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Abstract: Cell cycle-dependent protein kinase 4/6 (CDK4/6) is a crucial kinase that regulates the cell cycle, essen-
tial for cell division and proliferation. Hence, combining CDK4/6 inhibitors with other anti-tumor drugs is a pivotal 
clinical strategy. This strategy can efficiently inhibit the growth and division of tumor cells, reduce the side effects, 
and improve the quality of life of patients by reducing the dosage of combined anticancer drugs. Furthermore, 
the combination therapy strategy of CDK4/6 inhibitors could ameliorate the drug resistance of combined drugs 
and overcome the CDK4/6 resistance caused by CDK4/6 inhibitors. Various tumor treatment strategies combined 
with CDK4/6 inhibitors have entered the clinical trial stage, demonstrating their substantial clinical potential. This 
study reviews the research progress of CDK4/6 inhibitors from 2018 to 2022, the related resistance mechanism of 
CDK4/6 inhibitors, and the strategy of combination medication.
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Introduction

Cell cycle-dependent kinases (CDKs) are a fam-
ily of serine/threonine protein kinases that play 
a crucial role in regulating cell cycle progres-
sion. Among these, CDK4/6 has been exten-
sively studied and is considered a key regulator 
of the cell cycle [1]. CDK4/6 regulates the cell 
cycle by controlling the activity of other proteins 
called cyclins. Cyclins are responsible for initiat-
ing various processes in the cell cycle, such as 
DNA replication and cell division. CDK4/6 activ-
ity requires its binding to Cyclin D to form a 
complex with kinase activity. This complex is 
responsible for driving the cell cycle from the 
quiescent G0 phase to the proliferative S phase 
by phosphorylating the retinoblastoma gene 
RB1 and activating the cell cycle [2]. Recent 
studies have highlighted the critical role of 
CDK4/6 in tumorigenesis and cancer develop-
ment. CDK4/6 has been shown to promote 
tumor cell proliferation and metastasis, and its 
inhibition can effectively suppress tumor cell 
growth [3]. Moreover, CDK4/6 overexpression 
has been observed in several cancers, under-

scoring its use as a therapeutic target for can-
cer treatment [4]. Given the significance of 
CDK4/6 in cancer, it is imperative to develop 
novel anticancer drugs that target this protein. 
Targeting CDK4/6 has emerged as a promis- 
ing approach for cancer therapy, and several 
CDK4/6 inhibitors have been developed and 
are currently being evaluated in clinical trials. 
Hence, CDK4/6 inhibition holds great promise 
as a therapeutic strategy for cancer treatment. 
Our research objective is to broaden the scope 
of CDK4/6 inhibitor application by presenting 
possible combination therapy strategies via 
comprehensive summary of CDK4/6 inhibitor 
resistance mechanisms. 

The development of CDK4/6 inhibitors

CDK4/6 inhibitors represent a novel class of 
anticancer agents that specifically target the 
CDK4/6 protein. These inhibitors function by 
obstructing the formation of the CDK4/6-Cyclin 
D complex and its associated kinase activity, 
which is essential for the transition from G0  
to S phase of the cell cycle [5]. By inhibiting 
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CDK4/6 activity, these agents prevent tumor 
cell proliferation and division [6]. Recent ad 
vancements in the development and character-
ization of CDK4/6 inhibitors have yielded prom-
ising clinical results. Currently, four CDK4/6 
inhibitors approved worldwide: Palbociclib (Pfi- 
zer), Ribociclib (Novartis), Abemaciclib (Lilly) 
and Dalpiciclib/SHR6390 (Jiangsu Hengrui) [7]. 
Palbociclib, the first FDA-approved small mole-
cule tyrosine kinase inhibitor (TKI), is the most 
widely used CDK4/6 inhibitor [8]. Dalpiciclib/
SHR6390 is the first Chinese novel highly se- 
lective CDK4/6 inhibitor approved by National 
Medical Products Administration (NMPA) for 
use in combination with fulvestrant (a selective 
estrogen receptor down-regulation (SERDs)), 
and suitable for hormone receptor-positive 
(HR+) and human epidermal growth factor 
receptor 2-negative (HER2-) recurrent or meta-
static breast cancer patients with disease pro-
gression after previous endocrine therapy [9]. 

Bone marrow suppression (e.g., neutropenia), 
gastrointestinal adverse reactions (e.g., diar-
rhea), abnormal liver function, prolonged QT 
interval, venous thromboembolism (VTE), and 
interstitial lung disease (ILD), are the six com-
mon adverse effects associated with the use  
of CDK4/6 inhibitors [10-12]. To minimize the- 
se side effects and improve therapeutic effica-
cy, the development of new CDK4/6 inhibitors 
is underway. Although CDK4/6 inhibitors are 
primarily utilized in the treatment of advanced 
HR+ breast cancer patients, their therapeutic 
effects on other cancers, such as triple-nega-
tive breast cancer (TNBC), are limited [13]. 
Therefore, current research on CDK4/6 inhibi-
tors aims to expand their application to other 
cancer types.

Resistance mechanism of CDK4/6 inhibitor

CDK4/6 inhibitors have demonstrated efficacy 
in the treatment of advanced hormone recep-
tor-positive (HR+) breast cancer patients [14]; 
however, the widespread use of CDK4/6 inhibi-
tors has led to the emergence of acquired drug 
resistance in these patients. Furthermore, sev-
eral breast cancer patients, including those 
with triple-negative breast cancer (TNBC), have 
shown resistance to CDK4/6 inhibitors [15]. 
Various molecular mechanisms have been 
identified as contributing to tumor cells’ resis-
tance to CDK4/6 inhibitors, with low tumor sup-

pressor RB1 expression being the most com-
mon cause [16]. The reasons for the resistance 
mechanism of CDK4/6 inhibitors can be sum-
marized as follows.

Low RB1 expression

RB1 is a tumor suppressor that plays a crucial 
role in regulating the cell cycle [17]. After phos-
phorylation of RB1 protein by CDK4/6-Cyclin D 
complex, the RB1 protein dissociates from the 
E2F transcription factor, which then activates 
transcription of downstream cell cycle-related 
genes and drives the cell cycle process [18]. 
However, RB1 gene mutations, transcriptional 
silencing, or hyperphosphorylation frequently 
occur in tumors, leading to decreased RB1 pro-
tein levels [19]. Low RB1 protein expression 
reduces the effectiveness of CDK4/6-Cyclin D 
complex inhibition, resulting in tumor cells’ 
resistance to CDK4/6 inhibitors. A study using 
glioblastoma (GBM) xenograft cells found that 
the A193T missense mutation of exon 2 of Rb 
decreased RB1 protein, leading to its resis-
tance to CDK4/6 inhibitors [20]. In addition, 
RB1 copy number changes and splicing muta-
tions have been observed in several breast 
cancer cell lines, including T47D, LY2, and 
ZR-75-1. The transcription level of RB1 is low in 
MDA-MB-361 and ZR-75-1 cell lines, while the 
LY2 cell line has a complete deletion of the  
RB1 gene and protein [21]. These factors could 
reduce RB1 protein expression and contribute 
to resistance to CDK4/6 inhibitors. Palafox et 
al. have also demonstrated that point muta-
tions in RB1 in estrogen receptor-positive (ER+) 
breast cancer can confer resistance to CDK4/6 
inhibitors [22]. Thus, a detailed analysis of RB1 
expression and regulation mechanisms could 
help to overcome CDK4/6 inhibitor resistance 
and broaden the scope of CDK4/6 inhibitors’ 
application.

INK4 family protein overexpression

The INK4 protein family comprises p16 (encod-
ed by CDKN2A), p15 (encoded by CDKN2B), 
p18 (encoded by CDKN2C), and p19 (encoded 
by CDKN2D), which are known to inhibit the 
activity of CDK4/6 proteins and regulate the 
cell cycle [23]. Specifically, p16 acts as an en- 
dogenous inhibitor of CDK4/6 kinase activity 
and competes with exogenous CDK4/6 inhibi-
tors to bind CDK4/6, thereby reducing the sen-
sitivity of tumor cells to CDK4/6 inhibitors [24]. 
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Furthermore, the inhibitory effect of p16 on 
CDK4/6 is dependent on the function of RB1. 
However, p16 overexpression has been found 
to decrease CDK4, which in turn induces 
CDK4/6 inhibitor drug resistance [25]. More- 
over, Green et al. have reported that the p16 
protein family can impede the binding of 
CDK4/6 inhibitors to CDK4 [26]. Similarly, p15 
and p18, which are also members of the INK4 
family, have been shown to induce CDK6-
mediated drug resistance. Reducing the ex- 
pression of p15 and p18 or their binding to 
CDK6 can restore the sensitivity of CDK4/6 
inhibitors [27]. Several studies have revealed 
that the expression of INK4 family members, 
particularly p16, significantly increases in vari-
ous tumors [28], suggesting that the regulation 
of p16 protein expression levels may help over-
come acquired drug resistance to CDK4/6 
inhibitors.

Low CIP/KIP family protein expression

The CIP/KIP protein family, comprising p21 
(encoded by CDKN1A), p27 (encoded by CD- 
KN1B), and p57 (encoded by CDKN1C), plays  
a crucial role in inhibiting CDK kinase activity 
and stabilizing the CDK-Cyclin complex, thereby 
participating in cell cycle regulation during the 
G1/S phase transition [29]. The downregula-
tion or functional impairment of CIP/KIP pro-
teins has been associated with CDK4/6 inhibi-
tor resistance. Studies have revealed that low 
p21 expression is one of the primary mecha-
nisms underlying the acute resistance of brea- 
st cancer to CDK4/6 inhibitors [30]. Moreover, 
AbuHammad et al. have demonstrated that 
activating the tumor suppressor gene TP53 can 
induce p21 expression and restore sensitivity 
to CDK4/6 inhibitors. Therefore, comprehend-
ing the mechanisms underlying low CIP/KIP 
protein expression, especially p21, and TP53 
activation in tumors, and identifying more 
effective strategies to promote CIP/KIP protein 
expression and activate TP53 can overcome 
CDK4/6 inhibitor resistance.

CDK6 amplification

CDK6, a direct substrate of CDK4/6 inhibitors, 
plays a critical role in promoting resistance to 
CDK4/6 inhibitors in preclinical breast cancer 
models [31]. Studies have shown that CDK6 
upregulates p16 transcription in the presence 
of STAT3 and cyclin D [32]. Additionally, CDK6 

and c-Jun, a transcription regulator and mem-
ber of the leucine zipper family, synergistically 
upregulate vascular endothelial growth factor- 
A (VEGF-A), inducing angiogenesis, promoting 
cancer progression and drug resistance [33]. 
Xuewei et al. have reported that most tumor 
cells exhibit inherent resistance to CDK4/6 
inhibitors owing to CDK6 expression, whereas 
tumors with low CDK6 expression rely on CDK4 
function and are sensitive to CDK4/6 inhibi- 
tors. Furthermore, tumor cells expressing both 
CDK4 and CDK6 depend more on CDK6, there-
by advancing the cell cycle. A lower ratio of 
CDK6 and CDK4 expression in tumors has been 
found to be more sensitive to CDK4/6 inhibi- 
tors [34]. Therefore, effective measures to 
inhibit CDK6 production in tumors or CDK6 that 
has already been produced can help overcome 
CDK4/6 inhibitor resistance.

CDK4 amplification

CDK4 is another substrate that is directly tar-
geted by CDK4/6 inhibitors, and it plays a cru-
cial role in the Cyclin D-CDK4/6-PRB pathway. 
CDK4 is widely expressed in several cancer 
types, and its overexpression has been identi-
fied as a potential biomarker for predicting 
resistance to conventional chemotherapy in 
patients with osteosarcoma [35]. A recent 
study investigating Rh 28 and Rh 41 cells of 
alveolar rhabdomyosarcoma (ARMS) has dem-
onstrated that cells with CDK4 overexpression 
exhibit reduced CDK4/6 inhibitor activity, while 
glioma cells overexpressing CDK4 exhibit com-
plete resistance to CDK4/6 inhibitors [20, 36]. 
Therefore, to overcome CDK4/6 inhibitor drug 
resistance, it is imperative to gain a better 
understanding of the underlying mechanisms 
involved in CDK4 overexpression in tumors and 
to develop more effective strategies for pre-
venting CDK4 amplification.

Cyclin D1 overexpression

Cyclin D1 is a critical component of the CDK4/6 
pathway and serves as a mitotic sensor by inte-
grating extracellular mitotic signals with the cell 
cycle process. Cyclin D1 protein is frequently 
overexpressed in solid tumors, including breast 
cancer, especially estrogen receptor-positive 
(ER+) breast cancer, head and neck squamous 
cell carcinoma, pancreatic cancer, melanoma, 
endometrial carcinoma, colorectal cancer, and 
non-small cell lung cancer [37-42]. Cyclin D1 
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overexpression leads to increased CDK4/6 
activity, resulting in abnormal downstream cell 
cycle regulation and aberrant cell proliferation 
[43]. While some studies have implicated 
CCND1 gene amplification, chromosomal rear-
rangement, or protein degradation damage as 
possible mechanisms of Cyclin D1 overexpres-
sion, the exact mechanism remains unclear 
[44]. Therefore, understanding the precise me- 
chanism of Cyclin D1 overexpression in tumors 
and implementing more effective strategies to 
prevent Cyclin D1 amplification and reduce 
CDK4/6 activity may be crucial in overcoming 
drug resistance to CDK4/6 inhibitors.

CCNE1/2 or CDK2 amplification

Similar to the CDK4/6-Cyclin D complex, the 
complex formed by CDK2-cyclin E (encoded by 
CCNE1/2) plays a vital role in cell cycle pro- 
gression from G0 to the S phase by phosphory-
lating RB1 [45]. Amplification of CCNE1/2 or 
CDK2 leads to increased occupancy of RB1 
protein phosphorylation targets, thereby reduc-
ing the number of RB1 protein phosphorylation 
targets available for the CDK4/6-Cyclin D  
complex to bind. This phenomenon results in 
CDK4/6 inhibitor resistance [46]. Thus, inhibit-
ing Cyclin E-CDK2 complex formation or pre-
venting CCNE1/2 or CDK2 amplification may 
represent a viable strategy to overcome 
CDK4/6 inhibitor drug resistance.

E2F amplification

E2F is a transcription factor downstream of 
RB1, which governs the transcription of various 
cell cycle-related genes. During the cell cycle, 
the CDK4/6-Cyclin D complex phosphorylates 
RB1, resulting in the disruption of the RB1-E2F 
dimer, inactivating RB1, activating E2F tran-
scription, and promoting entry into the S phase 
[47]. It has been established that E2F can up-
regulate AKT signal transduction through Gab2, 
leading to the reliance of cells on the AKT sig-
naling pathway instead of the CDK4/6-RB1- 
E2F pathway, thereby conferring resistance to 
CDK4/6 inhibitors [48]. Therefore, a promising 
approach to enhance the efficacy of CDK4/6 
inhibitors and overcome drug resistance would 
be to employ effective strategies to inhibit gene 
transcription or protein formation downstream 
of E2F while also inhibiting CDK4/6.

CDK7 amplification

CDK7 amplification is another mechanism of 
resistance to CDK4/6 inhibitors. CDK7 and 
CDK4/6 belong to the family of cell cycle-
dependent kinases (CDKs). In addition to form-
ing a kinase complex with Cyclin H, CDK7 func-
tions as a transcription factor [49]. Studies 
have demonstrated that CDK7 overexpression 
imparts resistance to CDK4/6 inhibitors [50]. 
CDK7 has CDK-activated kinase (CAK) activity 
on CDK4 and CDK6, enhancing CDK4 and 
CDK6 phosphorylation. However, the precise 
mechanism of CDK7 in regulating cell cycle pro-
gression remains unclear, and further research 
is required to understand its potential role in 
G1 phase progression and to determine wheth-
er the combined use of CDK7 inhibitors can 
overcome resistance to CDK4/6 inhibitors.

WEE1 overexpression

WEE1 is a member of the serine/threonine pro-
tein kinase family, which phosphorylates Thr14 
and Tyr15 of CDK1 and inhibits its kinase activ-
ity, thereby preventing cells from entering the 
division stage. WEE1 specifically regulates the 
progression from G2 to the M phase of the cell 
cycle [51]. Studies have identified that WEE1 
and CDK1 synergistically inhibited DNA-da- 
maged cells from entering mitosis [52]. Some 
studies have shown that inhibiting WEE1 can 
increase the sensitivity of breast cancer cells to 
CDK4/6 inhibitors, but the specific mechanism 
by which WEE1 overcomes CDK4/6 inhibitor 
resistance remains unclear [53]. Furthermore, 
the WEE1 inhibitor may collaborate with CDC25 
phosphatase to inhibit triple-negative breast 
cancer (TNBC), which is resistant to CDK4/6 
inhibitors [54].

MDM2 overexpression

MDM2 overexpression occurs in 20-30% of 
breast cancer patients and promotes ER+ 
breast cancer progression [55]. MDM2 can 
inhibit cell stability and senescence by nega-
tively regulating TP53 [56]. Studies have shown 
that MDM2 inhibits the aging pathway in a 
TP53-dependent manner, thereby conferring 
resistance to CDK4/6 inhibitors [57]. Targeting 
MDM2 may provide a therapeutic option to 
overcome resistance to CDK4/6 inhibitors.
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PTEN loss

Phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN) is a protein tyrosine 
phosphatase (PTP) gene family member and a 
tumor suppressor gene that governs various 
biologic processes, including maintenance of 
genome stability, cell survival, migration, prolif-
eration, and metabolism [58]. In breast cancer 
tumor biopsy samples, PTEN deletion in addi-
tion to low RB1 gene expression has been  
discovered in patients who are resistant to 
CDK4/6 inhibitors [59]. Bencivenga et al. con-
firmed that deletion of PTEN leads to CDK4/6 
inhibitor resistance by activating AKT in vitro. 
This deletion-induced down-regulation of nucle-
ar p27 resulted in resistance to CDK4/6 inhibi-
tors [60]. Therefore, the development of effec-
tive strategies to inhibit PTEN deletion can 
enhance the effectiveness of CDK4/6 inhibi- 
tors.

FZR1 loss

FZR1 gene codes for CDH1, a regulatory sub-
unit of the anaphase-promoting complex (APC), 
and plays an essential role in nerve develop-
ment by regulating the cell cycle [61]. FZR1 is a 
co-activator of ubiquitin ligase APC/C and inter-
acts with RB1 in the G1 phase of the cell cycle 
to ubiquitinate and inactivate RB1, thereby  
promoting uncontrolled cell cycle progression 
[62]. Ruijtenberg et al. demonstrated that 
FZR1, similar to RB1, could serve as a Cyclin 
D-CDK4/6 substrate, and its phosphorylation 
led to loss of APC/C activation [63]. The APC/C-
FZR1 complex also degraded S-phase kinase-
related protein 2 (SKP2), which inhibits p27, a 
natural inhibitor of CDK inhibitors [64]. Hence, 
further research is needed to understand the 
mechanism of FZR1 deletion and adopt strate-
gies to overcome CDK4/6 inhibitor resistance 
caused by FZR1 deletion.

FAT1 loss

FAT atypical cadherin 1 (FAT1) is a protocad-
herin frequently mutated in human cancers, 
which results in tumor progression and can 
affect prognosis. FAT1 regulates various signal-
ing pathways, including Wnt/β-catenin, Hippo, 
and MAPK/ERK pathways, through protein-pro-
tein interaction, thereby affecting cell prolifera-
tion, migration, and invasion [65]. Zhijiang et  
al. discovered that FAT1 deletion activated the 

Hippo pathway by inducing CDK6 expression, 
which led to CDK4/6 inhibitor resistance. 
Changes in YAP, MST1, LATS1, and NF2 also 
influenced CDK4/6 inhibitor resistance, but 
more research is necessary to confirm this  
finding [66]. Hence, the absence of FAT1 tumor 
suppressor is another promising avenue for 
overcoming CDK4/6 inhibitor resistance.

In summary, the decreased expression or 
amplification of numerous genes or proteins 
can impede the efficacy of CDK4/6 inhibitors. 
An exhaustive analysis of the affected genes 
and proteins may offer a means to overcome 
CDK4/6 inhibitor resistance. Furthermore, the 
activation of multiple pathways including fibro-
blast growth factor receptor (FGFR), PI3K/AKT/
mTOR, EMT, and autophagy regulatory path-
ways contribute to CDK4/6 inhibitor resistance 
[67-70]. Consequently, the concurrent adminis-
tration of inhibitors targeting multiple path- 
ways may partially surmount drug resistance. 
Various studies have revealed that immuno- 
suppression is also a key factor influencing 
CDK4/6 inhibitor resistance. Smruthi et al. 
identified that interferon-α and interferon-β 
pathways were enriched in breast cancer cells 
resistant to CDK4/6 inhibitors, implying that 
modulating immunosuppression could poten-
tially overcome CDK4/6 inhibitor resistance 
[71].

Understanding the various mechanisms of 
resistance to CDK4/6 inhibitors is important 
for the development of effective treatment 
strategies for patients with advanced cancers. 
Identifying the factors that contribute to resis-
tance can help to guide the selection of alter- 
native therapies, such as combination thera-
pies or higher dosage regimens of CDK4/6 
inhibitors. Additionally, a deeper understand- 
ing of the mechanisms of resistance can inform 
the development of new drugs and treatment 
approaches that can overcome these mecha-
nisms and improve patient outcomes. Ultima- 
tely, continued research into the various mech-
anisms of CDK4/6 inhibitor resistance is criti-
cal for advancing the field of cancer treatment 
and improving the lives of patients with ad- 
vanced cancers.

Combined strategy of CDK4/6 inhibitors

Effective combination therapy involving CDK4/ 
6 inhibitors has been shown to possess a syn-
ergistic effect, leading to a favorable antitumor 
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effect while reducing the side effects of other 
treatments. Overcoming drug resistance mech-
anisms of CDK4/6 inhibitors has become a 
prominent area of research in recent years. 
Despite the lack of a current effective remedy 
for low RB1 expression, the most fundamental 
cause of drug resistance, several drug combi-
nation strategies have demonstrated potential 
in improving the drug sensitivity of CDK4/6 
inhibitors. Notably, combination therapy involv-
ing CDK4/6 inhibitors may include chemothera-
py, endocrine therapy, targeted therapy, and 
immunotherapy. Table 1 provides a compre-
hensive summary of the various combination 
therapy strategies for CDK4/6 inhibitors.

CDK4/6 inhibitor and chemotherapy

Chemotherapy is a conventional treatment 
approach for many cancer patients. However, 
its non-specific mechanism of action leads to 
the destruction of both cancerous and normal 
cells, resulting in significant toxic and side 
effects [72]. The primary chemotherapeutic 
drugs include alkylating agents (e.g., nitrogen 
mustard and carmustine), anthracyclines (e.g., 
adriamycin, epirubicin, and cyclophosphamide), 
platinum (e.g., carboplatin and cisplatin), tax-
anes (e.g., paclitaxel and docetaxel), and vin-
blastine (e.g., vincristine and vinorelbine).

Paclitaxel, a representative taxane, is a com-
mon chemotherapy drug used either alone or in 
combination with other drugs, typically carbo-
platin/cisplatin, to treat several solid tumors. 
Paclitaxel inhibits tumor cells by binding to 
tubulin and disrupting mitosis, and exhibits sig-
nificant therapeutic effects in multiple cancer 
types [73]. Paclitaxel modulates tubulin during 
cell cycle division, while CDK4/6 inhibitors pre-
vent RB1 phosphorylation during the G0 phase 
of the cell cycle. Thus, the combination of pacli-
taxel and CDK4/6 inhibitor jointly regulates the 
cell cycle. This combination therapy has been 
shown to decrease the side effects of paclitax-
el therapy, such as hematopoietic stem cell 
death, and improve its therapeutic effect on 
triple-negative breast cancer cells [74, 75]. 
Additionally, CDK4/6 inhibitor and paclitaxel 
have a synergistic effect on K-Ras mutant lung 
adenocarcinoma cells by inducing apoptosis 
[76]. Recent studies have shown that the order 
of drug administration affects this synergistic 
effect, where paclitaxel and CDK4/6 inhibitors 
exhibit a more significant cytotoxic effect when 
administered first [77].

Platinum compounds are widely used in va- 
rious cancer treatments. Patients with Human 
Papillomavirus (HPV)-negative head and neck 
squamous cell carcinoma (HNSCC) exhibited 
high sensitivity to CDK4/6 inhibitors, whereas 
those treated with cisplatin exhibited inherent 
resistance to CDK4/6 inhibitors. The sensitive 
mechanism was that CDK4/6 inhibitors inhibit 
CDK4, while the resistant mechanism was that 
cisplatin up-regulated c-Myc and Cyclin E ex- 
pressions in DNA damage [78]. Acute renal inju-
ry (AKI) is a common disease caused by toxins, 
inflammation, or ischemic injury of renal tubular 
epithelial cells (RTECs), and is a side effect  
of cisplatin. Kim et al. revealed that CDK4/6 
inhibitor could alleviate cisplatin-related AKI in 
an RB1-dependent manner, but the mechanism 
is unclear [79]. Liu et al. demonstrated that 
CDK4/6 inhibitor could reverse the acquired 
resistance of cisplatin in lung cancer cells by 
inhibiting cell proliferation and inducing apopto-
sis, providing a new therapeutic strategy for 
cisplatin-resistant lung cancer patients [80].

CDK4/6 inhibitor and endocrine therapy

Endocrine therapy is the primary treatment for 
ER-positive breast cancer. It contains a variety 
of drugs, such as selective estrogen receptor 
modulators (SERMs) (e.g., Tamoxifen and Ra- 
loxifene), selective estrogen receptor down-reg-
ulation (SERDs) (e.g., Fulvestrant), reversible 
aromatase inhibitors (e.g., Letrozole and Ana- 
strozole), and irreversible steroidal aromatase 
inhibitor (e.g., Exemestane). Additionally, the 
recent introduction of proteolytic targeting chi-
mera (PROTAC), a heterobifunctional molecule 
consisting of an estrogen receptor ligand, and 
another ligand as the substrate of E3 ubiquitin 
ligase complex, has provided a novel approach 
to endocrine therapy [81]. Despite the benefits 
of these therapies, drug resistance remains a 
significant issue, which has led to the investiga-
tion of CDK4/6 inhibitors for overcoming this 
problem.

Recent studies have shown that high mobility 
group box 1 (HMGB1) is associated with short-
er progression-free survival (PFS) after ER- 
positive breast cancer surgery. HMGB1 pro-
motes tamoxifen resistance by activating the 
TLR4-NF-κB pathway, and when combined with 
a CDK4/6 inhibitor, it reverses tamoxifen resis-
tance by inhibiting HMGB1 expression [82]. The 
PALOMA-2 clinical trial has demonstrated that 
the combination of letrozole and CDK4/6 inhibi-
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Table 1. Progress in combination therapy strategies of CDK4/6 inhibitors

Name of CDK4/6 inhibitor Combined inhibitor 
type Inhibitor name Combined effect/mechanism Cancer species References

CDK4/6 inhibitor and chemotherapy

    Palbociclib/G1T28 (Trilaciclib)/LY2835219 Microtubule protein 
inhibitor

Paclitaxel Reduce the death of hematopoietic stem cells; 
Induce apoptosis; Enhance the efficacy of che-
motherapy

ER+ breast can-
cer, TNBC, lung 
cancer

[74-77]

    Ribociclib/PD-0332991 - Cisplatin Relieve kidney injury; Block proliferation; Induce 
apoptosis; Reverse chemotherapy resistance

Non-small cell 
lung cancer

[78-80]

CDK4/6 inhibitor and endocrine therapy

    Abemaciclib Selective estrogen recep-
tor modulators (SERMs)

Tamoxifen Inhibition of HMGB1 reversed drug resistance in 
endocrine therapy

ER+ breast 
cancer

[82]

    Palbociclib Selective estrogen 
receptor down-regulation 
(SERDs)

Fulvestrant Prolong OS Advanced breast 
cancer

[84-86]

    Palbociclib Aromatase inhibitor (AI) Letrozole Prolong PFS ER+/HER2- breast 
cancer

[83]

CDK4/6 inhibitor and targeted therapy

    CDK4/6 inhibitor +PARP inhibitor

        Palbociclib/Abemaciclib PARP inhibitor Olaparib Inhibit differentiation, induce apoptosis, and 
block proliferation

Prostatic cancer [90]

        Ribociclib (LEE011)/Palbociclib (PD0332991) Olaparib Inhibit PARP1 expression and damage DNA dam-
age repair

Lung cancer [91]

        Palbociclib Olaparib Overcoming drug resistance of PARP inhibitors TNBC [92]

    CDK4/6 inhibitor and other kinase inhibitors

        Abemaciclib EGFR inhibitor Osimertinib Prevent EGFR inhibitor resistance Non-small cell 
lung cancer

[94]

        Palbociclib Osimertinib Inhibit RB1 phosphorylation, block proliferation, 
and overcome EGFR inhibitor resistance

[95]

        SHR6390 EGFR and HER-2 dual 
inhibitors

Pyrotinib Overcome the drug resistance of EGFR and HER-2 
double inhibitors

Gastric cancer [96]

Pyrotinib Block proliferation, migration, and invasion, and 
prolong recurrence time

Breast cancer [97]

        Abemaciclib PI3K inhibitor Alpelisib Suppress tumor progression HER2+ breast 
cancer

[98]

        Palbociclib AKT inhibitor Capivasertib Inhibit tumor progression and metastasis [99]

        Ribociclib CK1ε D4476 Down-regulate CDK6 expression and overcome 
CDK4/6 inhibitor resistance

ER+/HER2- breast 
cancer

[100]

        Ribociclib WEE1 inhibitor AZD1775/Adavosertib Block proliferation, induce apoptosis, and over-
come drug resistance of CDK4/6 inhibitors

ER+ breast 
cancer

[53]

        Palbociclib TTK inhibitor CFI-402257 Overcome drug resistance of CDK4/6 inhibitors ER+ breast 
cancer

[21]

Aurora kinase A/B 
inhibitor

Aliserlib/Baraserlib
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    CDK4/6 inhibitor and epigenetic inhibitor

        Palbociclib DNMT target - Inhibit p16, inhibit tumor progression Lung cancer [104]

        Palbociclib EZH2 target AC1Q3QWB Arrest proliferation glioblastoma [107, 108]

        - PRMT target - Prevent CDK4/6 from forming a complex with 
CyclinD; Arrest proliferation

- [110]

        Palbociclib HDAC target entinostat/(MS-275) Activation of p21 inhibits tumor progression ER+ breast 
cancer

[112, 113]

        Palbociclib BET inhibitor JQ1 Prevent proliferation and promote aging TNBC [115]

        Palbociclib KDM inhibitor GSK-J4 Decrease the expression of the E2F target gene 
and the chromatin accessibility of MYCN

Neuroblastoma [117]

    CDK4/6 inhibitor and other target inhibitors

        Palbociclib lysosome Antibiotic azithromycin, antidepressant 
siramesine, antimalaria compound 
chloroquine

Enhance the synthesis of lysosomes, increase 
the number of lysosomes, and overcome the drug 
resistance of CDK4/6 inhibitors

TNBC [119]

        - PROTAC - Degradation of CDK4/6 - [120, 121]

    CDK4/6 inhibitor and immunotherapy

        Palbociclib/G1T28 (trilaciclib)/Abemaciclib Immune checkpoint 
inhibitor

PD-1 Improve immune microenvironment; Enhance 
anti-tumor immunity; Improve T cell memory; 
Sensitizing the therapeutic effect of PD-1

Colorectal cancer, 
ER+ breast 
cancer

[126, 127]
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tor prolongs PFS by 13.1 months (14.5 months 
vs. 27.6 months) compared to letrozole alone 
[83]. In metastatic ER-positive breast cancer, 
ESR1 mutation is frequently observed during 
aromatase inhibitor treatment, but is rare in  
the primary tumor [84]. Patients with ESR1 
mutation benefit from the combination of ful-
vestrant and CDK4/6 inhibitor [85]. The clinical 
trial of advanced breast cancer has shown that 
fulvestrant combined with CDK4/6 inhibitor 
prolongs overall survival (OS) by 5.2 months 
(29.7 months vs. 34.9 months) compared to 
fulvestrant alone [86].

CDK4/6 inhibitor and targeted therapy

Targeted therapy is a treatment method that 
targets a specific cancer site, which could be a 
gene or a protein molecule in tumor cells. 
Targeted therapy interferes with tumor metas-
tasis, and inhibits tumor cell proliferation, dif-
ferentiation, and apoptosis [87]. Commonly 
used targeted therapies included several inhib-
itor types targeting PARP, angiogenesis, kinase, 
phosphatase, and epigenetic modulation [88]. 
Compared to traditional chemotherapy, target-
ed therapy has minimal side effects and the- 
refore become increasingly popular among 
patients.

CDK4/6 inhibitor and PARP inhibitor

Poly ADP-ribose Polymerase (PARP) is a crucial 
enzyme involved in the repair of single-strand-
ed DNA gaps. PARP inhibitors are small mole-
cule drugs that exhibit a synergistic lethal effect 
with BRCA1/BRCA. Currently, Olaparib, Ruca- 
parib, Niraparib, Talazoparib (Talzenna), and 
Veliparib (ABT-888) have been approved by the 
FDA for cancer treatment [89].

It has been discovered that combining PARP 
inhibitor (Olaparib) and CDK4/6 inhibitor (Pal- 
bociclib/Abemaciclib) therapy can synergisti-
cally inhibit the RB1-E2F1 signal axis at the 
transcription and post-translation levels, result-
ing in cell cycle arrest and E2F1 gene target 
inhibition. Moreover, combined therapy can 
suppress tumor cell growth, induce cell apop- 
tosis, and inhibit neuroendocrine differentia-
tion [90]. Additionally, CDK4/6 inhibitor-induc- 
ed E2F1-RB1-HDAC1-PRC2/EZH2 inhibitory 
complex formation can down-regulate tran-
scription and inhibit PARP1 expression, thereby 
impairing DNA repair mediated by OGG1 and 

improving lung cancer cell sensitivity to topoi-
somerase II (Etoposide) inhibition [91]. Zhu et 
al. have demonstrated that β-catenin overex-
pression, particularly the over-phosphorylation 
of its Ser675 site, activates the Wnt signaling 
pathway, which mediates the resistance of 
PARP inhibitor (Olaparib), whereas CDK4/6 
inhibitor (Palbociclib) can significantly inhibit 
this resistance [92]. It has been proven that 
PARP inhibitor (Olaparib) and CDK4/6 inhibi- 
tor (Palbociclib) exhibit a synergistic effect in 
triple-negative breast cancer (TNBC) with BRCA 
mutation by significantly inhibiting homologous 
recombination repair (HR), increasing DNA 
damage, and inhibiting tumor progression.

CDK4/6 inhibitor and other kinase inhibitors

Small-molecule kinase inhibitors have emerged 
as a promising therapeutic target in recent 
decades, providing a wide range of treatment 
options. Among the popular kinase inhibitors 
are the cyclin-dependent kinase (CDK) inhibi-
tor, epidermal growth factor receptor (EGFR) 
inhibitor, fibroblast growth factor receptor (FG- 
FR) inhibitor, vascular endothelial growth factor 
receptor (VEGFR) inhibitor, Bruton tyrosine 
kinase (BTK) inhibitor, Janus kinases (JAK) inhi- 
bitor, and phosphatidylinositol 3-kinase (PI3K) 
inhibitor [93]. FDA has approved numerous 
kinase inhibitors for the treatment of various 
types of cancers.

CDK4/6 inhibitors and EGFRs inhibitors: EGFRs 
represent a promising therapeutic target for 
non-small cell lung cancer. The EGFR tyrosine 
kinase inhibitor (TKI) has advanced to the 
fourth generation. In the context of EGFR inhi- 
bitor (Osimertinib) resistance, the non-small 
cell lung cancer (NSCLC) cell model upregulat-
ed RB1 protein phosphorylation levels and 
demonstrated sensitivity to CDK4/6 inhibition. 
Notably, co-treatment with the EGFR inhibitor 
(Osimertinib) and CDK4/6 inhibitor (Abemaci- 
clib) did not exhibit a synergistic effect in inhib-
iting cell growth, spheroid formation, colony for-
mation, or induced aging. However, the use of 
CDK4/6 inhibitor (Abemaciclib) effectively pre-
vented the emergence of EGFR inhibitor (Osi- 
mertinib) drug resistance [94]. In their study, 
Qin et al. demonstrated the efficacy of the 
CDK4/6 inhibitor palbociclib in overcoming 
acquired resistance to the EGFR inhibitor Osi- 
mertinib in non-small cell lung cancer (NSCLC). 
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The combined treatment of these inhibitors 
exhibited a synergistic effect by arresting cell 
cycle progression and inhibiting tumor growth. 
This effect was achieved by significantly reduc-
ing the phosphorylation level of the retinoblas-
toma protein (RB1) through the inhibition of 
CDK4/6 function, which blocked cell prolifera-
tion [95]. The imbalance in the CCND1-CDK4/6-
RB1 axis is implicated in the development of 
resistance to the dual EGFR/HER2 inhibitor 
Pyrotinib in HER2+ metastatic gastric cancer. 
However, the CDK4/6 inhibitor SHR6390 has 
been demonstrated to overcome this resistan- 
ce and has shown efficacy in clinical patients 
[96]. In HER2+/ER+ breast cancer patients,  
the combination of ubiquitin kinase inhibitor 
Pyrotinib and CDK4/6 inhibitor SHR6390 had a 
synergistic effect in blocking cell cycle progres-
sion, cancer cell proliferation, migration, and 
invasion. Moreover, the combination of these 
drugs prolonged tumor recurrence time in a 
xenograft tumor model [97]. The use of CDK4/6 
inhibitors has great potential in overcoming 
EGFR inhibitors, thereby expanding the poten-
tial applications for EGFR inhibitors in the treat-
ment of cancer.

CDK4/6 inhibitor and other kinase inhibitors: 
CDK4/6, a downstream target of the PI3K/AKT/
mTOR signaling pathway, is frequently activat- 
ed in breast cancer, accounting for 30-40% of 
cases. Aberrant activation of the PI3K/AKT/
mTOR pathway contributes to CDK4/6 inhibitor 
resistance [68]. Recent studies have indicated 
that PI3K inhibitors can reduce Cyclin D1 
expression, thereby inhibiting the downstream 
CDK4/6 signaling pathway. In preclinical mod-
els sensitive to CDK4/6 inhibitors, combined 
inhibition of CDK4/6 and PI3K completely re- 
gressed tumors, which was superior to single 
drug treatment [98]. The combination of 
CDK4/6 inhibitors and endocrine therapy is 
effective in treating advanced ER+ breast can-
cer. The triple combination of endocrine thera-
py (Fulvestrant), CDK4/6 inhibitor (Palbociclib), 
and AKT inhibitor (Capivasertib) continuously 
inhibits breast cancer cell growth and metasta-
sis, as well as xenograft tumor progression. 
This effect is mediated through the simultane-
ous targeting of the cell cycle pathway and 
PI3K/AKT/mTOR pathway [99]. CDK4/6 inhibi-
tors can induce drug resistance in breast can-
cer by promoting ubiquitination and protea-
some degradation of RB1, as well as tran- 

scriptional activation of CDK6. Inhibition of 
Casein kinase-1-ε (CK1ε) can prevent RB1 deg-
radation and downregulate CDK6 expression, 
thereby improving the efficacy of CDK4/6 inhib-
itors. CK1ε has been identified as a promising 
target to overcome CDK4/6 inhibitor resistan- 
ce [100]. Approximately 20% of tumors exhibit 
intrinsic resistance to CDK4/6 inhibitors. WEE1 
inhibitors (AZD1775/Adavosertib) have been 
shown to overcome this resistance by inducing 
apoptosis via increasing G2/M phase arrest 
[53]. Recent studies have identified the spindle 
assembly checkpoint as a therapeutic target 
for CDK4/6 inhibitor-resistant ER+ breast can-
cer, with TTK inhibitors (CFI-402257) and 
Aurora kinase A/B (Aliserlib/Baraserlib) show-
ing high sensitivity in CDK4/6 drug-resistant 
models [21].

CDK4/6 inhibitor and epigenetic inhibitor

Epigenetic inhibitors are a class of therapeu- 
tic agents that modulate gene expression pat-
terns without altering the DNA sequence. 
Small-molecule inhibitors have emerged as the 
primary strategy for achieving targeted epigen-
etic regulation, specifically by regulating the 
“writing”, “reading”, and “erasing” of epigenetic 
marks. Examples of representative epigenetic 
targets and drugs that have advanced to clini-
cal trials include DNA methyltransferase (DN- 
MT) inhibitors such as Azacitidine, Decitabine, 
and Guadecitabine; histone deacetylase (HD- 
AC) inhibitors such as Entinostat and Vorinos- 
tat; histone methyltransferase (HMT) inhibitors 
such as Enhancer of Zeste 2 (EZH2) inhibitors, 
Protein arginine methyltransferase (PRMT) in- 
hibitors, G9a/GLP inhibitors, DOT1L inhibitors, 
SMYD2/3 inhibitors, and SETD7/8 inhibitors; 
histone demethyltransferase (HDM) inhibitors 
such as LSD1 inhibitors; and domain protein 
inhibitors such as BET protein domain inhibi-
tors, PHD protein domain inhibitors, CBX pro-
tein domain inhibitors, Tudor protein domain 
inhibitors, and MBT family protein domain in- 
hibitors [101].

Combined with DNMT inhibitor: The DNMT fam-
ily of enzymes is responsible for catalyzing DNA 
methylation, whereby a methyl group is cova-
lently added to the cytosine of a CpG dinucleo-
tide. In eukaryotes, there exist three types of 
DNMTs, namely DNMT1, DNMT3a, and DN- 
MT3b, which play critical roles in maintaining 
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genomic stability and regulating various cellular 
processes including cell cycle, apoptosis, and 
embryonic development [102]. DNMT inhibitors 
have been shown to re-express genes silenc- 
ed by DNA methylation, leading to direct anti-
tumor effects such as cell cycle arrest, apopto-
sis, and differentiation. Prominent DNMT inhibi-
tors that have entered clinical trials include 
Azacitidine, Decitabine, and Guadecitabine 
[103]. Notably, Li et al. have demonstrated that 
increased methylation of the p16 gene enhanc-
es the sensitivity of lung and gastric cancer 
cells to CDK4/6 inhibitor palbociclib [104].

Combined with an EZH2 inhibitor: EZH2 is a 
catalytic subunit of the polycomb repressive 
complex 2 (PRC2), which is involved in the epi-
genetic regulation of gene expression. As a 
highly conserved histone methyltransferase, 
EZH2 specifically catalyzes the monomethyl-
ation, dimethylation, and trimethylation of ly- 
sine 27 on histone H3 [105]. It has been identi-
fied as a novel target for cancer treatment due 
to its role in promoting tumor growth and 
metastasis. Recent studies have demonstrat-
ed that CDK4/6 phosphorylates EZH2, leading 
to the activation of the STAT3 pathway. The 
CDK4/6-EZH2 pathway has been shown to be a 
potential therapeutic target for psoriasis, and 
treatment with CDK4/6 inhibitors or EZH2 in- 
hibitors has been found to benefit psoriasis 
patients [106]. In addition, AC1Q3QWB has 
been found to block the recruitment of PRC2 
and increase the expression of tumor suppres-
sors by interfering with the interaction between 
HOTAIR and EZH2 [107]. Interestingly, the com-
bination of AC1Q3QWB and CDK4/6 inhibitor 
(Palbociclib) has been found to have a more 
significant cell cycle retardation effect than 
CDK4/6 inhibitor (Palbociclib) alone in gliomas 
with high HOTAIR and EZH2 expressions but 
low CWF19L1 expression. These findings sug-
gest that the use of EZH2 inhibitors in com- 
bination with other targeted therapies may 
have therapeutic benefits for various types of 
cancer [108].

Combined with PRMT inhibitor: PRMTs are 
enzymes that catalyze the methylation of vari-
ous proteins, including both histones and non-
histones. There are nine members of the PRMT 
family, designated PRMT1-9 [109]. Currently, 
most of the small molecule PRMT inhibitors 
that are entering clinical trials are PRMT5 inhib-

itors. PRMT1, for example, methylates CDK4/6, 
which prevents CDK4/6 from forming a com-
plex with CyclinD. In addition, PRMTs methylate 
cyclin kinase inhibitors (CKIs), such as p16, 
p21, and p27. Furthermore, PRMT1 and PRMT5 
methylate E2F to inhibit the transition of the 
cell cycle from G0 to S phase [110]. Thus, com-
bining a PRMT inhibitor and a CDK4/6 inhibitor 
could potentially synergistically inhibit cell cycle 
progression, although further research is need-
ed to confirm this hypothesis.

Combined with HDAC inhibitor: Histone dea- 
cetylases (HDACs) consist of 18 isoforms that 
can achieve global deacetylation. Currently, 
four HDAC inhibitors have been approved by 
the FDA, and one of them, tucidinostat, devel-
oped by Microchip, is also approved in China 
[111]. HDAC1, as a reversible regulator of cell 
proliferation, can inhibit p21 expression. On the 
other side, p21 gene deletion rescues HDAC1 
function [112]. Although HDAC’s involvement in 
the study of the CDK4/6 inhibitors resistance 
mechanism has been limited, several studies 
have confirmed that inhibiting HDAC can en- 
hance the therapeutic effect of CDK4/6 inhibi-
tors by activating p21. In ER+ breast cancer, 
the combination of the HDAC inhibitor entino-
stat (MS-275) and CDK4/6 inhibitor palbociclib 
can synergistically block cell cycle progression 
[113].

Combined with BET inhibitor: Brominedomain 
and terminal outer domain (BET) family pro-
teins, which include BRD2, BRD3, BRD4, and 
BRDT, are involved in the regulation of tran-
scription, cell cycle progression, and cell differ-
entiation [114]. Of these, BRD4 has been most 
extensively studied. Ge et al. recently demon-
strated that combining a CDK4/6 inhibitor (Pal- 
bociclib), a tubulin inhibitor (Paclitaxel), and a 
BET inhibitor (JQ1) can synergistically induce 
cell cycle arrest and promote tumor cell senes-
cence [115].

Combined with KDM inhibitor: KDM6, a mem-
ber of the lysine demethylated protein family, 
includes KDM6A, KDM6B, and UTY. KDM inhib-
itors demethylate by targeting histone lysine 
residues [116]. Previous studies have shown 
that KDM6B promotes CDK4/6-pRB-E2F acti-
vation in MYCN-amplified neuroblastoma by 
stabilizing the enhancer. Inhibition of KDM6B 
resulted in decreased expression of E2F target 
genes and chromatin accessibility of MYCN, as 
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well as an increase in the inhibitory marker 
H3K27me3 and a decrease in the active mark-
er H3K4me1. Overexpression of CDK4/6 or 
knockout of RB1 led to resistance to the KDM6 
inhibitor (GSK-J4) [117]. Therefore, KDM6B may 
serve as an effective therapeutic target to over-
come resistance to CDK4/6 inhibitors.

In addition, research on the combination of 
CDK4/6 and epigenetic inhibitors gained at- 
traction with the advancement of epigenetic 
research. Recent studies suggest that cross-
talk between CDK4/6 and histone methyltrans-
ferase SMYD2 regulates gene transcription, 
tubulin methylation, and cilium generation. 
CDK4/6 positively regulates the phosphoryla-
tion and enzyme activity of SMYD2, while 
SMYD2 also positively regulates CDK4/6 ex- 
pression [118]. Multiple strategies that com-
bine CDK4/6 inhibitors with epigenetic inhibi-
tors are currently recruiting patients for clinical 
trials.

CDK4/6 inhibitor and other targets

Combined with lysosomotropic or lysosomal-
destroying compound: Recent studies have 
demonstrated that several triple-negative bre- 
ast cancer (TNBC) cells heavily rely on CDK4/6 
for their proliferation. However, these TNBC 
cells can develop resistance to CDK4/6 inhibi-
tors due to the absorption of the inhibitor by 
cancer lysosomes. In fact, lysosomal enhance-
ment and upregulation in TNBC cells could  
facilitate CDK4/6 inhibitor absorption and 
increase drug resistance. To overcome this ch- 
allenge, co-administration of lysosomal-desta-
bilizing agents such as the antibiotic azithromy-
cin, antidepressant siramesine, or antimalarial 
compound chloroquine has been shown to  
render drug-resistant TNBC cells sensitive to 
CDK4/6 inhibitors [119].

PROTAC-mediated blocking of CDK4/6: In addi-
tion to the conventional CDK4/6 inhibitors, pro-
teolytic targeting chimera (PROTAC) technolo-
gies have also been developed as a promising 
strategy for CDK4/6 inhibition. PROTACs are 
heterobifunctional molecules comprising a re- 
ceptor ligand and a substrate ligand for the E3 
ubiquitin ligase complex, which recruits the  
target protein to the E3 ubiquitin ligase for  
ubiquitination and degradation [120]. Various 
CDK4/6-targeted PROTACs have been design- 
ed to directly degrade CDK4/6 [121], thereby 

overcoming the drug resistance of CDK4/6 
inhibitors.

CDK4/6 inhibitor and immunotherapy

Tumor immunotherapy is a treatment modality 
that harnesses the immune system’s ability to 
recognize and eliminate malignant cells, there-
by providing an enhanced immune response to 
the body [122]. It involves various strategies, 
including monoclonal antibodies, cancer vac-
cines, adoptive cell therapy, oncolytic viruses, 
immune checkpoint inhibitors, cytokines, and 
immune adjuvants. CAR-T cell therapy and 
immune checkpoint inhibitors are among the 
most effective modalities in clinical practice 
[123].

Recent studies have indicated that CDK4/6 
inhibitors modulate the tumor immune micro-
environment, facilitating cytotoxic T cell-medi-
ated tumor inhibition and enhancing anti-tumor 
immunity [124, 125]. CDK4/6 inhibitors can 
also boost T cell immune memory, thereby fur-
ther enhancing anti-tumor immunity [126]. 
Furthermore, CDK4/6 inhibitors have been 
found to enhance the response to immune 
checkpoint inhibitors (PD-1) [127]. Although 
several studies have identified CDK4/6 inhibi-
tors as regulators of immunity, further research 
is required to fully understand the impact of 
CDK4/6 on immune regulation. Nonetheless, it 
is possible that regulating immunosuppression 
could be a promising therapeutic avenue for 
overcoming CDK4/6 inhibitors, but more exten-
sive research is necessary.

In summary, combination therapies involving 
CDK4/6 inhibitors have proven to be a promis-
ing strategy for improving treatment outcomes 
in patients with hormone receptor-positive bre- 
ast cancer. By targeting multiple pathways, 
these therapies can enhance the effectiveness 
of CDK4/6 inhibitors and overcome treatment 
resistance. The use of CDK4/6 inhibitors in 
combination with PI3K inhibitors, immune che- 
ckpoint inhibitors, endocrine therapy, or che-
motherapy has all shown promising results in 
clinical trials, with improved progression-free 
survival and overall survival rates observed. 
These findings highlight the potential for col-
laboration between different drugs and treat-
ment modalities to optimize cancer treatment 
and improve patient outcomes.
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Conclusions

Due to the clinical efficacy displayed by various 
CDK4/6 inhibitors, research in this field re- 
mains active. Researchers aim to enhance the 
efficacy of existing CDK4/6 inhibitors and 
develop novel ones to cater to the needs of a 
larger patient population. Moreover, investiga-
tions into the mechanisms of drug resistance  
to CDK4/6 inhibitors are advancing, and it is 
believed that more combined strategies will 
emerge in the future to overcome such resis-
tance. Furthermore, the combination of CDK4/ 
6 inhibitors and immunotherapy shows great 
potential for development in sensitized immu-
notherapy, and further exploration in this direc-
tion is warranted.
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