 before subsequent 
bioinformatic analysis.

Phospho-antibody arrays

To avoid batch difference, the same cell sam-
ples used for mRNA expression profiling were 
examined in this assay. The cell lysates of 
KIF15-KD and NC group were obtained and 
applied to a Cancer Signaling Phospho-Anti- 
body Array (PCS300, Full Moon Biosystems, 
USA). The phosphoantibody array detection 
was carried out in cooperation with Wayne 
Biotechnology (Shanghai, China) per the manu-
facturer’s protocol. The array contained 157 
site-specific and phospho-specific antibodies 
and 147 non-phospho antibodies, each of whi- 
ch had 6 replicates. The slides were scanned 

by a GenePix 4000 scanner and the images 
were analyzed with GenePix Pro 6.0 (Molecular 
Devices, Sunnyvale, CA). The intensity of the 
fluorescence signal obtained from each anti-
body-stained region indicated the expression 
level of a certain protein. The extent of protein 
phosphorylation was measured by a ratio com-
putation. The phosphorylation ratio was calcu-
lated as follows: phosphorylation ratio = phos-
pho value/non-phospho value [23]. The total 
proteome ratios were standardized to β-actin.

Pathway analysis by multiple bioinformatic 
methods

The DEGs in mRNA expression profiling were 
obtained by using R packages with a cutoff 
of |Fold Change| ≥ 1.5 and P<0.05. The path-
way analysis was performed with the plug-in 
ClueGO [24] in Cytoscape software (Version 
3.7.1) with a cutoff of P<0.05. GSEA (Version 
3.0), a pathway enrichment method was also 
used to analyze a level of gene sets. GSEA soft-
ware uses the predefined gene sets from the 
Molecular Signatures Database (MSigDB v6.2) 
[25]. A gene set is a group of genes that share 
similar pathways, functions, chromosomal lo- 
calization, or other features. In this study, we 
used all the C collection sets for GSEA analysis 
(i.e., H, C1-C7 collection in MsigDB). The list of 
ranked genes based on a score calculated as 
-log10 of p-value multiplied by the sign of fold 
change. The minimum and maximum criteria 
for the selection of gene sets from the collec-
tion were 10 and 500 genes, respectively. 
Pathway enrichment analysis on the results of 
the phospho-antibody arrays was also per-
formed. According to the pathways obtained by 
using DAVID and GSEA, the phosphorylated 
proteins on the pathways were selected and 
the protein-protein interactive (PPI) networks 
were visualized by Cytoscape. The consistent 
genes and phosphorylated proteins on the  
previously obtained pathways both in mRNA 
expression microarrays and phospho-antibody 
arrays were visualized by Venn tools in the 
Omicshare platform.

Statistical analysis

SPSS 20.0 (IBM SPSS, Chicago, IL) software 
was used for statistical analyses. Values are 
presented as the mean ± SD. Wilcox test was 
used to determine a significant expression dif-
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ference of DEGs among ovarian cancer and 
non-tumor samples in GEO and TCGA datasets. 
The differences between NC and KD groups in 
proliferation and apoptosis assays were tested 
by the Student’s t-test. The different expression 
levels between the ovarian cancer tissue sam-
ples and adjacent non-tumor samples in TMA 
were tested with the Mann-Whitney test. P< 
0.05 was considered significant.

Results

Identification of differentially expressed genes 
(DEGs) from GEO datasets of OC

In the present study, a multistep analysis was 
carried out to identify candidate genes modu-
lating a certain biologic process. First, we 
selected four GEO datasets of mRNA expres-
sion profiling including ovarian cancer and non-
tumor ovarian tissue samples. Because of the 
insufficiency of paracancer tissue in OC, the 
unpaired non-tumor ovarian tissue was used  
to replace the paired paracancer tissue. After 
removing the unqualified samples (Figure S1), 
155 tumors and 57 non-tumor samples were 
included in the subsequent analyses. Second, 
we aimed to screen DEGs in each GEO dataset 
with the criteria of log2 (Figure 1A-D). Con- 
sequently, 190 consistent genes, including 
183 upregulated, and 7 downregulated genes 
were obtained from the four GEO datasets 
(Figure 1E, 1F).

Functional annotation and pathway enrich-
ment analysis of the consistent DEGs

GO and KEGG analysis of the 190 DEGs was 
conducted by DAVID. The ten BP categories 
with the smallest adjusted p-value were shown 
in Figure 1G. Five proliferation-associated BP 
categories were selected and the genes en- 
riched to the categories were shown in the cir-
cle plot (Figure 1H). Thus, forty proliferation-
associated genes were screened. We obtained 
17 genes simultaneously enriched to two or 
more categories of the five proliferation-related 
ones (SAC3D1, NUF2, FAM83D, TPX2, KIF11, 
ZWINT, CDCA3, NDC80, PTTG1, BUB1B, KIF15, 
KI, F18B, SPAG5, CENPF, CDC20, CDK1, and 
KIF2C), which strongly indicated they were the 
hub genes and key nodes in the biological pro-
cess of proliferation. The results of pathway 
enrichment analysis were shown in Figure 1I.

Identification of survival-related genes

Survival analyses of the 17 selected genes 
were performed by Kaplan-Meier Plotter. To 
obtain genes with more significant prognostic 
value, we selected overall survival-associated 
genes with a cutoff of P<0.01. The overall sur-
vival curves of the six genes (BUB1B, CDK1, 
CENPF, FAM83D, KIF15, and TPX2) with signifi-
cant prognostic value are shown (Figure 2A-F).

To further explore the early-stage prognostic 
value of these survival-related genes, we con-
ducted OS analysis on the six prognostic genes 
only in patients of stage I and II. The results 
showed that high expression of KIF15 and 
BUB1B could predict shorter overall survival 
time compared to patients with low expression 
in the early stage of OC (P<0.05) (Figure 2G, 
2I). Although the sample sizes of stage I and II 
patients are quite small, it still provides evi-
dence that KIF15 and BUB1B appear to have a 
differential expression among patients in early 
stages, suggesting an effect of the two genes 
on prognosis beginning at the early stages. 
Thus, the differential expression among stages 
of the two genes was analyzed by GEPIA (Figure 
2H, 2J). To resolve the lack of samples of Stage 
I, we use Stage II to represent the early stage in 
the analysis. The results certificated that KIF15 
and BUB1B began to be overexpressed in early 
stages, at which the expression of both genes 
was even higher than that of later stages (stage 
III and IV). Significantly higher expression in 
early stages could provide possibilities for the 
genes to help to apply early diagnosis and to be 
a target of early-stage therapeutic intervention. 
However, the expression level of BUB1B in OC 
tissue had been experimentally verified on 50 
Chinese patients by immunohistochemistry in a 
previous study [10] while KIF15 had not been 
reported experimentally analyzed both on ex- 
pression level and cell function. Moreover, the 
F value revealed that the KIF15 (F value = 5.03) 
had a greater expressional difference among 
stages than that of BUB1B (F value = 4.7). 
Therefore, KIF15 was first selected to be ex- 
pressionally and functionally validated. 

As a possible histopathologic biomarker, KIF15 
was also compared with KI67, the most com-
monly used proliferation-associated biomark- 
er, from a bioinformatic perspective. We found 
that KI67 (the encoded protein of gene MKI67) 
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Figure 1. Identification of differentially expressed genes (DEGs) from four GEO datasets of ovarian cancer (OC) and functional and pathway enrichment analysis of 
consistent DEGs of the datasets. A-D. Heatmaps of DEGs from four datasets of gene expression profiling. E, F. Overlapped part of upregulated and downregulated 
DEGs in four OC datasets. G. Ten GO categories with the smallest p-value. H. Genes in five proliferation-associated BP categories. I. KEGG pathway analysis of the 
overlapped part of the DEGs from four GEO datasets.
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was not significantly associated with the OS 
rate of OC patients but had early-prognostic 
value in OC patients of stage I and II (P=0.014, 

Figure S2A, S2B). However, compared to KIF15, 
KI67 had no significant expressional difference 
between earlier and later stages (Figure S2C), 

Figure 2. Identification of survival-associated genes. A-F. Identifica-
tion of overall survival associated DEGs (P<0.01). G-I. Identification 
of overall survival-associated DEGs (KIF15 and BUB1B) in patients 
of stage I and II (P<0.05). H, J. Differential expression of KIF15 and 
BUB1B among stages (P<0.05).
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indicating a lower possibility contributing to 
early detection and prognosis. Moreover, the 
expressional correlation between KIF15 and 
MKI67 was analyzed and the results showed a 
close correlation (R=0.82, P=4.3e-128, Figure 
S2D) between the two genes.

KIF15 expression level studied in multiple tis-
sues by bioinformatic methods

The KIF15 expression data in multiple normal 
tissues of females were obtained from the 

GTEx datasets and visualized (Figure 3A). In 
females, KIF15 has a low expression in major 
kinds of normal tissues except the bone mar-
row. To validate the overexpression of KIF15 in 
OC tissue, the KIF15 expression levels of nor-
mal ovary samples from GTEx and OC samples 
from TCGA were compared. The KIF15 expres-
sion of OC samples was significantly higher 
than in normal ovarian samples (Figure 3B), 
consistent with the results of an analysis of  
the selected GEO datasets. To further verify the 
KIF15 overexpression in OC and explore the 

Figure 3. KIF15 expression in tissues and ovarian cancer cell lines by bioinformatic analysis. A. KIF15 expression 
level in multiple normal tissues of females. B. Comparison of KIF15 expression level between normal ovarian tissue 
and ovarian cancer samples (P<0.05). C. KIF15 overexpression in five female-specific malignancies (Red boxplots 
represent ovarian cancer samples, gray boxplots represent normal ovarian tissues. *P<0.05). D. KIF15 expression 
in ovarian cancer cell lines.
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expression level in other female-specific malig-
nancies, GEPIA online tools were used to con-
duct the analysis. We also found that except for 
the previously certified ovarian cancer, KIF15 
was also significantly overexpressed in breast 
invasive carcinoma (BRCA), cervical squamous 
cell carcinoma, and endocervical adenocarci-
noma (CESC), uterine corpus endometrial car- 
cinoma (UCEC), and uterine carcinosarcoma 
(UCS) (Figure 3C). To preliminarily confirm the 
feasibility of functional experiments on cell 
lines, the RNA-seq data of ovarian cell lines 
from CCLE were downloaded. They showed th- 
at KIF15 mRNA was overexpressed in 36/47 
ovarian cancer cell lines in CCLE (Figure 3D), 
supporting the feasibility of functional verifica-
tion on the cellular level.

KIF15 overexpression validated by experimen-
tal methods

On a TMA of OC, we also validated the overex-
pression of KIF15 protein at the tissue level. 
The samples contained in the online databases 
such as TCGA are mostly from white patients. 
Therefore, we used a TMA, in which the sam-
ples were all from Asians, to apply in the study 
to figure out whether the KIF15 expression had 
a racial difference. In the results of TMA analy-
sis, the KIF15 expression of OC samples was 
significantly higher than that of the unpaired 
non-tumor ones (P=0.002, Figure 4A, 4B). The 
results also suggested that the overexpression 
of KIF15 in OC tissues might not have an obvi-
ous racial difference. We also found that 49/64 
OC samples (76.6%) of stage I-II included in the 
TMA had high expression levels (score 8-12). 
This was evidence that the upregulation of 
KIF15 mRNA might originally occur in the early 
stages of OC and KIF15 and may be a biomark-
er of early prognosis in OC.

Furthermore, we had validated that ten kinds  
of cancer cell lines including ovarian cancer 
(SKOV3, OVCAR3, A2780, and HO8910), cervi-
cal cancer (Hela, Siha, and C33a), lung adeno-
carcinoma (A549), pancreatic cancer (PANC-1), 
and glioblastoma (U87), all had a high expres-
sion of KIF15 mRNA (Figure 4C).

Knockdown of KIF15 inhibited proliferation of 
OC cells in vitro

To illuminate the effect of KIF15 knockdown  
on cell lines with low and high KIF15 original 

expression level, SKOV3 and HO8910, with rel-
atively high, and low KIF15 expression among 
four common OC cell lines were selected to be 
functionally studied subsequently. The validity 
of shRNA lentivirus was verified by both RT-PCR 
and western blot methods (Figure 5A, 5B). 
According to the results of functional annota-
tion, we first assessed the role of KIF15 in OC 
cell proliferation. Celligo proliferation assay sh- 
owed that KIF15 knockdown markedly inhibited 
the proliferation of both SKOV3 and HO8910 
cells (Figure 5C, 5D) and the results were sup-
ported by CCK8 assay (Figure 5E-H). The re- 
sults suggested that KIF15 acted as a prolifer-
ation-promoting oncogene in OC.

Knockdown of KIF15 promoted apoptosis of 
OC cells in vitro

To evaluate whether KIF15 may be a therapeu-
tic target of OC, we examined the effect of 
KIF15 knockdown on cell apoptosis by flow 
cytometry analysis and Caspase 3/7 assay. 
The most significant findings were that the 
knockdown of KIF15 in SKOV3 cells significan- 
tly increased the percentage of early apoptotic 
cells and late apoptotic cells (Figure 6A-D). 
Similar results were also obtained in the 
HO8910 cell line. The Caspase 3/7 activity in 
the SKOV3 and HO8910 samples was incre- 
ased by KIF15 knockdown, indicating that cell 
apoptosis was activated (Figure 6E, 6F). This 
shows that targeting KIF15 might be an effec-
tive therapeutic strategy in OC.

Knockdown of KIF15 inhibits tumor formation 
of OC in vivo

To investigate the biologic functions of KIF15  
in vivo, we selected the relatively high-KIF15 
expressed SKOV3 cells to perform experiments 
in vivo. The cells of KIF15-KD and NC group 
were subcutaneously implanted in the corre-
sponding group of Balb/c nude mice. The vol-
ume and weight of each tumor were quantified. 
Under the imager, the green fluorescence of 
only one mouse with a tumor was observed in 
the group of ten mice injected with KIF15-KD 
cells while it was observed in all mice of NC 
group, indicating that KIF15 knockdown sign- 
ificantly halted tumor formation in vivo (Figure 
7A, 7B). The knockdown of KIF15 resulted in a 
significant decrease in the volume and weight 
of tumors as well as in the tumor formation 
ratio (Figure 7C-E). IHC analysis of xenograft 
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tumor tissues also showed that knockdown of 
KIF15 significantly impeded tumor formation in 
vivo (Figure 7F).

KIF15 knockdown promotes OC cell apoptosis 
by crosstalk among multiple pathways

To further elucidate the mechanisms underly-
ing apoptosis promotion by KIF15 knockdown, 
KIF15-KD, and NC cell samples were analyzed 
by mRNA microarray and phospho-antibody 
arrays. The same samples were used to extract 
mRNA and proteins to avoid the batch effect. 
We obtained 134 upregulated and 309 down-
regulated DEGs from mRNA expression profil- 
ing after KIF15 knockdown (Figure 8A). In the 
pathway networks constructed by ClueGO, we 
found that many key DEGs were enriched for 
the intrinsic apoptosis pathway, TNF signaling 
pathway, and NF-kappa B (NF-kB) signaling 
pathway (Figure 8B). Consistently, the results 
of GSEA analysis showed that apoptosis and 

TNFα signaling by NFkb were hallmarks of the 
DEGs (Figure 8C). 

To further understand the activation of apopto-
sis-related pathways, including both the pro-
apoptotic and anti-apoptotic pathways after 
KIF15 knockdown in ovarian cancer cells, we 
conducted a pathway analysis on the phospho-
array results. The phosphorylated proteins on 
the three apoptosis-related pathways were 
extracted to build a core network of key phos-
phorylated proteins (Figure 8D, 8G). It was 
shown that the three pathways have two inter-
sected nodes on mRNA level (Mitogen-Activated 
Protein Kinase Kinase Kinase 14 [MAP3K14] 
and Tumor Necrosis Factor [TNF]) and four on 
protein level (Nuclear Factor Kappa B Subunit  
1 [NFkB-p105/p50, Phospho-Ser337], Inhibitor 
Of Nuclear Factor Kappa B Kinase Subunit  
Beta [IKK-beta, Phospho-Tyr199], NF-Kappa-B 
Transcription Factor P65 [NFkB-p65, Phospho-
Ser529] and Inhibitor Of Nuclear Factor Kappa 

Figure 4. KIF15 overexpression in TMA and 
multiple cancer cell lines, validated by experi-
mental methods. A. Immunohistochemistry 
on tissue microarrays of OC, and the scale 
bar is 50 μm. B. The sample size of low and 
high expression in adjacent and tumor tis-
sues (Score <8 represents low expression, 
score 8-12 represents high expression). C. 
Expression level of KIF15 in cancer cell lines.
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Figure 5. Knockdown of KIF15 inhibits the proliferation of OC cells in vitro. A, B. The validity of shRNA lentivirus was verified by RT-PCR (**P<0.01) and western blot. 
C, D. KIF15 knockdown inhibited SKOV3 and HO8910 proliferation analyzed by the Celigo method, and the scale bar is 50 μm. E, F. Variation trend of cell count and 
cell count fold change of SKOV3 and HO8910 cell lines. G, H. KIF15 knockdown inhibited SKOV3 and HO8910 proliferation, analyzed by the CCK8 method.
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B Kinase Regulatory Subunit Gamma [IKK-
gamma, Phospho-Ser31]) (Figure 8E, 8F, 8H). 
The networks revealed that the significantly 
phosphorylated proteins AKT Serine/Threonine 
Kinase 2 (AKT2), Mitogen-Activated Protein 
Kinase 1 (MAPK1), BCL2 Apoptosis Regulator 
(BCL-2), BCL2 Associated X Apoptosis Regu- 
lator (BAX), BCL2 Associated Agonist Of Cell 
Death (BAD), and BH3 Interacting Domain 
Death Agonist (BID) were key proteins among 

the three pathways (Figure 8G). The protein 
expression change and phosphorylation ratio 
of the key proteins in Figure 8G and 8H are 
shown in Table 1. A phosphorylation ratio great-
er than 1.12 was considered significant phos-
phorylation [26]. The results revealed that all 
the key nodes had a significantly upregulated 
phosphorylation level, confirming that cross- 
talk existed among the three apoptosis-related 
pathways after KIF15 knockdown.

Figure 6. Knockdown of KIF15 promoted apoptosis of OC cells in vitro. A-D. Apoptosis of SKOV3 and HO8910 was an-
alyzed by the flow cytometry method. E, F. Apoptosis was analyzed by Caspase 3/7 assay. (*P<0.05, ***P<0.001).
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Figure 7. Knockdown of KIF15 inhibited tumor formation of OC in vivo. A. Green fluorescence signal of xenograft tumor in mice of NC and KD groups. The mice were 
numbered 1-10 (NC group), and 11-20 (KD group). B. Average fluorescence intensity of xenograft tumors in mice of NC and KD groups. C. Xenograft tumors and 
mice of NC and KD groups. D. Variation trend of average tumor volume in NC, and KD groups. E. Average tumor weight of NC and KD groups. F. KIF15 expression in 
xenograft tumors of NC and KD groups analyzed by IHC, and the scale bar is 100 μm (***P<0.001).
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Figure 8. KIF15 knockdown promotes OC cell apoptosis by crosstalk between multiple pathways. A. Heatmap of DEGs obtained from the gene expression profiling 
after KIF15 knockdown. B. Pathway networks were constructed among the DEGs. C. The hallmarks of the DEGs were analyzed by GSEA. D. The core networks of 
the key phosphorylated proteins among three apoptosis-related pathways. E, F. Common nodes of three apoptosis-related pathways in mRNA and phosphorylated 
protein levels. G. Significantly phosphorylated proteins in the core networks. H. Protein and phosphorylated protein expression levels of the four intersected nodes 
in the three apoptosis-related pathways at the protein level.
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sion profiling from GEO. By performing GO anal-
ysis, we found that in the top 10 GO categories 
with the lowest p-value, five were correlated to 
the process of cell mitosis and proliferation. 
From the five GO categories, we obtained 40 
proliferation-related genes, in which 17 genes 
participated in two or more proliferation-relat-
ed biological processes. This strongly support-
ed that the 17 genes are important nodes on 
the crossroads of the regulatory network modu-
lating the cell function of proliferation. The sur-
vival analysis revealed that 6 in the 17 prolifer-
ation-related genes had significant prognos- 
tic value, including BUB1B, CDK1, CENPF, FA- 
M83D, KIF15, and TPX2. Studies had reported 
that upregulation of BUB1B, KIF15 [8], CDK1 
[27], CENPF [28], FAM83D [29], and TPX2 [30] 
all predicted poor prognosis in OC. However, 
whether these survival-associated genes have 
early prognostic value in patients of stage I-II 
has not been reported.

To explore the early prognostic value of these 
genes, we conducted overall survival analysis 
on patients of stage I and II and found that the 
upregulation of BUB1B and KIF15 in early stag-
es could predict poor prognosis of OC patients. 
It also indicated that these two genes began to 
be overexpressed and played crucial roles to 
impact the prognosis of patients in the early 
stages. Therefore, BUB1B and KIF15 might be 
prognostic indicators, pathologic diagnostic 
biomarkers, and therapeutic targets in early 
stages in OC. By using GEPIA online tool, we  
discovered that both KIF15 and BUB1B had  
a significant expressional difference between 
earlier stages (stage II) and later stages (stage 
III-IV). The biomarkers with significantly higher 
expression in early stages might provide a pos-
sibility for early diagnosis and targeted thera-
pies in the early stages. However, BUB1B had 
been bioinformatically analyzed and expres-
sionally verified on OC tissues in a previous 
study while KIF15 had not been reported bioin-
formatically and experimentally analyzed in OC. 
Also taking the F value and p value into consid-
eration, KIF15 was first selected as the candi-
date gene to be experimentally studied while 
BUB1B still needed to be functionally analyzed 
in our following work.

As a candidate proliferation-associated bio-
marker, KIF15 was also compared to KI67, a 
clinically commonly used histopathologic bio-
marker. By using bioinformatic methods, we 
found that the mRNA expression of KIF15 and 

Discussion

The mortality rate of OC ranks first among gyne-
cologic malignant tumors. Because of its highly 
asymptomatic nature and lack of reliable bio-
markers, advanced-stage diagnosis and the 
delayed treatment are the main causes of the 
high mortality of OC. Investigation of novel and 
reliable biomarkers with early prognostic value 
could facilitate diagnosis and treatment in the 
early stages of OC. Uncontrolled proliferation is 
a crucial feature of malignancies and also an 
important part of cancer development and pro-
gression. Inhibiting sustained proliferation in 
cancer could be an effective strategy fo target 
therapies [6]. Here, we used bioinformatics me 
thods to screen the key genes modulating cell 
proliferation and having a significant impact on 
the survival time of patients and performed fur-
ther experimental research.

In the study, 180 overlapped DEGs were ob- 
tained, based on four datasets of gene expres-

Table 1. Fold change of key proteins in the 
crosstalk of apoptosis-associated pathways

Key Protein Ratio (KD 
vs. NC)

AKT2 1.15
AKT2 (Phospho-Ser474) 1.30
BAD (Phospho-Ser136) 1.29
BAX 1.02
BAX (Phospho-Thr167) 1.25
BCL-2 (Phospho-Ser70) 1.33
BID 1.05
BID (Phospho-Ser78) 1.29
p44/42 MAP Kinase 1.19
p44/42 MAP Kinase (Phospho-Tyr204) 1.27
IKKα/β 1.15
IKKα/β (Phospho-Ser180/181) 1.20
PLCG1 1.25
PLCG1 (Phospho-Tyr783) 1.21
RelB 1.20
RelB (Phospho-Ser552) 1.24
NFkB-p105/p50 0.98
NFkB-p105/p50 (Phospho-Ser337) 1.15
IKK-β 1.21
IKK-β (Phospho-Tyr199) 1.18
NFkB-p65 1.25
NFkB-p65 (Phospho-Ser529) 1.29
IKK-γ 1.13
IKK-γ (Phospho-Ser31) 1.15
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initial tumor, are still unclear and waiting for fur-
ther research.

In the present study, the crosstalk of three 
apoptosis-associated pathways after KIF15 
knockdown was discovered by gene expressi- 
on profiling, and the activation was proven by 
phospho-antibody arrays. Interestingly, we fo- 
und that both pro-apoptotic and anti-apoptotic 
pathways were activated and crosstalked with 
each other. The intrinsic apoptotic pathway is a 
vital pro-apoptotic pathway in the apoptotic 
process of ovarian cancer [37]. However, rese- 
archers have reported that NFkb activation 
could suppress the TNFα-induced apoptosis of 
cells [38]. By analyzing the result of phospho-
antibody arrays, we found that the TNF signal-
ing pathway was activated. The expression of 
RELA (NFkb-p65), a subunit of NFkb, was up- 
regulated and the protein was significantly ph- 
osphorylated, indicating an obvious activation. 
Moreover, the hub gene AKT2 in the core net-
work, which was upregulated and phosphory-
lated, plays an anti-apoptosis role in ovarian 
cancer [39]. We also found that the anti-apop-
totic protein BCL-2 was significantly phosphory-
lated and BCLXL was mildly phosphorylated 
and expressionally upregulated. Otherwise, the 
pro-apoptotic proteins BAX, BAD, and BID were 
all significantly activated. The results illuminat-
ed that after KIF15 knockdown, the mecha-
nisms of anti-apoptosis and pro-apoptosis co- 
existed. However, according to our research,  
it showed a pro-apoptotic effect eventually. A 
recent study had reported that knockdown of 
KIF15 promoted apoptosis in cancer cells, but 
whether anti-apoptosis mechanisms existed 
was unclear [34]. If the anti-apoptosis after 
KIF15 knockdown is a self-protection mecha-
nism to resist cell death, it strongly supports 
KIF15 as an important regulator of cell sur- 
vival.

Conclusion

KIF15 is a proliferation-related biomarker with 
early prognostic and histopathologic diagnos- 
tic value in OC. Targeting KIF15 inhibited tumor 
formation and growth through restraining prolif-
eration and promoting apoptosis of OC cells. 
The promoted apoptosis of OC cells was regu-
lated by the network constructed by both pro-
apoptotic pathways and anti-apoptotic path-
ways. Therefore, KIF15 may also be a ther- 
apeutic target in OC.

MKI67 had a correlation coefficient over 0.8 
which suggests co-expression of the two genes 
and provided some evidence that KIF15 could 
be a proliferation-associated histopathologic 
biomarker similar to KI67. However, the bioin-
formatic analysis was conducted only on the 
mRNA level. To validate whether KIF15 could  
be a widely-used histopathologic biomarker, a 
large validation study on OC is still needed.

KIF15 is a member of the kinesin superfamily 
and a microtubule-associated protein that par-
ticipates in the mitotic process. Although the 
structure and molecular functions of KIF15 
have been studied for approximately 10 years, 
the role of KIF15 in the tumorigenesis and pro-
gression of OC has not yet been illuminated. A 
previous study had reported that KIF15 pro-
moted the proliferation of cancer cells in pan-
creatic cancer [31], bladder cancer [32], breast 
cancer [33], and osteosarcoma [34]. This indi-
cates that KIF15 is a proliferation-related bio-
marker in multiple malignancies, similar to our 
findings with ovarian cancer in this study.

The proliferation of cancer cells is an important 
target of anti-tumor therapeutic strategies. In 
our study, we found that targeting KIF15 pro-
moted apoptosis of OC cancer cells, highlight-
ing the potential of KIF15 as a therapeutic tar-
get to slow down the tumor growth and further 
delay the progression of OC. Otherwise, we also 
found that KIF15 was overexpressed in five 
kinds of female-specific cancer but had low 
expression levels in the corresponding normal 
tissues. This suggested KIF15 had the poten-
tial to be a consistent therapeutic target of 
female malignancies and simultaneously avoid 
an off-target effect.

Recent studies had reported that KIF15 was a 
hub gene associated with cancer stem cell pro-
liferation in lung squamous cell carcinoma [35] 
by the bioinformatic method of Weighted Gene 
Co-Expression Network Analysis (WGCNA). Oth- 
erwise, KIF15 was also experimentally proven 
to promote cancer stem cell phenotype and 
malignancy in hepatocellular carcinoma [36]. 
These results indicated that KIF15 was not on- 
ly a target of anti-proliferation therapies in can-
cers but also a possible target of anti-CSC  
therapies. However, whether KIF15 plays a 
CSC-related role in OC and whether the early 
prognosis value of KIF15 is associated with the 
stemness maintenance of stem cells from the 
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Figure S1. Quality detection of expression profiling of 4 OC genes (GSE18520, GSE36668, GSE38666 and 
GSE40595) downloaded from GEO. A. The gray, weight, residuals and residual sign plots of the selected datasets; 
B. Relative log expression (RLE) boxplots of the selected datasets; C. Normalized unscaled standard errors (NUSE) 
boxplots of the selected datasets; D. RNA degradation plots of the selected datasets.

Figure S2. Bioinformatic analysis of MKI67 by using GEPIA online tool. A. Overall survival (OS) analysis of MKI67 on 
OC patients of stages I-IV; B. OS analysis of MKI67 on OC patients of stages I-II; C. Differential expression of MKI67 
among stages; D. Correlation analysis of MKI67 and KIF15 using Spearman method.


