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Abstract: Objective: We searched for a predictive biomarker that also predicts whether patients would benefit from 
immune checkpoint blockade (ICB) treatment from a few angles, because existing biomarkers no longer wholly 
replicate the interconnections of distinctive elements in the tumor microenvironment (TME). Methods: We identified 
55 pivotal IRGs by performing a WGCNA and univariate Cox regression analysis on a lung adenocarcinoma dataset 
from the TCGA database. The IRGPI model was then constructed using multivariate Cox regression analysis, which 
identified 16 genes and verified the use of the GSE68465 database. The AUC of the IRGPI was compared to those 
of the current biomarkers to determine its predictive potential. Then we examined the molecular and immunological 
properties of ICB and assessed its effectiveness using CTLA4 expression and TIDE. Results: Patients with a high IR-
GPI had a later clinical stage, more severe symptoms, and a worse prognosis. Patients with a low IRGPI had a higher 
immune escape potential and were less responsive to immunotherapy. Conclusion: The IRGPI may be a biomarker 
for determining the prognosis of patients and whether they respond favorably to ICB therapy.
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Introduction

One leading cause of mortality from lung can-
cer is lung adenocarcinoma (LUAD), with great-
er than 1 million deaths worldwide each year 
[1]. According to current clinical guidelines, 
Low-Dose spiral Computed Tomography (LDCT) 
is recommended for lung cancer screening in 
high-risk populations. With the popularization 
of LDCT, a growing range of patients with LUAD 
have been identified early and have undergone 
complete resection, which has improved the 
prognosis. The gold standard for the diagnosis 
of lung adenocarcinoma is pathologic testing by 
obtaining a biopsy or cytologic examination [2]. 
In clinical work, lung adenocarcinoma can be 
diagnosed by morphologic features under a 
light microscope [3, 5]. 

Current clinical treatments for LUAD include 
surgery, chemotherapy, radiotherapy, immuno-
therapy, and molecularly-targeted agents. The 

higher the clinical stage of the patients, the 
worse the prognosis and survival rate. The 
5-year survival rate for patients with stage IA is 
as high as 95%, while the survival rate for those 
with stage III-IV lung adenocarcinoma typically 
falls below 40%.

In addition to traditional radiotherapy and che-
motherapy, the use of immune checkpoint 
inhibitors (ICIs) and molecular targeted treat-
ment has also dramatically improved the prog-
nosis of patients with advanced and metastatic 
LUAD [4, 6]. However, because of treatment 
resistance, tumor heterogeneity, and metasta-
sis, the prognosis of LUAD patients still should 
be improved [7]. Investigating biomarkers for 
immunotherapy and optimizing combination 
therapy are urgently needed to provide a better 
prognosis for patients with LUAD in the future.

An emerging anticancer treatment called 
immune checkpoint blockade (ICB) therapy 
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boosts the antitumor immune response by 
using T-cell regulatory pathways. ICB particu-
larly targets and destroys inhibitory pathways 
that obstruct efficient antitumor T-cell respons-
es, as opposed to stimulating the immune sys-
tem to assault targets on tumor cells [8, 10]. 
ICB therapy has been proven to improve the 
prognosis of sufferers from a range of tumor 
types [11]. Although ICB therapy has extensive 
scientific efficacy, its efficacy varies from 
patient to patient, especially in patients with 
LUAD [12]. However, the interactions of various 
elements in the tumor microenvironment and 
the response of malignancies to immunothera-
py from a single viewpoint, including expression 
of ligand or gene mutation, may only be partial-
ly represented by current biomarkers, such as 
PD-L1, CTLA4, and tumor mutational burden 
(TMB).

An immune-associated gene prognosis index 
was developed based on our research into 
genes connected to the immune-related gene 
prognostic index (IRGPI). In regard to accurately 
forecasting the effectiveness and prognosis of 
ICB patients, the established model is signifi-
cantly above the other models now in use. In 
addition, we noticed that the clinical character-
istics, immunophenotype, and immunological 
characteristics of the various IRGPI subgroups 
were significantly different from one another, 
which conferred an ability of IRGPI to differenti-
ate between symptoms that are associated 
with LUAD patients.

Materials and methods

Data acquisition and design of experiment 

The TCGA database (https://portal.gdc.cancer.
gov/) was used to retrieve the gene sequenc- 
ing information of 598 LUAD patients (539 = 
tumor; 59 = normal) and clinical data of 522 
LUAD patients. Then, we retrieved the gene 
expression and survival data of 443 LUAD  
samples (GEO: GSE68465) by using the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/). 
Inclusion criteria were: (1) patients whose lung 
adenocarcinoma was determined based on 
biopsy; (2) tissue samples with complete gene 
expression data; (3) patients with complete 
clinical information, including gender, age, clini-
cal stage, TNM stage, survival time, survival 
status and other relevant details for follow-up 
research. The exclusion criteria were as follows: 

(1) patients with missing or unknown clinical 
information; (2) patients with a history of other 
malignant tumors; (3) patients with serious 
comorbidities such as organ failure or im- 
mune diseases. Both the ImmPort database 
(https://www.immport.org/home/) and the In- 
nateDB database (https://www.innatedb.ca/) 
were accessed to obtain a list of immune-relat-
ed genes. The TCGA tumor samples were sepa-
rated into 6 different immune subtypes after 
being classified according to the 5 immune 
expression features [13].

First, we used differential analysis and wei- 
ghted gene co-expression network analysis 
(WGCNA) to search for hub IRGs that are asso-
ciated with LUAD. This allowed us to narrow 
down the number of potential candidate genes. 
In the next step, we used univariate and multi-
variate Cox proportional hazards models to  
create and analyze the prognostic model for 
IRGPI. The tumor samples were divided into 
high-risk and low-risk subgroups using the 
median IRGPI as the threshold, and the molec-
ular and immunological characteristics of the 
two categories were examined. Finally, we mod-
eled the effectiveness of immune checkpoint 
inhibitors by employing CTLA4 expression, 
TMB, and tumor immune dysfunction and exclu-
sion (TIDE).

Selection of immune-related hub genes

The genes in the LUAD samples obtained  
from TCGA were evaluated for differential 
expression using the Limma package, and the 
differentially expressed genes (DEGs, logFC>1 
and FDR<0.05) were then retrieved. The 
acquired DEGs were intersected with the list of 
immune-related genes (IRGs), and the DEGs 
were analyzed by means of GO and KEGG 
enrichment analyses using the ClusterProfiler 
package.

The WGCNA package was used to perform the 
co-expression analysis of the DEGs. Then, the 
most effective soft-threshold (β = 4) was 
received with the aid of univariate linear regres-
sion. According to the appropriate soft-thresh-
old, the degree of correlation that exists 
between two genes was determined. Finally, 
the minimum number of genes that must be 
present in each module was set to 25 so that 
clustering could be performed successfully. We 
constructed a full set of 4 modules, and we 
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obtained the connection between each module 
and clinical characteristics. The light green 
module had the largest p-value, and a co-
expression network was constructed.

An analysis of 270 genes in the light green 
module using univariate Cox regression 
revealed that the overall survival of LUAD 
patients and 55 hub genes were statistically 
significantly correlated (P<0.05). With the 
survminer package, a calculation was made to 
determine the optimal cutoff value for each 
gene’s expression. The patients were divided 
into two clusters, one with low expression and 
one with high expression, depending on the 
cutoff value. The Kaplan-Meier (K-M) techni- 
que was used to draw survival curves, and the 
corresponding p-values were obtained. The 
Maftools package was used to perform the cal-
culation, after which the mutation data of 55 
immune-related prognostic genes in these 
LUAD patients were analyzed.

Construction of lung adenocarcinoma im-
mune-related gene prognostic index (IRGPI) 
model

A multivariate Cox regression analysis was per-
formed on the 55 genes that were found. 16 
genes had a significant relationships with prog-
nosis. The Cox proportional hazards model 
known as IRGPI is generated by multiplying the 
expression levels of a group of genes with the 
assistance of coefficients that are associated 
with those levels. The K-M approach was used 
to conduct a survival study on the TCGA and 
GEO cohorts to validate the utility of the IRGPI 
in determining the likely outcome of treatment 
for LUAD patients. Finally, univariate and multi-
variate Cox regression analyses of the IRGPI 
and common clinical prognostic indicators were 
carried out with the intention of conducting fur-
ther testing of the independent prognostic 
capacity of the IRGPI. In this study, clinical prog-
nostic indicators such as gender, age, TNM 
stage, and clinical stage were taken into 
account.

Gene set enrichment analysis (GSEA) and 
tumor mutational burden (TMB)

First, we employed the Limma package for dif-
ferential expression evaluation of the clusters 
to attain their DEGs to create the various signal-
ing pathways that are characteristic of the two 

clusters. Subsequently, the GO and KEGG  
gene units were retrieved from the MSigDB 
database (http://www.gsea-msigdb.org/), and 
we carried out GSEA enrichment analysis us- 
ing the ClusterProfiler package. The Maftools 
program was then used to conduct an analysis 
of the single nucleotide mutation statistics of 
LUAD patients. This was done to obtain the 
gene mutation facts of these two clusters. To 
investigate the variations in CTLA4 expression 
and TMB that exist between the two groups, 
the Limma package was used.

Tumor microenvironment (TME)

Twenty-two distinct immune cells were evaluat-
ed for invasion using the CIBERSORT algorithm. 
The IRGPI TME landscape was obtained using 
this information. After that, we analyzed the 
percentages of 22 distinct immune cells 
between the two IRGPI clusters by using the 
Limma package, and we showed the K-M sur-
vival curves to identify which cells had an 
impact on prognosis.

Clinical correlation analysis

The chi-square test was used to investigate the 
spread of immunologic subtypes and clinical 
phases among the two clusters. The goal of this 
investigation was to obtain an understanding of 
the link between immunity and clinical categori-
zation technique.

Prognostic capacity and immunotherapy re-
sponse of IRGPI

We determined the TIDE score of the TCGA 
samples to forecast the effectiveness of im- 
munotherapy as a treatment in various IRGPI 
subgroups (http://tide.dfci.harvard.edu/). The 
area under the curve (AUC) for the variables 
IRGPI, TIDE, and tumor inflammatory features 
(TIS) was calculated using the timeROC pack-
age. This was carried out to verify the depend-
ability of IRGPI as a predictive biomarker. 
Evidence for IRGPI as an excellent model was 
obtained.

Statistical analysis

R software (version 4.1.2) and associated R 
packages were used in the generation of each 
graph and statistical analysis. We carried out 
enrichment analyses for GO, KEGG, and GSEA 
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using the ClusterProfiler package. The timeROC 
software package was used in the calculation 
of the ROC curves and the AUCs. Chi-square 
analysis was used to determine whether the 
differences between the two IRGPI categories 
were significant. The variables connected to 
prognosis were identified using a Cox regres-
sion model. A p-value <0.05 was considered 
significant.

Results

Immune-related hub genes in LUAD

Between the 59 normal samples and the 539 
tumor samples, 8,275 DEGs were recorded in 
total. They showed a down-regulation of 1,812 
genes and an up-regulation of 6,463 genes 
(Figure 1A). We performed a genome-wide 
search for immune genes using InnateDB and 
ImmPort and compared them to the DEGs that 
were generated. In total, 678 immune-related 
DEGs were identified, with 429 showing up- 
regulation and 249 showing down-regulation 
(Figure 1B). GSEA analysis of the DEGs reveal- 
ed that 678 of them were significantly linked to 
1,754 GO keywords and 67 KEGG pathways. 
The top 8 GO elements and KEGG pathways  
are shown in Figure 1C and 1D. There were sev-
eral different immune responses enriched in 
DEGs. We discovered that DEGs could mediate 
the body’s immunologic response and comple-
ment activation based on the above analysis. 
Several of the DEGs were abundant in cytokine 
signaling, chemokine signaling, and comple-
ment pathways, according to KEGG pathway 
analysis. As a result, we concluded that the 
examined genes are linked to immunity.

We utilized WGCNA to find hub genes from 
immune-related DEGs. First, using a 20,000- 
sample upper limit, we identified outliers in the 
cluster and removed 1 sample. The optimal 
soft threshold was discovered to be 4 (Figure 
2A). 4 modules in total, including the gray  
module, were produced (Figure 2B, 2C). We 
selected the light green module, which was 
most strongly associated with LUAD for analy-
sis based on the p-value. The light green mod-
ule has 270 genes. The co-expression net- 
work of the light green module showed 19 
genes and 24 edges when we adjusted the 
threshold weight to be larger than 0.30 among 
them (Figure 2D). The 270 genes found in the 
light green module were analyzed using univari-

ate Cox regression, and the results showed that 
55 hub IRGs were significantly connected with 
the prognosis of LUAD patients (Figure 4A). 
After that, a K-M survival analysis was per-
formed to validate the prognostic significance 
of the hub genes, and survival curves were 
shown for the 12 genes that had the highest 
and lowest levels of prognostic risk (Figure 3).

We then analyzed the mutation profiles of the 
55 key IRGs. Missense mutations were present 
in most genes, whereas some exhibited non-
sense mutations, multiple hits, or splice site 
mutations (Figure 4B). PRKDC, C7, and SEM- 
A3A all had mutation rates that were higher 
than 4%.

Equation and subgroup analysis of the IRGPI

We carried out a multivariate Cox regression 
analysis on the 55 IRGs to locate genes with 
independent prognostic value. Sixteen genes 
were strongly connected to prognosis (DUOX1, 
IL7R, PTX3, BIRC5, AGER, PDGFB, ANGPTL4, 
TNFRSF11A, SHC3, OAS3, CFTR, HSPD1, PLK1, 
C7, C6, and PRKCE). Then, we built a model 
based on the prognostic indices of these IRGs 
using the Cox proportional hazards model. The 
formula is as follows: DUOX1 * 0.14 + IL7R * 
(-0.30) + PTX3 * 0.34 + BIRC5 * (-0.29) + AGER 
* (-0.11) + PDGFB * 0.29 + ANGPTL4 * 0.14 + 
TNFRSF11A * 0.32 + SHC3 * (-0.18) + OAS3 * 
0.19 + CFTR * (-0.15) + HS PD1 * 0.28 + PLK1 
* 0.30 + C7 * 0.15 + C6 * (-0.22) + PRKCE * 
(-0.59).

According to a univariate Cox regression study, 
IRGPI, clinical stage, and TNM stage were all 
significantly connected with patient prognosis 
(Figure 5A, 5B). Multivariate Cox regression 
analysis further confirmed the above conclu-
sions. Thus, we concluded that the IRGPI is an 
independent prognostic factor. Next, we calcu-
lated the IRGPI for LUAD samples and used the 
median value as the cutoff level to divide them 
into high-risk and low-risk subgroups. The low-
risk group had higher rates of overall survival 
across the board in both datasets (P<0.01, 
Figure 5C, 5D).

Molecular characteristics of the IRGPI clusters

The pathways enriched in each of the two IRGPI 
subgroups were first determined using GSEA  
on the two subgroups. The cell cycle, DNA repli-
cation, oocyte meiosis, proteasome, and spli-
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ceosome were primarily enriched in the high-
risk group (Figure 6A), suggesting that these 
pathways may be linked to the formation and 
progression of tumors. Allograft rejection, the 
hematopoietic stem-cell system, the gut 
immune network for IgA production, and sys-
temic lupus erythematosus were the major 
pathways enriched in the low-risk group (Figure 
6B). The low-risk group had more immune-relat-
ed gene sets, indicating a stronger immunologi-
cal microenvironment.

Next, we analyzed the mutated genes in the 
two subgroups. We identified the 20 most fre-
quently mutated genes and then analyzed the 
mutation data of the two subgroups, revealing 
the prevalence of mutations in both subgroups 
(Figure 6C, 6D). In all groups, we discovered 
that missense gene mutations were more prev-
alent than multiple mutations. Among the two 
groups, the mutation rates for KRAS, USH2A, 
ZFHX4, LRP1B, RYR2, CSMD3, MUC16, TTN, 
and TP53 were all greater than 20%. The high-
risk group had significantly higher frequencies 
of TP53 and TTN mutations in comparison to 
the low-risk group.

Furthermore, we investigated the impact of 
immune checkpoint inhibitor therapy by exam-

ining the connections between the IRGPI score, 
CTLA4 expression level, and TMB. The expres-
sion of CTLA4 was inversely linked to the IRGPI 
score (P = 0.0011) and was less present in the 
low-risk group (P = 0.044) (Figure 7A, 7B). The 
TMB was, however, much more prevalent in the 
high-risk group (P = 6.2e-07) (Figure 7C). This 
suggests that ICI therapy may be beneficial for 
both IRGPI subgroups.

Tumor immune characteristics

We simulated the tumor immune microen- 
vironment by examining the infiltration of 22 
immune cell types using the CIBERSORT meth-
od (Figure 8A). Similarly, we divided the sam-
ples into high/low subgroups. Using the Limma 
package, we compared immune cells in the  
two subgroups (Figure 8B). According to the 
findings, the low-risk group showed a high dis-
tribution of resting memory CD4 T cells, resting 
dendritic cells, resting mast cells, and resting 
monocytes, while the high-risk group showed a 
high distribution of activated memory CD4 T 
cells and M0 macrophages. A higher propor- 
tion of activated memory CD4 T cells and M0 
macrophages was associated with a poor prog-
nosis in LUAD patients (P<0.05), and these 
immune cells were widely distributed in the 

Figure 1. Differential expression analysis in LUAD patients. A. Heat map showing all DEGs between 539 tumor 
samples (red) and 59 normal samples (blue). B. Heat map showing 678 immune-related DEGs between 539 tumor 
samples (red) and 59 normal samples (blue). C. GO enrichment analysis of IRGs. D. KEGG pathway analysis of IRGs.
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Figure 2. Identification of hub genes in IRGs. A. The horizontal line in the figure indicates a threshold power of 0.90; The optimal soft threshold (power value) was 
4. B. Distribution of genes in dendrogram. C. Three non-grey modules were obtained by WGCNA. D. Gene networks in light green modules (threshold weight >0.3).
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high-risk group. This association was revealed 
by K-M survival analysis with significant differ-
ences in distribution between the two sub-

groups (Figure 9). Because of this, a higher per-
centage of resting CD4 memory T cells and 
resting mast cells was linked to a better prog-

Figure 3. Survival curves for the 12 IRGs with the highest and lowest prognostic risk.
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Figure 4. A. Univariate COX analysis of 55 immune-related hub genes (green represents protective factors; yellow represents risk factors). B. Mutations of 55 key 
IRGs in 539 lung adenocarcinoma samples.
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Figure 5. A. Univariate Cox regression analysis showed that IRGPI, clinical Stage (Stage), T stage, and lymph node (N) stage were significantly associated with the 
prognosis of patients with lung adenocarcinoma. B. Multivariate Cox regression analysis showed that IRGPI and clinical stage were significantly associated with 
the prognosis of patients with lung adenocarcinoma. C. K-M survival curves of different IRGPI subgroups in TCGA cohort. D. K-M survival curves of different IRGPI 
subgroups in the GEO (GSE68465) cohort.
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Figure 6. Molecular characteristics of the 2 IRGPI subgroups. A. Main enriched gene sets in IRGPI low-risk group. B. Main enriched gene sets in the IRGPI high-risk 
group. C. Waterfall plot showing the mutation status of the IRGPI low risk group. The mutated genes were ordered by the number of mutations in the whole sample, 
showing the top 20 genes. The color represents the type of mutation. D. Waterfall plot showing the mutation status of the IRGPI high-risk group.
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nosis in LUAD patients (P<0.01), and these 
immune cells were prevalent in the low-risk 
group.

The functional immunological pathways in the 
high/low-risk groups were then examined. 
T-cell stimulation, tumor infiltrating lympho-
cytes (TIL), activated dendritic cells (aDCs), B 
cells, CD8+ T cells, checkpoint, cytolytic activi-
ty, dendritic cells (DCs), human leukocyte anti-
gens (HLA), immature dendritic cells (iDCs), 
mast cells, neutrophils, T helper cells, and type 
II IFN response were less significant in the  
high-risk group (Figure 8C). However, there  
was a strong relationship between this group 
and major histocompatibility complex (MHC) 
class I molecules. Following survival analyses 
(Figure 10), high abundances of aDCs, B cells, 
CD8+ T cells, checkpoints, cytolytic activity, 
DCs, HLA, iDCs, mast cells, T helper cells, T-cell 

costimulation, TILs, and type II IFN response 
were linked to a better prognosis in LUAD 
patients in addition to increased proportions of 
MHC class I molecules being significantly con-
nected with a poor prognosis. The prognostic 
significance of the IRGPI is thus linked to sev-
eral functional immune pathway enrichments.

Correlation analysis of IRGPI with clinical fea-
tures, clinical stage, and immune stage

We noticed significant variations in gender, clin-
ical stage (Stage), and TNM stage between the 
high/low risk IRGPI subgroups (Figure 11A). 
With the highest percentage of stage I patients 
in both groups, we subsequently examined the 
difference in clinical stage between them, as 
shown in Figure 11B. However, the proportions 
of stage II, III, and IV patients in the high-risk 
group were considerably higher, whereas the 

Figure 7. A. Differential expression of CTLA4 between the two subgroups of IRGPI. B. IRGPI score was negatively 
correlated with CTLA4 expression. C. Differential expression of tumor mutational burden (TMB) between the two 
subgroups of IRGPI.
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Figure 8. The tumor microenvironment landscape of lung adenocarcinoma patients and the immune characteristics of IRGPI subgroups. A. Relative percentages 
of 22 immune cells in the TCGA cohort of the 2 IRGPI subgroups. B. Different proportions of tumor microenvironment cells in the two IRGPI subgroups. The scatter 
points represent the immune cell components of the two IRGPI subgroups. The thick line represents the median value. The bottom and top of the box are 25% and 
75%, respectively. “*” indicates that the difference between the two groups is statistically significant (***, P<0.001; **, P<0.01; *, P<0.05). C. There were signifi-
cant differences in immune-related function scores between the two groups (***, P<0.001; **, P<0.01; *, P<0.05).
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proportion of stage I patients was significantly 
lower than that in the low-risk group (P = 0.01). 
Patients in the high-risk group of the IRGPI had 
a later clinical stage, more severe disease, and 
a worse prognosis as a result.

Then, based on their immunological features, 
tumor samples were classified into the C1 
(wound healing), C2 (IFN-γ dominated), C3 
(inflammation), C4 (lymphocyte depletion), C5 
(immune silence), and C6 (TGF-dominated)  
subtypes. There were appreciable changes  
in the distribution of immunologic subtypes 
(Figure 11C, P = 0.01). The C1 and C2 made up 
a higher share of the IRGPI’s high-risk sub-
group, whereas the C3 made up a larger por-
tion of the IRGPI’s low-risk subgroup.

Therapeutic efficacy prediction of immune 
checkpoint inhibitors (ICIs) and model com-
parison

TIDE is based on a thorough analysis of the 
tumor expression profile to predict the efficacy 

of ICB therapy [14]. We discovered that the 
T-cell dysfunction scores in the high-risk IRGPI 
group were lower than those in the other gro- 
ups (P<0.001), indicating that the low-risk 
group may have deficient T-cell-mediated 
immune processes. This finding is depicted in 
Figure 12A. The T-cell rejection scores, howev-
er, were greater in high-risk patients (P<0.001), 
revealing that these tumor cells were better 
defended from immune attack. Finally, the low-
risk group appeared to show a greater ability  
for immunological escape and to be less sus-
ceptible to immunotherapy, as indicated by 
their higher TIDE scores. It could be concluded 
that high-risk patients responded better to 
immunotherapy.

According to the ROC curves, we discovered 
that the AUC>0.70 at the 1-, 2-, and 3-year 
(Figure 12B). As a result, the IRGPI can be 
employed as a crucial indicator to forecast 
patients’ prognoses. We discovered that the 
AUC of the IRGPI was superior to that of the 
standard TIS and TIDE models, indicating that 

Figure 9. K-M survival curves of immune cells (activated CD4 memory T cells, macrophages, resting CD4 memory T 
cells, and resting mast cells) were significantly differentially distributed in the two subgroups of IRGPI.
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the IRGPI has stronger predictive value than 
these traditional biomarkers.

Discussion

The prognosis of patients with LUAD and other 
malignancies can currently be greatly improv- 
ed by ICIs [12-15]. Immunotherapy’s effective-
ness does, however, change depending on the 
patient and the type of malignant tumor [16, 
17]. For this reason, investigating which people 
can benefit from immunotherapy is essential. 
The prognosis of patients with renal clear cell 
carcinoma could be predicted by a class of bio-
markers based on IRGs, according to previous 
research [18-20]. There have been few studies 
on LUAD, and there is no IRGPI model for LUAD 
that can predict patients’ long-term prognoses 
and the effectiveness of immunotherapy. Thus, 
a biomarker model based on several IRGs is 
required to direct therapy strategies.

By using WGCNA and survival analysis, we iden-
tified 55 IRGs and built the IRGPI based on 16 
genes. People who score high on the IRGPI 
have a poor prognosis, whereas patients who 
score low do well. As a result, the IRGPI can be 
employed as an immune-related biomarker to 
predict the prognosis of patients with LUAD.

Compared to traditional tumor markers, IRGPI 
can reflect the prognosis of tumor more com-
prehensively, from multiple angles and multiple 
factors. The IRGPI is composed of 16 IRGs: 
DUOX1, IL7R, PTX3, BIRC5, AGER, PDGFB, 
ANGPTL4, TNFRSF11A, SHC3, OAS3, CFTR, 
HSPD1, PLK1, C7, C6 and PRKCE. The protein 
encoded by ILR7 is the receptor for interleu-
kin-7. High expression of IL-7 and IL7R in LUAD 
patients is positively correlated with lymph 

node metastasis and poor survival [21, 22]. 
IL-7 stimulates the proliferation of tumor cells 
by upregulating cyclin D1 [23]. In the tumor tis-
sues of patients with lung cancer, there is a 
positive association between the expression of 
IL7R and cyclin D1, and the latter is linked to a 
poor prognosis. The extrinsic suppressor gene 
PTX3 controls complement dependent, macro-
phage-persistent, and tumor-promoting inflam-
mation. It is a crucial part of the humoral  
makeup of innate immunity [24]. The IAP gene 
family, which includes the BIRC5 gene, produc-
es a negative regulatory protein that prevents 
apoptotic cell death. To control the interaction 
between mitosis, apoptosis, and autophagy in 
cancer cells, the BIRC5 gene can function as a 
bridging molecule [25]. The advanced glyca- 
tion end product (AGE) receptor, a cell surface 
receptor belonging to the immunoglobulin 
superfamily, is encoded by the AGER gene. The 
H1299 cells’ ability to proliferate, invade, and 
migrate was inhibited by AGER overexpression, 
which also increased cell apoptosis [26]. The 
PDGFB gene encodes a member of the platelet-
derived growth factor (PDGF) and vascular 
endothelial growth factor (VEGF) protein fami-
lies. Increased quantities of circulating tumor 
cells, accelerated hypoxia and epithelial-mes-
enchymal transition in primary tumors, and 
increased tumor metastasis are all caused by 
PDGFB downregulation [27]. Increased colla-
gen homolog 3 (Shc3) expression has been 
linked to hepatocellular carcinoma invasion 
and metastasis [28]. OAS3 is involved in the 
coding of 2’, 5’-oligoadenylate synthase (OAS). 
In terms of the level of immune infiltration, the 
invasion of immunosuppressive cells is strongly 
linked to OAS3 expression [29]. Mitochondrial 
proteins encoded by HSPD1 may act as signal-

Figure 10. K-M survival curves 
of immune-related functional 
pathways were significantly dif-
ferentially distributed in the two 
subgroups of IRGPI.
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ing molecules in the innate immune system 
and lead to poor prognosis. HSPD1 knockout or 
destruction can induce a sharp collapse of oxi-
dative phosphorylation and inhibit the prolifera-
tion of tumor cells in vitro and in vivo [30]. PLK1 
is a key mitotic kinase that is overexpressed 
and drives cancer growth in various cancers, 
including NSCLC [31]. C6, C7 are important 
components of the membrane attack complex 
as part of the complement pathway of the 
innate immune system. In conclusion, IRGPI 
adequately reflects the proliferation, invasion, 
metastasis, and angiogenesis of lung adeno-
carcinoma tumor cells and the development of 
a variety of other tumors.

Somatic mutations are linked to the sensitivity 
of tumor cells. The response to antineopla- 
stic medications is significantly predicted by 
these mutations [32]. In the two subgroups, the 
IRGPI high-risk group had considerably higher 
TP53 and TTN mutation rates than the IRGPI 
low-risk group. The acquisition of resistance 
mutations to EGFR tyrosine kinase inhibitors 
may be mediated by tumors with TP53 muta-
tions since they have a higher TMB and may 
work in conjunction with other genomic pro-
cesses [33]. Furthermore, LUAD patients with 
TP53 missense mutations responded better  
to anti-PD-1/L1 immunotherapy than those 
with nonsense mutations, according to a study 
that found an association between TP53 mis-
sense mutations and elevated PD-L1 levels. 
Moreover, we discovered that missense muta-
tions dominated TP53 in both groups. Titan-
antisense RNA1 (TTN-AS1), a long noncoding 
RNA (lncRNA) that is produced on the TTN  
antisense strand, is increased in LUAD and 
binds to miR-142-5p. It indirectly upregulates 
the expression of cyclin-dependent kinase 5  
as competitive endogenous RNA (ceRNA) 
(CDK5). The proliferation, invasion, and migra-
tion of LUAD cells may all be greatly slowed by 
TTN-AS1 knockdown [34]. In the IRGPI high- 
risk category, TP53 and TTN may represent 
viable targets for immunotherapy and targeted 
treatment.

TMB is essential for ICI treatment as well as  
the prognosis. According to our research, the 

degree of immune cell infiltration between the 
two clusters differed significantly. The low-risk 
group had high concentrations of resting den-
dritic cells, mast cells, and monocytes, which 
are favorably linked with overall survival and 
progression-free survival in LUAD patients [35-
37]. These cells share the trait of being directly 
or indirectly involved in the antigen presenta-
tion procedure, which enhances prognosis. In 
the presence of significant infiltration, T cells 
exhibit antitumor effects and are favorably 
linked with prognosis. Whereas resting CD4 
memory T cells are more prevalent in normal 
tissues, active immune cells, such as activated 
CD4 memory T cells, are largely concentrated 
in tumor tissues [38]. These results are sup-
ported by our data, which also show how many 
different immune cells are present and how 
active they are in influencing the immunological 
response and clinical outcome. In future stud-
ies, the characteristics of the TMEs of the two 
IRGPI subgroups should be explored further.

We discovered that a poor prognosis was  
more likely in those with a high IRGPI. Signifi- 
cant variations in immunologic subtypes exist-
ed between the two groups as well. The C1  
subtype has a high rate of tumor growth and 
increased angiogenic gene expression. The C2 
subtype has a high incidence of tumor growth 
and participates in TCR diversity. The C3 sub-
type has a mild to moderate tumor growth rate 
and is distinguished by significant Th17 and 
Th1 cell infiltration, according to some research 
[13]. C3 has the best prognosis, but C2 and C1 
have a poor prognosis despite having signifi-
cant immunologic components. Moreover, sur-
vival studies in the TCGA and GEO cohorts, 
which aid in the prediction of the immunophe-
notype profile and the course of the illness in 
LUAD patients, confirmed this.

CTLA4 protein and TMB are two commonly 
used biomarkers, both of which are positively 
correlated with the effect of immunosuppres-
sive therapy [9, 39]. In our investigation, the 
high-risk group had considerably greater TMB 
levels and lower CTLA4 expression levels. As a 
result, we utilized TIDE analysis to forecast how 
well immunosuppressive medication would 

Figure 11. A. Analysis of clinical characteristics (age, gender, clinical stage, T, M, N) between the two subgroups 
(***, P<0.01; *, P<0.05). B. Heat map and table of differential distribution of immunophenotypes (C1, C2, C3, C4, 
and C6) in lung adenocarcinoma patients between the two IRGPI subgroups. C. Heat map and table of differential 
distribution of clinical stage (stage I, II, III, IV) in lung adenocarcinoma patients between the two IRGPI subgroups.
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Figure 12. Prognostic value of IRGPI and its response to therapy. A. TEDE, MSI, T cell rejection, and T cell dysfunction scores (ns, no statistical significance; ***, 
P<0.001). B. Time-dependent ROC analysis of IRGPI, TIS, and TEDER on overall survival at 1, 2, and 3 years of follow-up in the TCGA cohort.
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work. The low-risk group had a higher TIDE 
score than the high-risk group. Therefore, by 
comprehensive analysis, patients with high-risk 
of IRGPI had better efficacy of immunotherapy. 
The IRGPI is a potential biomarker for clinical 
use since it corrects the standard biomarkers’ 
unbalanced reflection of prognosis. We can 
thus conclude that the IRGPI model was a more 
accurate predictive prognostic indicator than 
the conventional TIS model and TIDE model.

Future therapeutic applications of the IRGPI 
can offer LUAD patients a wealth of informa-
tion, including prognosis prediction, a picture  
of the TME landscape, and the advantage of 
immunotherapy. This will aid in choosing the 
best course of treatment. Our follow-up 
research will focus on the fact that our study 
needs more real-world study verification and 
validate the model constructed in this study by 
immunohistochemistry.

Conclusions

The IRGPI is a promising biomarker for clinical 
practice that can guide clinical diagnosis and 
treatment plans. By utilizing important im- 
mune-related differential genes, the IRGPI 
overcomes the drawbacks of conventional bio-
markers and lessens the bias of prognostic 
models, making it a more accurate prognostic 
indicator. The relevance of this biomarker in 
enabling customized treatment plans is in- 
creased by the ability of the IRGPI to predict 
how LUAD patients would respond to ICI 
therapy.
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