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Abstract: Pyroptosis is a recently-identified pathway of host cell death that is stimulated by a range of microbial 
infections. Emerging evidence indicates pyroptosis plays crucial roles in tumor growth, disease progression, and 
migration of different cancer cells. However, the clinical significance of pyroptosis in tumor behavior prognosis, as 
well as the underlying mechanism in different cancers remains elusive. Here, by evaluating the expression level of 
pyroptosis genes in colorectal cancer (CRC) patients from the TCGA cohort and GEO cohort (GSE39582), we identi-
fied pyroptosis-related DEGs and then built a 13-gene risk model by applying the LASSO Cox regression algorithm. 
Furthermore, functional analysis using GSEA and GSEV revealed that our prognostic model may function through 
regulating immune responses and tumor biogenesis pathways. Significant infiltration of activated immune cells 
(e.g. cytotoxic T cells) was observed in the low risk score group. The selected gene set was further validated in the 
GEO cohort. Time-dependent ROC curves confirmed that our risk score model is robust in predicting 1, 3 and 5-year 
overall survival in CRC patients. Overall, we have identified a pyroptosis-related gene signature that consists of 13 
genes, which serves as a potent indicator of CRC prognosis. Thus, our model provides insights in how to make better 
clinical decision in the future.
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Introduction

Colorectal cancer (CRC) is ranked as the fifth 
most common cancer in both genders, repre-
senting 7.9% of new cancer incidence yearly in 
the US [1]. Colon adenocarcinoma (COAD) is  
the most dominant form of CRC, accounting for 
up to 53% of cases. COAD has the highest mor-
tality rate of gastrointestinal cancers and the 
incidence of COAD has risen steadily, especially 
in developed countries [2, 3]. It was reported 
that ~295,000 new colorectal cancer cases are 
diagnosed yearly and ~134,000 deaths are 
recorded around the globe. Although the five-
year survival has greatly improved recently, 
CRC remains the third leading cause of mortal-
ity in the United States. Localized CRC can be 
treated with surgery, radiation, and local abla-
tion. Despite the advance of curative treat-
ment, more than 30% patients eventually 
develop metastases, which requires more com-
plicated therapy with high mortality [4, 5]. The 

key to successful treatment of CRC is to identify 
the disease at early stage. However, early clini-
cal manifestations of CRC are diverse and may 
give rise to a range of non-specific and often 
misattributed symptoms [6-8]. Hence, there is 
an immediate need to develop better tools for 
risk assessment of CRC, to facilitate the 
management.

There are various proposed hallmarks of tumor 
cells that lead to growth and metastasis. 
Inhibited cell death is the most well recognized 
one [9]. Evidence suggests that malignant cells 
take advantage of distinct strategies to circum-
vent cell death pathways that are critical to nor-
mal development and physiological status [10]. 
Different types of cell death function as signifi-
cant mechanisms for anti-cancer treatment 
[11, 12]. Recently, a new form of programmed 
cell death, pyroptosis, was identified, which is 
different from necrosis, apoptosis, necroptosis, 
or autophagy. It is believed that pyroptosis is 
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triggered by proinflammatory signals and 
occurs frequently upon infection by a range of 
intracellular pathogens [13].

Numerous studies have focused on investigat-
ing the molecular mechanism of pyroptosis 
regulation and induction; however, the relation-
ship between pyroptosis and cancer remains 
largely elusive [14]. It was reported that pyrop-
tosis is related to gastric cancer (GC). The 
expression of GSDMD is decreased in GC cells 
compared to adjacent non-cancerous cells. 
GSDMD is a major player in pyroptosis, which 
can be cleaved by inflammatory caspases upon 
external stimulation. The resulting N-terminal 
fragment of GSDMD forms membrane pores, 
activating the pyroptosis process [15]. Never- 
theless, our understanding of pyroptosis in can-
cer is uncertain, especially whether pyroptosis 
affects the clinical outcome of cancer patients.

In the present work, we first identified the dif-
ferential expression genes (DEGs) related to 
pyroptosis, then constructed and validated a 
prognostic model upon the expression of 
selected DEGs to successfully predict the sur-
vival of COAD patients. Then, we performed 
multiple functional analyses to identify the 
potential molecular mechanism of pyroptosis  
in COAD. We also explored the difference of 
immune responses in patients in both low and 
high-risk groups based on our model and exam-
ined the pyroptosis-related immunity and front-
line treatment of COAD. The study should pro-
vide about the function of pyroptosis in COAD 
and help discover novel metrics of risk assess-
ment for COAD patients.

Material and methods

Data collection

The University of California Santa Cruz (UCSC) 
Xena portal (https://xenab rowser.net/) was 
used to download the clinical records and RNA-
seq data of the TCGA COAD patients. The RNA-
seq data of the GEO cohort (GSE39582) were 
acquired from GEO portal (https://www.ncbi.
nlm.nih.gov/geo/). For the TCGA cohort, the 
gene expression profiles from 41 normal tis-
sues and 458 tumor tissues were included for 
analysis. The FPKM (Fragments Per Kilobase 
Million) from the downloaded gene expression 
files was converted to TPM (Transcripts Per 
Kilobase Million) for downstream analysis. For 

GSE39582, the microarray data from 19 nor-
mal tissues and 566 colon cancer tissues were 
included for model validation.

Kaplan-Meier analysis

Survival analysis was conducted on TCGA COAD 
patients with complete clinical records. The 
patients were categorized based on consensus 
analysis or risk scores and subjected to Kaplan-
Meier estimator analysis using Survival pack-
age in R. Log rank test was utilized to define 
statistical significance. The survival curves 
were generated using Survminer in R.

DEG analysis

Identification of differential expression genes 
was performed using limma R package. The 
cut-off used to identify significant DEGs was 
fold change > |±1.5| and FDR (adjusted p-val-
ues) < 0.05. Volcano plot was depicted for DEG 
visualization.

GSVA and GSEA

Gene set variation and gene set enrichment 
analysis were performed respectively to identi-
fy the significant pathways and signatures 
related to pyroptosis. MSigDB gene sets were 
used for both methods [16]. GSEA analysis was 
carried out using Cluster Profiler in R. Signifi- 
cant pathways were defined if |NES| (normal-
ized enrichment score) > 1, NOM P < 0.05 and 
FDR < 0.05 with 1000 permutations. GSVA 
analysis was carried out using GSVA in R. A 
heatmap was created using pheatmap in R.

Construction and validation of the risk score 
model

The TCGA cohort and GSE39582 dataset were 
used for model construction and validation, 
respectively. A LASSO regression analysis was 
performed using glmnet package in R. The final 
model was determined based on the optimal 
lambda generated from 1000-fold cross-valida-
tion. Univariate Cox regression analysis was 
conducted to identify gene features with sig- 
nificant prognostic value. Feature selection  
was achieved by recursive feature elimination 
(RFE) with random forest as classifier and 
10-fold cross-validation to avoid model overfit-
ting. The risk score was computed as the line- 
ar combination of the gene expression of each 
feature multiplied by the LASSO coefficient: 
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Risk score = -0.0375*MMP3-0.1895*TNIP3+ 
0.1378*SLC2A3-0.1375*MMP10+0.0295* 
SERPINE1+0.2242*NECAB3-0.3972*RAB3B+ 
0.0458*CD720.0716*FAS+0.1111*ADAM8+ 
0.0341*LZTS3+0.2799*ANGPTL4-0.1612* 
RN7SL3. 

To validate the risk score model, each patient 
from GSE39582 was classified into low or high-
risk groups based on the risk score calculated 
from the prediction model. The median risk 
score was set as the cut-off threshold. Kaplan-
Meier curves were generated to estimate over-
all survival. Using pROC package in R, receiver 
operating characteristic (ROC) curves were cre-
ated and the area under the curve (AUC) was 
computed to predict the survival rate up to five 
years. The correlation between clinical factors 
and the risk score was evaluated to assess per-
formance of the risk score model.

Immune score analysis

The CIBERSORT, MCPcounter, single-sample 
gene set enrichment analysis (ssGSEA), and 
TIMER algorithms were used to determine the 
immune cell components or immune respons-
es between low and high-risk groups based on 
the pyroptosis-related gene signature [17-20]. 
The results of immune response generated 
from the four algorithms were visualized by 
heatmap. The correlation between the clinical 
factors and the computed immune scores was 
shown in the same heatmap.

Statistical analysis

Unpaired t test was applied to determine signifi-
cant differences between 2 clusters after pass-
ing the normality Shapiro-Wilk test. Wilcoxon 
test was used to compare high and low risk 
groups due to the lack of a normal distribution. 
All the other tests were two-sided. All analysis 
was conducted using R3.6.1. P values < 0.05 
were considered significant.

Results

Classification of COAD based on pyroptosis-
related genes

Pyroptosis is an inflammatory-associated cell 
death, that has been widely implicated in vari-
ous cancer types. For example, pyroptosis 
could promote inflammatory cell death, while 
impeding the undesired proliferation and inva-

sion of malignant cells [21]. To understand the 
connection between pyroptosis and COAD, we 
collected a total of 37 pyroptosis-related genes 
from the current literature and performed a 
consensus clustering analysis with the expres-
sion profile of these genes from all 440 COAD 
patients in the TCGA cohort. When tuning the 
clustering variable (k) (ranging from 2 to 10),  
we uncovered that the optimal cluster number 
is two, which has the highest cophenetic corre-
lation coefficient (Figure 1A and 1B). Further  
PCA analysis confirmed that the COAD patients 
could be suitably divided into two clusters 
based on pyroptosis-related genes (Figure 1C). 
We then started to evaluate whether the 
expression of pyroptosis genes are correlated 
with any clinicopathologic factors besides the 
consensus clusters. The expression level of 25 
pyroptosis genes were significantly differenti-
ated between cluster 1 and cluster 2 (Figure 
1D). In contrast, there was no strong correla-
tion observed between these genes and seven 
other clinical characteristics (age, gender, and 
various metrics in cancer TNM staging). Additi- 
onally, Kaplan-Meier survival analysis showed 
that COAD patients in cluster 1 and cluster 2 
hadve significantly different survival probabili-
ties (Figure 1E). Altogether, our results suggest 
that pyroptosis was strongly correlated with 
COAD and served as an independent indicator 
of COAD prognosis.

Identification of pyroptosis-related DEGs

To study whether pyroptosis is related to COAD 
prognosis, we first identified the differentially 
expressed genes (DEGs) between the two 
pyroptosis clusters in the TCGA cohort by per-
forming DEG analysis. DEGs were considered 
significant if adjusted P was less than 0.05  
and fold change of expression level was larger  
than 1.5. A total of 1217 DEGs, with 1012  
up-regulated and 105 down-regulated genes 
were identified between cluster 1 and cluster  
2 (Figure 2A). Next, we explored the biologic 
processes and pathways associated with the 
pyroptosis-related DEGs by performing GO 
enrichment and KEGG pathway analyses (Fi- 
gure 2B). More than 15 pathways were found to 
be significantly enriched in cluster 2 of COAD. 
The top gene sets are involved in regulation of 
immune and inflammatory responses, such as 
cytokine receptor binding, T cell activation, and 
rheumatoid arthritis.
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Figure 1. Colorectal cancer (CRC) patients were clustered into two subgroups based on the expression level of pyroptosis-related genes. Nonnegative matrix factor-
ization (NMF) consensus analysis of the TCGA cohort revealed a good consensus for k = 2. A. Comparison of cophenetic coefficients among k clusters. B. Consensus 
matrix for the expression of all pyroptosis-related genes across all TCGA COAD samples at k = 2. C. PCA analysis showing the separation of cluster 1 (red) and cluster 
2 (blue) based on the first two principal components. D. Heatmap showing the correlation between clinicopathologic factors and the pyroptosis-related subtypes. E. 
Kaplan-Meier analysis of overall survival of COAD patients in Cluster 1 (red) and Cluster 2 (blue) stratified by the expression of pyroptosis-related genes.
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Figure 2. Construction of the prognostic risk model based on pyroptosis-related gene signatures. A. Volcano plot showing the DEGs between cluster 1 and cluster 
2 in TCGA cohort. Black and blue dots represent the genes without significant changes, while red dots outside the left and right dashed lines donate the genes 
with decreased or increased expression, respectively. B. Bar plots showing the significant enriched pathways based on all DEGs. GO: Gene Ontology; BP: Biological 
Processes; CC: Cellular Component; MF: Molecular Function. C. Forest plot showing the 57 prognostic gene variables selected from univariate Cox analysis. D. Ran-
dom forest was applied to select the optimal number of variables for the predictive model. Seventeen genes were chosen with the corresponding highest accuracy 
(0.886) after 5-fold cross-validation. E. Additional variable selection using LASSO and the lambda parameter was tuned with 1000-fold cross validation. The final 
gene signature was chosen with the lowest partial likelihood deviation computed against the log (lambda). F. Coefficient profiles of the 17 gene features from the 
univariate Cox regression model.
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Construction and validation of risk score 
model

To explore the predictive power of these DEGs 
in overall survival, we performed univariate Cox 
regression analysis on the TCGA COAD cohort. 
Fifty-seven DEGs were significantly correlated 
with the overall survival of patients (Figure 2C). 
Particularly, 38 gene features displayed a ris- 
ing risk of poor COAD prognosis (hazard ratio > 
1). On the other hand, we found that the gene 
expression levels of the remaining 19 DEGs 
were associated with improved risk of COAD 
prognosis. Random forest was applied to select 
the optimal number of variables for the predic-
tive model. Seventeen genes were chosen with 
the corresponding highest accuracy (0.886) 
after 5-fold cross-validation (Figure 2D). To 
reduce the risk of overfitting, we applied and 
conducted LASSO regression to select the 
most representative gene features in our prog-
nostic model. After feature selection, 13 out of 
the 57 DEGs were retained for prognosis pre-
diction, which showed non-zero coefficients 
(Figure 2E and 2F). Hence, the risk score was 
calculated as the linear combination of the 
gene expression levels of 13 variables weight-
ed by the relative coefficient. Among the 13 
gene variables, six were low-risk indicators, 
while the rest five had positive coefficients, 
indicating unfavorable outcome.

The risk scores of each COAD patient were 
derived from the above model, and the 440 
COAD patients were then classified into two 
groups (low-risk or high-risk) based on the 
median risk score (Figure 3A). Notably, patients 
in the high-risk group had more deaths and a 
shorter recurrence-free survival time than 
those in the low-risk group. Kaplan-Meier sur-
vival analysis further revealed that the overall 
survival time was significantly shorter in the 
patient group with high risk score, compared to 
the low-risk score group (Figure 3B). To assess 
the robustness of the prognosis model, we con-
ducted a time-dependent ROC curve analysis. 
The result indicates that the 13-gene classifier 
was a powerful prognostic factor to predict 
COAD patient survival at one, three- and five-
year time windows, the AUCs of which were cal-
culated as 0.746, 0.729 and 0.802, respective-
ly (Figure 3C). We further evaluated the prog-
nostic power of our risk score model on an  
independent dataset (GSE39582) by carrying 
out the Kaplan-Meier analysis (Figure 3D). We 

found that the lower the risk score was, the bet-
ter the patient survival outcome, which con-
firmed that risk score is valuable for COAD 
prognosis.

To further characterize the 13 predictive DEGs 
in our model, we depicted them along the  
chromosome by RCircos (Figure 3E). They are 
not evenly distributed along the genome; for 
instance, none are located in chr2 and chr3, 
although they are among the largest chromo-
somes. To examine the correlation of risk score 
and the clinicopathologic factors, the gene 
expression profile of the 13 predictive DEGs 
and the clinical features were presented in the 
heatmap. We found that all the factors were 
diversely distributed across the whole spec-
trum of risk score ranges and a similar result 
was observed on the original 33 DEGs identi-
fied before feature selection (Figure 3F).

Infiltrating immune cells are an integral compo-
nent of the tumor microenvironment and are 
reported to play key roles in invasion and 
metastasis of cancer and related drug resis-
tance. To determine cell-mediated immunity in 
COAD, we applied four different algorithms to 
quantify cell fractions from gene expression 
profiles based on our prognosis model. The 
heatmap of immune responses based on 
CIBERSORT, MCP counter, ssGSEA, and TIMER 
algorithms is shown in Figure 4. Based on the 
enrichment scores of the more than 16 types  
of immune cells, we found that both adaptive 
and innate immune responses were significant-
ly different between COAD patients from the 
two different risk groups.

Confirmation of independent prognostic value 
of the risk model

We studied the correlation between risk score 
and other potential confounding factors (clini-
copathologic features, such as age, gender, 
and various pathologic staging metrics) to eval-
uate the prognostic power of our model. The 
univariate Cox regression analysis proved that 
the risk score could independently predict the 
survival of COAD patients (HR = 3.89, 95% CI: 
2.76-5.5), like other tumor staging factors. 
Additional multivariate Cox analysis confirmed 
that the risk score was an independent prog-
nostic factor affecting survival in the TCGA 
cohort of COAD patients (HR = 3.23, 95% CI: 
2.17-4.8) (Figure 5A). Altogether, our data 
revealed that prognosis was significantly relat-
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Figure 3. Validation of the risk score model. (A) Scatter plot showing the distribution of the risk scores (top) and 
recurrence free survival time (bottom) of patients in the TCGA cohort. The cut-off value for low and high-risk group 
classification was indicated by the dash lines. (B, D) Kaplan-Meier analysis of overall survival of patients in the TCGA 
(B) and GSE39582 (D) cohort stratified by high or low risk scores. (C) Time-ROC curve analysis of the 13-gene sig-
nature in the TCGA dataset in 1, 3, 5-year. (E) Circular visualization of chromosomal positions of the 13 predictive 
DEGs. (F, G) Heatmap showing the expression of the 13 gene features or 33 pyroptosis genes associated with the 
clinicopathologic factors ranked by their risk score in the TCGA cohort.

ed to cancer stage, including pathologic M (P < 
0.001), pathologic N (P < 0.001), and risk score 
(P < 0.001) derived from our prognostic model.

Somatic mutations intensely contribute to can-
cer development and generation of novel tumor 
epitopes. Given that fact that mutational bur-
den could be an explanation for clinical out-
come, such as overall survival, we performed 
somatic mutation analysis on the COAD pati- 
ents stratified by risk score computed by our 
prognosis model. Distinct mutation patterns 
were observed in the samples from both groups 
(Figure 5B). For the high-risk group, the top 5 
mutated genes were: APC, TP53, TTN, KRAS 
and SYNE1. However, the most frequently 
altered genome regions for low risk group were 
APC, TTN, TP52, KRAS and MUC16. The total 
tumor mutation burden was significantly differ-
ent between the two groups (Figure 5C).

Functional analysis based on the risk model

To further explore the molecular functions of 
the selected gene signature in disease progres-
sion, GSEA and GoTerm analysis was conduct-
ed to identify the signaling pathways associat-
ed with the survival rate. Among all the gene 
sets we tested in MSigDB database, the most 
significant enriched pathways (|NES| > 1, NOM 
P-value < 0.05 and FDR < 0.05) were associat-
ed with various types of immune response 
(Figure 6). The top hits were toll like receptor, 
Rig I like receptor, NK cell mediated cytotoxici-
ty, T cell mediated immunity, and regulation  
of immune effector response. Most of these 
pathways are associated with various types  
of immune response. In addition, pathways 
involved in colorectal cancer were also signifi-
cantly enriched in this analysis. Taken together, 
our discovery suggests that apyroptosis-relat-
ed prognostic signature is involved in regulating 
immune and tumor biogenesis pathways.

Prediction of chemotherapy response based 
on the risk model

Nowadays chemotherapy is still the frontline 
treatment for various cancer types. To explore 

the response of COAD patients with different 
risk scores, we predicted the IC50 of nine most 
frequently used chemo drugs in clinical prac-
tice for every included patient from the TCGA 
cohort. As a result, a total of 6 drugs demon-
strated significantly lower IC50 in the low-risk 
group, indicating these patients were more  
sensitive to these chemotherapies and could 
respond better compared to the high-risk group 
(Figure 7).

Discussion

Pyroptosis is a newly-appreciated type of  
programmed cell death, morphologically and 
mechanistically distinct from apoptosis or 
necrosis. It features the involvement of 
Caspas-1 and the downstream response of 
rapid plasma-membrane rupture and release  
of proinflammatory intracellular contents [22, 
23]. Although initially thought to be associat- 
ed with inflammatory diseases, emerging evi-
dence have revealed a complex relationship 
between pyroptosis and cancer. Pyroptosis 
induces inflammation-mediated cell death in 
malignant cells, resulting in inhibitory of cancer 
growth and migration. Scientists reported  
the abnormal expression of some pyroptotic 
inflammasomes found in tumor cells. For 
instance, Gao et al recently revealed that  
downregulation of GSDMD attenuates tumor 
proliferation through impaired EGFR/Akt sig- 
naling and is a promising estimator of progno-
sis in non-small cell lung cancer [24]. Moreover, 
pyroptosis provides a novel direction for alter-
native cancer therapy as it participates in the 
pathogenesis of tumor [25]. Despite the large 
number of studies on the molecular regulators 
and underlying mechanism of pyroptosis in 
cancer development, the clinical significance of 
pyroptosis for disease prognosis remained 
unclear.

In this study, we focused on the prognostic 
value of pyroptosis in colorectal carcinoma, 
which is the third most prevalent cancer around 
the globe. In contrast to breast cancer, which is 
frequently diagnosed at an early stage and is 



Pyroptosis-related prognosis in colorectal cancer

176	 Int J Clin Exp Pathol 2022;15(4):168-182

Figure 4. Correlation between immune responses and risk score. Heatmap showing the comparison of immune 
responses based on CIBERSORT, MCPcounter, ssGSEA, and TIMER algorithms among high and low risk groups, rep-
resented by expression-based interrogation of the tumor immune infiltrates. *P < 0.05; **P < 0.01; ***P < 0.001.
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Figure 5. Correlation between the risk score, clinical chrematistics, and mutation burden. A. Uni-and multivariate Cox regression analysis for the prediction of overall 
survival in COAD patients. B. Oncoplots showing the top 30 genes with most frequent mutations in the high (top) and low (bottom) risk groups in the TCGA cohort. 
Each column represents a patient and its frequency of mutations (the top barplot). Each row represents a gene and the corresponding frequency of mutations (right 
barplot). C. Violin plot showing the comparison of tumor mutation burdens between high and low risk groups.



Pyroptosis-related prognosis in colorectal cancer

179	 Int J Clin Exp Pathol 2022;15(4):168-182

Figure 6. Enriched pathways in high risk COAD patients defined from the risk score model. A. Top enriched GO pathways. B. Top enriched KEGG pathways revealed 
by GO analysis.
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Figure 7. Significant differences between estimated IC50 for chemo drugs between high risk and low risk patients. 
Box plots showing the estimated IC50 from 9 first line chemo therapeutics drugs in COAD patients stratified by low 
and high risk scores.

widely treated by conservative surgery, COAD 
has a high incidence of metastasis. Here, a 
LASSO Cox regression model was used to 
select the relevant DEGs identified from TCGA 
patients for COAD prognosis. The resultant risk 
score model contained 13 pyroptosis-related 
DEGs. We utilized the previously reported 37 
pyroptosis genes and identified DEGs based  
on pyroptosis status. Subsequently, the LASSO 
method was applied for feature selection and 
to establish the prognostic model. The effec-
tiveness and robustness of the model was  
validated by an additional dataset GSE39582, 
where the prognostic power of the model was 
up to 0.804 for 5-year survival. On the other 

hand, to determine the correlation between the 
risk model and the clinical outcome, we con-
ducted multivariate Cox analysis and found 
that there were significant differences in N 
stage, T stage, and grade between the risk 
groups. Thus, our risk score was significantly 
associated with prognosis.

Tumor mutational burden has been implicated 
as a predictive marker for cancer prognosis 
and drug resistance. By conducting the somatic 
mutation analysis, we showed that an elevated 
risk score was linked with a greater mutation 
rate of oncogenes, including TP53 and KRAS, 
consistent with the previous reports on both 
colon cancer and other cancer types [26, 27].
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Additionally, to gain functional insights of the 
pyroptosis-related gene signatures, GSEA anal-
ysis was performed and signaling pathways 
involved in immune responses and colorectal 
cancer were enriched by multiple categories, 
such as NK cell mediated cytotoxicity, and T  
cell mediated immunity. Actually, a significant 
alteration in immune response has been dis-
covered in patients with colorectal cancer [28]. 
CRC patients maintained decreased level of 
total Th1 CD4+ cells, accompanied by reduced 
cytokine production. In contrast, the Th2 lym-
phocyte population was not affected, and in 
some patients the cells numbers even slighted 
elevated [29, 30]. It is known that this kind of 
immune suppression starts gradually at both a 
molecular and cellular level [31, 32]. As the dis-
ease progresses, the tumor immune tolerance 
eventually spreads to the whole organism. 
Likewise, studies have shown that natural killer 
(NK) cells provide immune surveillance of  
cancer [33]. One study has shown that EGFR 
inhibitors can enhance the susceptibility to  
NK cell-mediated lysis of colon cancer cells 
through suppressing of the protein kinase C 
pathway [34].

Taken together, we have established a risk 
model for COAD prognosis, based on 13 pyrop-
tosis-related genes. Our model has proven 
accurate and robust in predicting the overall 
survival of COAD patients, independently from 
the TNM staging system. Moreover, functional 
analysis identified potential molecular targets 
and plausible drug responses in COAD treat-
ment. Hence, our study provides insights into 
prognosis and disease management of COAD 
patients.
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