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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a five-year survival rate of 
13%, the lowest among all malignant tumors. The work aims to use bioinformatics methods to mine Nerve-cancer 
crosstalk-related genes (NCCGs) in pancreatic cancer and evaluate their correlation with tumor stage and prog-
nosis, thereby providing a new direction of development and experimental basis for pancreatic cancer treatment. 
This study included 185 individuals with PDAC from the TCGA database, together with clinical and RNA sequencing 
data. A review of prior studies revealed the mechanism of neural-cancer crosstalk and identified 42 neural-cancer 
crosstalk-related genes (NCCGs). Multivariate logistic regression analysis showed that NGFR (OR=39.076, 95% CI; 
P<0.05), CHRNB2 (OR=41.076, 95% CI; P<0.05), and CHRNA10 (OR=39.038, 95% CI; P<0.05) were identified as 
independent risk factors for PNI development. Pearson correlation analysis revealed that CHRNA10 was negatively 
connected with PDAC microsatellite instability, whereas CHRNA10, CHRNB2, and NGFR were negatively correlated 
with PDAC tumor mutation burden. The GEPIA database revealed that CHRNB2 expression was higher in stage I 
PDAC. The pancreatic cancer single-cell dataset PAAD_CRA001160 revealed that malignant tumor cells, ductal 
cells, endothelial cells and fibroblasts accounted for a large proportion in the tumor microenvironment of pancreatic 
cancer. Furthermore, the NGFR gene was shown to be more significantly expressed in various pancreatic cancer 
cells. Bioinformatics analysis was used to create a validated prognostic model of pancreatic cancer, which explored 
the critical mechanisms of neural-tumor interactions and revealed the potential of cancer-neural crosstalk-related 
genes as prognostic biomarkers and anti-tumor therapy targets.
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Introduction

The incidence of Pancreatic ductal adenocar- 
cinoma continues to increase by 2021 [1]. 
Pancreatic ductal adenocarcinoma (PDAC) is 
the seventh leading cause of cancer-related 
deaths worldwide with 432,242 related deaths 
in 2018 [2]. Unlike other cancers, the incidence 
of PDAC is increasing by 0.5% to 1.0% per year, 
and it will be the second-leading cause of can-
cer-related mortality by 2030 [3]. Surgery, ra- 
diotherapy, chemotherapy and immunotherapy 
are the main methods for the treatment of 

PDAC, yet PDAC still needs an effective curative 
treatment [4]. Surgical resection is currently the 
only means to achieve long-term survival in 
patients with PDAC. Although only 15% to 20% 
of patients present with resectable disease, 
the increasing use of neoadjuvant therapies 
have broadened the pool of patients who are 
eligible for surgical resection. Unfortunately, 
the 5-year survival rate of PDAC is less than 
10% [5].

The diagnosis of PDAC cannot be made based 
on symptoms and signs alone. The tumor mark-
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er sialylated Lewisa blood group antigen CA19-
9 is frequently used in the workup for PDAC.  
In symptomatic patients, the sensitivity and 
specificity of CA19-9 range from 70% to 90%, 
making it inadequate as a diagnostic in this 
population. Because these markers are elevat- 
ed in only a subset of patients with PDAC, their 
utility in diagnosis is limited. CT is the first-line 
imaging modality for the initial evaluation of 
suspected PDAC and is preferred over MRI. The 
primary role of EUS is to guide needle biopsies 
to confirm the diagnosis of PDAC. In select 
cases, EUS may be helpful in detecting a small 
pancreatic mass that may be difficult to observe 
on CT or MRI and thus is the preferred imaging 
modality in some early detection surveillance 
programs.

Previous studies have shown that KRAS, NRG1, 
NTRK and other related genes play pivotal roles 
in the development of PDAC [6]. Therefore, it is 
important for us to focus on advances in relat-
ed genes and explore the molecular mecha-
nism of PDAC.

Nerves are an important part of the tumor 
microenvironment. Recent studies have shown 
the cancer-associated neurogenesis and nerve- 
cancer cross-talk. This highlights the impor-
tance of nerve-cancer cross-talk in tumor pro-
gression [7]. Nerves have been shown to infil-
trate the tumor microenvironment and actively 
stimulate cancer cell growth and dissemination 
[8]. Perineural invasion has an extremely poor 
prognosis for malignant tumors [9]. PNI is an 
important prognostic factor for PDAC [10].

Furthermore, new evidence suggests that can-
cers may reactivate nerve-dependent develop-
mental and regenerative processes to promote 
their growth and survival [11]. The prognostic 
value of cancer-nerve crosstalk-related genes 
(NCCGs) in PDAC has not been studied.

In this study, we used bioinformatics analysis  
to study the expression and prognostic value of 
NCCGs. The following data may provide evi-
dence for new biomarkers and therapeutic tar-
gets to guide clinical treatment and prolong 
survival time.

Materials and methods

Data and processing

We derived the RNA sequencing data and clini-
cal information of 185 PDAC patients from The 

Cancer Genome Atlas (TCGA) database and 
then downloaded them. RNA sequencing data 
and survival information of PDAC patients were 
derived from the Gene Expression Omnibus 
(GEO) database. Item selection: the data are 
classified as clinical and the data format is bcr, 
xml. Rstdio (4.2.0) was used for data process-
ing and analysis.

Identification of nerve-cancer cross-talk-relat-
ed genes

In a previous study, forty-two nerve-cancer 
crosstalk genes were identified, and these 
genes are displayed in Table 1 [12].

Research flow chart

Technical route: First, we need to download the 
original data of pancreatic cancer patients from 
TCGA. We found 42 tumor nerve-related genes. 
Three characteristic genes were found by lasso 
regression analysis. After grouping in turn, the 
KM survival curve was drawn to compare the 
differences in prognosis and survival. A formula 
and risk score can be obtained. Finally, the ROC 
analysis was verified by the GEO database.

Mutation analysis and protein-protein interac-
tion

The cBioPortal for Cancer Genomics (http://
cbioportal.org) provides a Web resource for 
exploring, visualizing, and analyzing multidi-
mensional cancer genomics data [11]. We 
implemented the mutation analysis by this. 
Protein-protein interactions (PPI) are particu-
larly important due to their versatility, specifici-
ty and adaptability. The STRING database aims 
to integrate all known and predicted associa-
tions between proteins, including both physical 
interactions and functional associations [13]. 
Our PPI analysis of 42 NCCGs was performed 
by STRING (https://string-db.org/).

Functional enrichment analysis

Previous studies investigated oncogenes ba- 
sed on GO terms and KEGG pathways. Some 
important GO terms and KEGG pathways were 
confirmed to be highly related to oncogenes 
[14]. Pathview can be easily combined with 
other tools for automated and efficient pathway 
analysis pipelines, such as Gene Ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis, which maps and 
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Table 1. Identification of NCCGs
Gene English full name
SEMA4F Semaphorin 4F
ADRB2 Adrenoceptor beta 2
ADRB3 Adrenoceptor beta 3
MAP2 Microtubule associated protein 2
NGFR Nerve growth factor receptor
NTRK1 Neurotrophic receptor tyrosine kinase 1
NTRK2 Neurotrophic receptor tyrosine kinase 2
NTRK3 Neurotrophic receptor tyrosine kinase 3
L1CAM L1 cell adhesion molecule
GDNF Glial cell derived neurotrophic factor
GFRA1 GDNF family receptor alpha 1
GFRA2 GDNF family receptor alpha 2
GFRA3 GDNF family receptor alpha 3
NTN1 Netrin 1
SLIT2 Slit guidance ligand 2
GRIN1 Glutamate ionotropic receptor NMDA type subunit 1
GRIN2A Glutamate ionotropic receptor NMDA type subunit 2A
GRIN2B Glutamate ionotropic receptor NMDA type subunit 2B
GRIN2C Glutamate ionotropic receptor NMDA type subunit 2C
GRIN2D Glutamate ionotropic receptor NMDA type subunit 2D
GRIN3A Glutamate ionotropic receptor NMDA type subunit 3A
GRIN3B Glutamate ionotropic receptor NMDA type subunit 3B
CHRM1 Cholinergic receptor muscarinic 1
CHRM2 Cholinergic receptor muscarinic 2
CHRM3 Cholinergic receptor muscarinic 3
CHRM4 Cholinergic receptor muscarinic 4
CHRNA1 Cholinergic receptor nicotinic alpha 1 subunit
CHRNA2 Cholinergic receptor nicotinic alpha 2 subunit
CHRNA3 Cholinergic receptor nicotinic alpha 3 subunit
CHRNA4 Cholinergic receptor nicotinic alpha 4 subunit
CHRNA5 Cholinergic receptor nicotinic alpha 5 subunit
CHRNA6 Cholinergic receptor nicotinic alpha 6 subunit
CHRNA7 Cholinergic receptor nicotinic alpha 7 subunit
CHRNA9 Cholinergic receptor nicotinic alpha 9 subunit
CHRNB2 Cholinergic receptor nicotinic beta 2 subunit
CHRNB4 Cholinergic receptor nicotinic beta 4 subunit
CHRNG Cholinergic receptor nicotinic gamma subunit
CHRNB1 Cholinergic receptor nicotinic beta 1 subunit
CHRND Cholinergic receptor nicotinic delta subunit
CHRNE Cholinergic receptor nicotinic epsilon subunit
CHRNA10 Cholinergic receptor nicotinic alpha 10 subunit
TACR1 Tachykinin receptor 1

renders user data onto pathway graphs intui-
tively and informatively [15]. In this way, we suc-
ceeded in exploring the potential functions and 
pathways of genes.

Construction of prognostic gene 
model

Single-factor Cox regression analy-
sis was carried out by using the R 
package survival to filter genes. The 
candidate genes were analyzed by 
lasso regression using the R pack-
age survival and R package glmnet, 
and the selected genes were ana-
lyzed by bidirectional stepwise mul-
tifactor Cox regression analysis.

Gene set enrichment analysis 
(GSEA)

GSEA enrichment using plyr, gg- 
plot2, grid, gridExtra software pack-
age was used to explore the biologi-
cal function and pathway of target 
genes in pancreatic cancer.

Correlation between target genes 
and microsatellite instability and 
tumor mutation load in pancreatic 
cancer correlation exploration

We used the plyr, ggplot2, grid,  
gridExtra software packages to 
research the correlation between 
target genes and microsatellite 
instability and tumor mutation load 
in pancreatic cancer.

Relationship between target genes 
and immune cells in pancreatic 
cancer Spearman correlation ex-
ploration

Software packages plyr, ggplot2, 
grid, gridExtra were used to 
research the correlation between 
target genes and immune cells in 
pancreatic cancer includes B cells, 
CD4+ T cells, CD8+ T cells, neutro-
phils, macrophages and dendritic 
cells.

Statistical analysis

Rstdio (4.2.0) was used to analyze the data. 
The association between the expression of 
genes and immune cell was analyzed using 
Spearman analysis. Survival analysis was con-
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ducted using the Kaplan Meier method, and 
risk factor analysis was conducted using Cox 
proportional risk regression. P<0.05 was con-
sidered a significant difference.

Results

Expression and mutation of NCCGs in PDAC

First, we explored the expression of 42 NCCGs 
in PDAC and normal tissue in the TCGA data-
base. A total of 9 genes were up- or downre- 
gulated in PDAC (Figure 1A). GDNF, GFRA3, 
NTRK1, CHRM2, CNRM3, GRIN1, CHRNA5, and 
CHRNB2 were upregulated, while SLIT2 was 
downregulated compared with normal tissue 
(*P<0.05, **P<0.01).

Then, we summarized the incidence of copy 
body mutations and somatic NCCGs in PDAC 
(Figure 1B). In the 178 samples, the most com-
mon type of mutation was a missense muta-
tion (green band). In the figure, we only showed 
the top 10 genes with high mutation rates; 
GRIN2A and GRIN2B (25.8%) had the highest 
rates. Other genes were SLIT2, CHRNA10, 
NTRK1, MAP2, CHRM2, CHRM3, L1CAM, and 
GRIN3A. Single-sample gene set enrichment 
analysis (ssGSEA) was used to explore the con-
tent of different cells in the sample (Figure 1C). 
Then, we made high and low groups by the con-
tent of neurons. We used K-M plotter to verify 
that there was a significant correlation between 
the content of neurons and the prognosis of the 
patients (Figure 1D).

Functional enrichment of NCCGs

We used GO analysis and KEGG pathway analy-
sis to further explore the function of NCCGs. We 
found that the 42 NCCGs were mainly enrich- 
ed in chemical synapses and transmembrane 
movement through GO analysis (Figure 2A). In 
addition, KEGG pathway analysis showed that 
42 NCCGs were mainly involved (Figure 2B). In 
the end, we used String to perform PPI analysis 
of these forty-two NCCGs, and the correlation 
showed a complex interaction between these 
genes (Figure 2C).

Construction and verification of the prognostic 
gene model

Among the 42 NCCGs, K-M plotter was used  
to look for prognostic genes. Three genes 
(CHRNA10, CHRNB2, and NGFR) are shown in 

Figure 3. Then, we used LASSO regression 
analysis to construct a prognostic gene mo- 
del by these 3 prognostic genes (Figure 4A). 
According to the risk score, we classified each 
PDAC patient into a high-score group and a low-
score group. The distributions of the risk score, 
survival time, and expression of the three 
genes are shown in the icon (Figure 4B). As 
shown in the third figure, the low-score group 
had better survival rates (Figure 4C). Finally, 
the 12-, 36-, and 60-month ROC curves were 
drawn to calculate the AUCs: 0.65, 0.74, and 
0.88, respectively (Figure 4D). We used the 
data downloaded from GEO to verify the accu-
racy of the prognosis model.

Correlation was used to explore the poten- 
tial relationship between CHRNA10, CHRNB2, 
NGFR gene expression and B cell, CD4+ T cell, 
CD8+ T cell neutrophil macrophage dendritic 
cells. The results suggested that the CHRNA10 
gene was positively correlated with CD4+ T 
cells in pancreatic cancer, while the CHRNA10 
gene was negatively correlated with CD8+ T 
cells in pancreatic cancer (Figure 5A). The 
CHRNB2 gene is positively correlated with 
CD4+ T cell macrophages in pancreatic cancer 
(Figure 5B), the NGFR gene is positively corre-
lated with B cells, CD4+ T cell, CD8+ T cells, 
neutrophils, macrophages and dendritic cell in 
pancreatic carcinoma (Figure 5C).

In order to explore the association between 
CHRNA10, CHRNB2, the NGFR gene and pan-
creatic cancer genomic alterations, we investi-
gated the association between CHRNA10, 
CHRNB2, the NGFR gene and microsatellite 
instability tumor mutation load in pancreatic 
cancer. The results showed that the CHRNA10 
gene was negatively correlated with microsa- 
tellite instability of pancreatic cancer and the 
CHRNA10 gene was negatively correlated with 
tumor mutation load of pancreatic cancer 
(Figure 6A). The CHRNB2 gene has no correla-
tion with microsatellite instability in pancreatic 
cancer, but the CHRNB2 gene has negative cor-
relation with tumor mutation load in pancreatic 
cancer (Figure 6B). The NGFR gene has no cor-
relation with microsatellite instability in pancre-
atic cancer, but the NGFR gene has negative 
correlation with tumor mutation load in pancre-
atic cancer (Figure 6C).

According to the GEPIA database, we explored 
expression of CHRNA10, CHRNB2, and the 
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Figure 1. Expression and mutation of NCCGs. A. The expression of 42 NCCGs in PDAC and normal tissue; B. The mutation landscape of the top 10 mutation rate of 
NCCGs. *P<0.05, **P<0.01. NCCGs, nerve-cancer cross-talk genes; PDAC, pancreatic ductal adenocarcinomas; C. The content of different cells in the sample; D. 
The overall survival of PDAC patients in the high/low-neurons groups.
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Figure 2. The functional enrichment analysis of NCCGs. A. The Gene Ontology (GO) analysis; B. Gene Set Enrichment 
Analysis (GSEA); C. The protein-protein interaction of NCCGs.

NGFR gene in stage I, stage II, stage III and 
stage IV of pancreatic cancer. The results 
showed that CHRNB2 gene expression was sig-

nificantly correlated with the clinical stage of 
pancreatic cancer, while CHRNA10, and NGFR 
gene expression was not correlated with the 
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Figure 3. The prognostic value of NCCGs in PDAC. The overall survival of 
CHRNA10 (A), CHRNB2 (B), NGFR (C) in PDAC patients in the high/low-ex-
pression groups.

clinical stage of pancreatic cancer (Figure 
7A-C). Compared with Stage II, Stage III and 
Stage IV, the CHRNB2 gene expression was 

higher in Stage I of pancreatic 
cancer.

The single cell dataset PAAD_
CRA001160 was used to visu-
alize the distribution, propor-
tion and expression of CHR- 
NA10, CHRNB2 and NGFR 
genes in pancreatic cancer. 
Cells in the pancreatic cancer 
microenvironment include aci-
nar cells, B cells, CD8Tex ce- 
lls, dendritic cells, catheter 
cells, endocrine cells, end- 
othelial cells, fibroblasts, ma- 
lignant tumor cells, plasma 
cells, stellate cells, etc. (Figure 
8A). Among them, malignant 
tumor cells, catheter cells, 
endothelial cells, and fibro-
blasts occupy a relatively high 
proportion in the pancreatic 
cancer tumor microenviron-
ment (Figure 8B). In addition, 
we also analyzed the expr- 
ession levels of CHRNA10, 
CHRNB2 and NGFR genes in 
various pancreatic cancer ce- 
lls, and the results showed 
that the expression of NGFR 
genes was higher in various 
pancreatic cancer cells (Figure 
8C).

In order to investigate the ro- 
les of CHRNA10, CHRNB2, and 
NGFR genes in pancreatic can-
cer, GSEA enrichment analysis 
was employed to explore their 
biological functions and sig- 
naling pathways. The results  
of the enrichment analysis 
revealed that the CHRNA10 
gene is enriched in pancreatic 
cancer core pathways, primary 
immune adhesion efficiency, B 
cell receptor signaling path-
ways, vascular smooth mus- 
cle contraction, hematopoietic 
cells, intestinal immune net-
work gonadal generation, and 

ECM receptor interactions (Figure 9A). CHR- 
NB2 showed enrichment in pancreatic cancer 
as well as systemic lupus erythematosus, ma- 
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Figure 4. Construction and verification of prognostic gene model. A. Lasso coefficient profiles of the three NCCGs; 
B. Destruction of risk score, survival status, and the expression of the three NCCGs in PDAC; C, D. Overall survival 
curves for PDAC patients in the high/low-risk score group and the ROC curve of measuring the predictive value.

turity-onset diabetes of the young, long-term 
potentiation, type 2 diabetes, taste conduction 
pathway, cell cycle regulation, natural killer cell-
mediated cytotoxicity, chronic myeloid leuke-
mia, and others (Figure 9B). NGFR genes were 
found to be enriched in primary immunodefi-
ciency, hematopoietic cell lineage, cytokine-
cytokine receptor interaction, adipokine sig- 
naling pathway, Huntington’s disease, Alzhei- 
mer’s disease, NOTCH signaling pathway, taste 
transduction, and others in pancreatic cancer 
(Figure 9C).

Discussion

Nerve-cancer crosstalk is an underappreciated 
area of cancer research, but nerves are now 
gaining attention for their role in cancer, as 
researchers have discovered their connection 
to cancer metastasis and poor prognosis [16]. 
Evidence indicates that neurogenesis (incre- 
ased number of neurons) and axonogenesis 
(tumor-induced neural sprouting toward the 
tumor microenvironment) also play vital roles  
in tumorigenesis and cancer progression [17]. 
A previous review provided perspectives and 

insights regarding the rational and strategies of 
targeting the neurotransmitter system for can-
cer treatment [18].

In previous studies, we defined 42 NCCGs, but 
the function of NCCGs in PDAC has not been 
elucidated. We screened valuable genes for 
prognosis by differential expression and K-M 
plotter. Then, we constructed an effective prog-
nostic gene model. Finally, we found a corre- 
lation between the content of neurons and 
immune cells. By RNA sequencing data, func-
tional enrichment analysis showed the expres-
sion of key genes in different types of cells and 
the possible pathways in the high-expression 
cells.

First, among the 9 up- or downregulated genes, 
three genes were associated with prognosis. In 
PDAC, upregulation of CHRNB2 indicates poor 
prognosis. Blockade of CHRNB2 expression us- 
ing specific Abs shows promise for controlling 
metastasis in gastric cancer [19]. According to 
the results of the K-M plot, we believe that the 
neuronal content deeply affects the prognosis 
of PDAC patients.
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Figure 5. A. Association of CHRNA10 gene with immune cells in pancreatic cancer; B. Association of CHRNB2 gene with immune cells in pancreatic cancer; C. Re-
lationship between NGFR gene and immune cells in pancreatic cancer.



Prognostic analysis of neurotrophic genes in pancreatic ductal adenocarcinoma

406 Int J Clin Exp Pathol 2024;17(11):396-410

Figure 6. A. Correlation between CHRNA10 gene and tumor mutation load of microsatellite instability in pancreatic cancer; B. Correlation between CHRNB2 gene 
and tumor mutation load of microsatellite instability in pancreatic cancer; C. Relationship between NGFR gene and tumor mutation load of microsatellite instability 
in pancreatic cancer.
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Figure 7. A. Relationship between CHRNA10 gene and clinical stage of pancreatic cancer; B. Relationship between 
CHRNB2 gene and Stage staging of pancreatic carcinoma; C. Relationship between NGFR gene and clinical stage 
of pancreatic cancer.

Figure 8. A. UMAP diagram showing cell distribution in pancreatic cancer single cell data set PAAD_CRA001160; 
B. The pie chart shows the proportion of cells in the pancreatic cancer single cell data set PAAD_CRA001160; C. 
Expression of CHRNA10, CHRNB2, NGFR gene in pancreatic cancer single cell data set PAAD_CRA001160.

Then, we analyzed the GO function enrichment 
and Gene Set Enrichment Analysis (GSEA). We 
clearly found that NCCGs were mainly enriched 
in chemical synapses, transmembrane move-
ment, neuroreceptor activation and so on. In a 
recent study, a transmembrane receptor gly- 

coprotein that is upregulated on transformed 
cells, cancer-associated fibroblasts and inflam-
matory macrophages was shown to contribute 
to cancer progression [20]. The construction of 
a prognostic gene model allowed us to classify 
the patients into two groups: high-risk and low-
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Figure 9. A. GSEA enrichment of CHRNA10 gene in pancreatic cancer; B. GSEA enrichment of CHRNB2 gene in pancreatic cancer; C. GSEA enrichment of NGFR 
gene in pancreatic cancer.
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risk. After internal and external data verifica-
tion, the effectiveness of this prognostic model 
was confirmed. Compared with other studies, 
the AUC of our prognostic model is not bad. The 
receiver operating characteristic curve (ROC) is 
a widely accepted criterion. An area under the 
curve (AUC) below 0.6 indicates low discrimina-
tion, 0.6 to 0.75 indicates medium discrimina-
tion, and above 0.75 indicates high discrimina-
tion. A high AUC represents high model accuracy 
[21].

About 10% of PDAC susceptibility genes have 
pathogenic germline mutations, among which 
BRCA2 and ATM are the two most common 
gene loci, followed by BRCA1, PALB2, CDKN2A/
p16 and LKB1/STK11. Mismatch repair genes 
(hMLH1, hMSH2, hPMS6). Of note, only half of 
patients have pathogenic mutations, and the 
recently updated guidelines from ASCO and 
NCCN recommend that all patients diagnosed 
with PDAC should undergo germline mutation 
surveillance (rather than just those with a sus-
pected family history), which increases the 
potential benefit of BRCA1/BRCA2 mutated 
patients from PARP inhibitor therapy. The first-
degree relatives of patients with positive muta-
tions should be tested for susceptible patho-
genic mutations, which can be greatly simplified 
by expensive multigene chips in blood and sali-
va. The presence of asymptomatic germline 
mutation carriers indicates a large high-risk 
population with potential disease [22].

There are some limitations to this study. First, 
the predictive ability of prognostic models still 
needs to be supported by a large amount of 
multicenter clinical evidence. Furthermore, only 
public databases were included in this study. 
There is a lack of experimental support. In vivo 
and in vitro experiments, and RNA or DNA 
sequencing of nerve samples are needed for 
further study.

In conclusion, in the prognostic model we con-
structed, the nerve-cancer cross-talk genes 
have the potential to serve as specific molecu-
lar markers of PDAC. They may also be used as 
an indicator of prognosis and as a new target 
for the study of pathogenesis and immunother-
apy in the future. In addition, we believe that 
nerve fibers and PDAC are inseparable, and 
there is some interaction, which still needs fur-
ther research and evidence.
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