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Abstract: Background: Ossification of the ligamentum flavum (OLF) represents a pathologic condition contributing
to spinal stenosis. Its underlying molecular mechanisms have not been fully elucidated. The present study aimed to
identify gene expression alterations and associated molecular pathways in OLF through comprehensive bioinformat-
ic analysis. Methods: Gene expression profiles from GSE113212 were analyzed to identify differentially expressed
genes (DEGs) between OLF and non-OLF tissues. Functional enrichment was assessed by GO and KEGG analyses.
A protein-protein interaction (PPI) network was constructed to screen hub genes, while immune cell infiltration
was quantified using CIBERSORT. Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA)
were employed to explore pathway-level dysregulation. Results: A total of 148 DEGs were identified, including 118
downregulated and 30 upregulated genes in OLF tissues compared to non-OLF controls. Functional analyses re-
vealed significant enrichment in muscle contraction-related processes, immune responses, and cytokine-cytokine
receptor interactions. FN1, EGFR, and ACTA1 were identified as key hub genes. GSEA highlighted the activation of
epithelial-mesenchymal transition (EMT), glycolysis, and inflammatory responses pathways in OLF. Immune infiltra-
tion analysis demonstrated distinct alterations in dendritic cells, macrophages, and eosinophils, with hub genes ex-
hibiting strong correlations with specific immune cell subsets. Conclusion: This study uncovered possible molecular
mechanisms driving OLF, emphasizing the interplay between immune-related pathways and key fibrotic regulators
(FN1, EGFR, and ACTA1). These findings offer novel insight into the immune microenvironment of OLF and suggest
potential targets for therapeutic intervention.

Keywords: Ossification of ligamentum flavum, differentially expressed genes, biomarker, immune cells infiltration,
bioinformatics analysis

Introduction

Ossification of the ligamentum flavum (OLF) is
a degenerative spinal disorder predominantly
observed in East Asian populations, particular-
ly among middle-aged and elderly individuals
[1, 2]. The thoracic variant (TOLF) characteristi-
cally involves the lower thoracic spine, leading
to thoracic spinal stenosis and progressive spi-
nal cord compression. Clinical manifestations
include lower extremity motor weakness, sen-
sory deficits, gait disturbances, and bladder
dysfunction, all of which severely impair a pa-
tient’s quality of life [3, 4]. Currently, surgical
decompression remains the gold standard tre-
atment for TOLF [5, 6]. Nevertheless, surgical

intervention carries considerable risks, with
neurological injury and cerebrospinal fluid leak-
age representing the most frequently encoun-
tered complications [6, 7]. Clinicians face chal-
lenges in diagnosing and treating this disease,
as there are currently no effective strategies to
halt or slow the progression of TOLF due to its
uncertain pathogenesis [8, 9]. Therefore, eluci-
dating the underlying mechanism of OLF is
needed to identify therapeutic targets. OLF is
a complex, multifactorial disease influenced
by both hereditary and environmental factors,
including genetic predisposition, mechanical
stress, chronic inflammation, infection, and
metabolic disorders, all of which contribute to
disease susceptibility [8, 9]. Despite accumu-
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lating evidence, the precise molecular mecha-
nisms underlying the onset and progression of
OLF remain largely unknown.

The immune response plays a pivotal role in
the pathogenesis of various human diseases,
including chronic inflammation, tumorigenesis,
and viral infection. Activated immune cells su-
ch as neutrophils, monocytes, macrophages,
mast cells, T cells, and dendritic cells are impli-
cated as key mediators in tissue repair, remod-
eling, and fibrosis [10, 11]. Recent studies have
provided novel insight into the pathogenesis of
OLF by elucidating the role of immune cell infil-
tration in driving the inflammatory response
[12-14]. For instance, previous studies have
identified a chronic inflammatory microenviron-
ment within OLF tissues, characterized by sub-
stantial infiltration of immune cells, particularly
macrophages [15, 16]. Furthermore, specific
pro-inflammatory cytokines, such as tumor ne-
crosis factor-alpha (TNF-a) and transforming
growth factor-beta (TGF-), have been implicat-
ed in promoting the pathologic ossification pro-
cess [17, 18]. However, the precise molecular
mechanisms underlying the immune-inflamma-
tory response in OLF remain poorly understood.
Therefore, comprehensive investigation of im-
mune cell infiltration patterns and within ossi-
fied ligamentum flavum is crucial for identifying
safe and effective diagnostic biomarkers and
therapeutic targets.

In this study, we retrieved gene expression
data from patients with OLF from the Gene
Expression Omnibus (GEO) database and per-
formed comprehensive bioinformatic analyses.
First, we conducted an analysis to identify dif-
ferentially expressed genes (DEGs) between
OLF and non-OLF samples, followed by func-
tional enrichment and signaling pathway analy-
ses. Subsequently, we employed immune cell
infiltration analysis using the CIBERSORT algo-
rithm to characterize the composition and ab-
undance of immune cell populations in OLF tis-
sues compared to healthy controls. Finally, we
systematically investigated the correlations
among DEGs, enriched signaling pathways, and
infiltrating immune cell infiltration to elucidate
their potential roles in OLF pathogenesis. Coll-
ectively, our findings provide novel insight into
the immune-regulatory mechanisms involved in
the pathogenesis of OLF, which may facilitate
the identification of diagnostic biomarkers and
therapeutic targets.
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Materials and methods
Microarray dataset acquisition and description

Gene expression profiles were retrieved
from the GSE113212 dataset available in the
GEO database (http://www.ncbi.nim.nih.gov/
geo) [19]. The GSE113212 dataset, submitted
by Masatoshi Morimoto et al., was generated
using the GPL17077 platform (Agilent-039494
SurePrint G3 Human GE v2 8x60K Microarray
039381) and comprises eight human ligamen-
tum flavum samples. These samples are cate-
gorized into two groups: four samples annotat-
ed as “Flavum_young” (aged 19-24 years, re-
presenting non-hypertrophic ligamentum fla-
vum from young individuals) and four samples
annotated as “Flavum_elderly” (aged 75-83
years, representing hypertrophic ligamentum
flavum from elderly patients).

Study design and sample selection

We conducted a comprehensive secondary
analysis of this publicly available dataset. The
inclusion criteria were defined as follows: (1)
samples belonging to the GSE113212 series;
(2) samples derived from human ligamentum
flavum tissue; and (3) availability of complete
and high-quality gene expression data on the
GPL17077 platform. Based on these criteria,
the case group consisted of the four elderly
hypertrophic ligamentum flavum samples (“Fla-
vum_elderly”), while the control group com-
prised the four young non-hypertrophic liga-
mentum flavum samples (“Flavum_young”).
The exclusion criteria were established to en-
sure data quality and relevance: (1) samples
not derived from human ligamentum flavum tis-
sue; (2) samples from non-human organisms;
and (3) samples with incomplete, corrupted, or
missing gene expression data.

Rationale for sample classification

Given the well-established pathologic associa-
tion between ligamentum flavum hypertrophy
and ossification of the ligamentum flavum
(OLF), wherein hypertrophy is considered a pre-
cursor or concurrent feature of OLF [20], the
hypertrophic elderly ligamentum flavum sam-
ples in GSE113212 were designated as repre-
sentative of the OLF phenotype in the present
analysis. This classification is supported by pre-
vious studies demonstrating that age-related
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hypertrophic changes in the ligamentum flavum
share similar molecular and cellular character-
istics with OLF pathology [8, 21-23].

Data processing and identification of differen-
tially expressed genes

DEGs were identified through comparative
transcriptomic analysis of OLF and non-OLF
tissue samples from the GSE113212 data-
set using GEO2R (http://www.ncbi.nlm.nih.gov/
geo/geo2r/) [19], an interactive web-based an-
alytical tool that implements the limma R pack-
age for statistical analysis. The eight ligamen-
tum flavum samples were stratified into two
groups based on the original dataset annota-
tions: the OLF group (n = 4, “Flavum_elderly”)
and the non-OLF control group (n =4, “Flavum_
young”). Raw expression data were subjected
to quantile normalization and log2-transforma-
tion using the default parameters of GEO2R to
ensure data comparability and reduce techni-
cal variation. Quality control procedures were
implemented to exclude probes lacking official
gene symbols or containing missing expression
values. When multiple probes corresponded to
the same gene symbol, the probe with the larg-
est absolute log, fold change (|log,FC|) was
retained to represent that gene. For each pro-
be, GEO2R employed a linear modeling app-
roach to calculate the log,FC and correspond-
ing p-value for differential expression between
OLF and non-OLF tissues. Genes satisfying the
dual criteria of [log,FC| > 3.00 and p-value <
0.05 were designated as statistically signifi-
cant DEGs. To comprehensively visualize the
expression patterns and distribution of DEGs
between the two groups, we generated heat-
maps to display hierarchical clustering of gene
expression profiles, volcano plots to illustrate
the magnitude and statistical significance of
differential expression, and bar charts to sum-
marize the numbers of upregulated and down-
regulated genes.

Function enrichment analysis of DEGs

To elucidate the biological functions and molec-
ular pathways associated with the identified
DEGs, we performed comprehensive functional
enrichment analysis using the Database for
Annotation, Visualization, and Integrated Dis-
covery (DAVID, http://david.abcc.ncifcrf.gov/)
[24]. Gene Ontology (GO) enrichment analysis
was conducted to categorize DEGs into three
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functional domains: biological process (BP),
molecular function (MF), and cellular compo-
nent (CC) [25]. Concurrently, Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway
analysis was performed to identify significantly
enriched signaling pathways and metabolic
processes. For both GO and KEGG analyses,
statistical significance was defined as P < 0.05,
and only terms or pathways meeting this thre-
shold were considered significantly enriched.
The top five enriched GO terms in each cate-
gory (BP, MF, and CC) and the most significantly
enriched KEGG pathways were selected for
visualization and further interpretation.

Protein-protein interaction (PPIl) network con-
struction and hub genes identification

Protein-protein interactions (PPIs) are funda-
mental to understanding the coordinated mo-
lecular mechanisms underlying ligamentum fla-
vum ossification. In OLF, critical processes
such as extracellular matrix (ECM) remodeling,
inflammatory activation, and osteogenic differ-
entiation are orchestrated by complex net-
works of interacting proteins rather than indi-
vidual genes acting in isolation. Therefore, con-
structing a PPl network of DEGs can facilitate
the identification of central regulatory nodes in
OLF pathogenesis. The Search Tool for the
Retrieval of Interacting Genes (STRING, http://
string.embl.de/) database [26] was employed
to construct the PPI network using the identi-
fied DEGs, with a confidence score threshold of
> 0.7. The network was visualized and analyzed
using Cytoscape software, and hub genes were
identified based on a degree centrality thresh-
old of > 15. To comprehensively characterize
hub gene importance, five complementary cen-
trality metrics (Closeness, Betweenness, Ra-
diality, BottleNeck, and Stress) were calculated
using the Cytohubba plugin [27, 28]. Genes
consistently ranked highly across all five algo-
rithms were designated as key hub genes for
further analysis.

Gene Set Variation Analysis (GSVA)

To evaluate systematically the pathway-level
differences in biological processes between
OLF and non-OLF samples, we performed GSVA
[29], a non-parametric and unsupervised meth-
od for assessing gene set enrichment across
sample expression profiles. Gene sets repre-
senting well-defined biological pathways and
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processes were retrieved from the Molecu-
lar Signatures Database (MSigDB; http://soft-
ware.broadinstitute.org/gsea/msigdb/index.
jsp) [29]. The GSVA algorithm was then applied
to calculate enrichment scores for each gene
set in individual samples, thereby transforming
gene-level expression data into pathway-level
enrichment scores. This transformation en-
ables the quantitative assessment of biological
pathway activity and facilitates the identifica-
tion of functionally relevant pathways that dif-
fer between OLF and non-OLF tissues. By con-
verting gene expression variations into path-
way-level changes, GSVA provides a compre-
hensive framework for evaluating the biological
functional states of samples and identifying
key pathways associated with OLF pathogene-
sis. Differentially enriched pathways between
the two groups were visualized using heat-
maps, with statistical significance determined
by appropriate comparative analysis.

Gene Set Enrichment Analysis (GSEA)

To identify coordinated pathway-level changes
between OLF and non-OLF tissues, GSEA was
performed using GSEA software (Version 4.2.3;
https://www.gsea-msigdb.org/gsea/index.jsp)
[30]. GSEA evaluates whether predefined gene
sets show statistically significant, concordant
differences between the two biological states
by analyzing the entire ranked gene list rather
than focusing solely on individual differentially
expressed genes. Genes were ranked using the
Signal2Noise metric, which measures the dif-
ference in mean expression between pheno-
types relative to standard deviation. The analy-
sis was conducted with 1,000 permutations
using the ‘phenotype’ permutation type. Gene
sets containing between 15 and 500 genes
were included to ensure reliable statistical an-
alysis. The hallmark gene set collection (h.all.
v7.1l.symbols.gmt) from the MSigDB [31, 32]
was used as the reference. Significantly enrich-
ed gene sets were identified based on the fol-
lowing criteria: normalized enrichment score
(NES) > 0.6, nominal P-value < 0.05, and false
discovery rate (FDR) g-value < 0.25.

Immune cell infiltration analysis

To characterize the immune microenvironment
in OLF tissues, immune cell infiltration analysis
was performed using single-sample gene set
enrichment analysis (ssGSEA) and the CIBER-
SORT algorithm [33]. CIBERSORT was employed
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to quantify the relative proportions of 22 dis-
tinct immune cell types in each sample using
the CIBERSORT platform (https://cibersortx.
stanford.edu/) [34] with the LM22 signature
matrix. Only samples with CIBERSORT P-values
< 0.05 were retained for analysis to ensure reli-
able deconvolution results. Correlation analysis
among the 22 immune cells types was per-
formed using Pearson correlation coefficients,
and the results were visualized using heatmaps
generated by the Sangerbox platform (http://
vip.sangerbox.com/home.html) [35]. To inves-
tigate the relationships between hub genes
(FN41, EGFR, and ACTA1) and the immune micro-
environment, Pearson correlation analysis was
conducted between hub gene expression le-
vels and immune cell abundances. Correlations
were considered significant if they met the cri-
teria of |r| > 0.3 and P < 0.05.

Results
Identification of DEGs

Differential gene expression analysis of the
GSE113212 dataset, comparing OLF tissues (n
= 4) with non-OLF controls (n = 4), identified a
total of 148 DEGs using the criteria of |log,FC|
> 3.00 and P-value < 0.05 (Table 1). The ex-
pression patterns of these DEGs were visual-
ized through a heatmap (Figure 1A) and a vol-
cano plot (Figure 1B), demonstrating distinct
transcriptomic profiles between the two gro-
ups. Among the 148 DEGs, 118 genes (79.7%)
were significantly downregulated, while 30
genes (20.3%) were significantly upregulated in
OLF tissues compared to controls (Table 1;
Figure 1C). The upregulated genes included
FN1, IL11, CCL3, MMP1, and TNFSF11, which
are associated with ECM remodeling, inflam-
mation, and osteogenesis. The downregulated
genes were enriched for muscle-related genes
(ACTA1, MYH1/2/7, TNNT1, and CKM) and
immune-related genes (EGFR, PTPRC, CD3E,
and CD86), suggesting complex transcriptomic
reprogramming in OLF pathogenesis.

GO and KEGG pathway enrichment analysis

To elucidate the biological functions of the 148
DEGs, functional enrichment analysis of the
DEGs was conducted using the DAVID web tool.
GO analysis categorized the DEGs into BP, MF,
and CC domains (P < 0.05). GO biological pro-
cess analysis revealed significant enrichment
in muscle contraction, skeletal muscle contrac-
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Table 1. Identification of 148 DEGs associated with OLF

Regulation Gene name

Upregulated (n = 30) ULBP1, GABRD, KIAA1751, LY6D, COL2A1, CHRDL2, IL11, PVRL4, NXPH4, SBSN, FN1,
CYTLZ, CCL3, CYP27C1, CCL3L3, CA9, CRTAC1, TREM2, CLEC3A, TNFSF11, AMTN,
SOX11, RN5-8S1, CCL18, CLEC18C, MMP1, C100rf81, SYT13, CRLF1, CBLN4

Downregulated (n = 118) MYADML, FGFR10P2, C9orf117, C60rf138, JPH4, BTC, GIGYF2, IL2RA, JSRP1, FEM1A,
LRRC10, ADARB2, JAKMIP2, WNT2B, CA5BP1, SPTY2D1, TGM6, NUDCD3, ZNF620,
COG8, BTN3A1, FLJ42842, CISH, PIK3R5, FLG, WDR67, EGFR, FMR1NB, TTLL9,
Clorfel, CTNND1, PPAN-P2RY11, ATXN3L, KCNIP1, GPR17, EFTUD1, AKAP12, AANAT,
CCDC150, RTKN2, FAM160A1, ZCCHC13, OR5212, RNF150, SLC10A1, REP15, TEF,
RALYL, C130rf30, CDRT15L2, DHRS4L1, DCDC2, DPRX, BCR, WDR33, TTC23, TEX12,
ZNF806, GRIK3, PPP1R1A, FTO, BICC1, PTPRC, OR52E8, TMEM52, Q5A5F0, CCDCE6,
FGA, IFT74, CALCA, XRRA1, C4orf51, OSTBETA, XAGE-4, SMARCA4, CD3E, MAGEBG,
MGC39584, GPR182, KRT79, RPA4, PROM2, NDP, RAP1GAP, GPR179, ACTA1,
PPP6R1, PNMT, SPEN, LRRC2, CKM, HMBOX1, CPNE9, MYOT, PPP1R1B, VPS18, CD86,
MYH7, MYL1, MB, MYH2, MYH1, SLCO1B3, ATP2A1, PLK5, NRAP, TNNT1, MYLPF,
BCAS1, TCAP, TNNC1, XIRP2, EEF1A2, SYNPO2L, CSRP3, LMOD3, CNIH2, FLJ41350
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Figure 1. Identification of differentially expressed genes (DEGs) in OLF and non-OLF samples. A. Heatmap displays
the expression profiles of 148 identified DEGs, showing clear differences between non-OLF and OLF samples (n = 4
per group). B. Volcano plot illustrates the overall distribution of DEGs, with significantly upregulated (red dots) and
downregulated (green dots) genes highlighted. C. Bar chart shows that 148 DEGs were identified in the GSE113212
dataset, comprising 118 downregulated and 30 upregulated genes in OLF samples.

Table 2. The top five enriched GO terms identified among the 148 DEGs associated with OLF

Category Description Count P-value
BP muscle contraction 8 1.15E-06
BP skeletal muscle contraction 5 2.03E-05
BP muscle filament sliding 4 9.39E-05
BP sarcomere organization 5 9.93E-05
BP monocyte chemotaxis 5 1.58E-04
cC muscle myosin complex 4 9.35E-05
cc Z disc 7 1.81E-04
CcC sarcomere 5 2.20E-04
cc myosin Il complex 4 4.00E-04
CcC extracellular space 25 7.87E-04
MF actin binding 9 0.001
MF structural constituent of muscle 4 0.002
MF actin filament binding 7 0.003
MF receptor binding 9 0.004
MF alpha-actinin binding 3 0.004
KEGG Rheumatoid arthritis 6 2.26E-04
KEGG Motor proteins 7 9.93E-04
KEGG Adrenergic signaling in cardiomyocytes 5 0.013
KEGG Viral protein interaction with cytokine and cytokine receptor 4 0.022
KEGG Cytokine-cytokine receptor interaction 6 0.032

tion, muscle filament sliding, sarcomere organi-
zation, and monocyte chemotaxis (Table 2;
Figure 2A). Molecular function analysis showed
significant enrichment in actin binding, struc-
tural constituent of muscle, actin filament bind-
ing, receptor binding, and alpha-actinin binding
(Table 2; Figure 2B). Cellular component analy-
sis indicated that DEGs were primarily localized
to the muscle myosin complex, Z disc, sarco-
mere, myosin Il complex, and extracellular spa-
ce (Table 2; Figure 2C).

KEGG pathway analysis identified five signifi-
cantly enriched pathways (P < 0.05), including
rheumatoid arthritis, motor proteins, adrener-
gic signaling in cardiomyocytes, viral protein
interaction with cytokines and cytokine recep-
tors, and cytokine-cytokine receptor interaction
(Table 2; Figure 2D). These findings indicated
that OLF is characterized by downregulation of
muscle contractile genes and activation of in-
flammatory and immune-related pathways.
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GSEA and GSVA analysis

To evaluate pathway-level changes in OLF,
GSEA was performed using GSEA software [19,
24] on the entire ranked gene expression data-
set from OLF (n = 4) and non-OLF (n = 4) sam-
ples. Of the 49 hallmark gene sets analyzed,
38 (77.6%) showed increased activity in OLF
samples, with 9 gene sets (18.4%) exhibiting
significant enrichment at FDR g-value < 0.25.
In contrast, 11 gene sets (22.4%) showed in-
creased activity in the controls, with 5 (10.2%)
significantly enriched. The top seven signifi-
cantly enriched gene sets in OLF samples
(Table 3; Figure 3A-G) included: HALLMARK_
EPITHELIAL_MESENCHYMAL_TRANSITION
(NES = 2.05, FDR = 1.15x10), HALLMARK_
GLYCOLYSIS (NES = 2.01, FDR = 2.03x10%?),
HALLMARK_CHOLESTEROL_HOMEOSTASIS
(NES = 1.80, FDR = 9.39x10%), HALLMARK _
IL6_JAK_STAT3_SIGNALING (NES = 1.77, FDR
= 9.93x10°), HALLMARK_ANDROGEN_RESP-
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Figure 2. GO and KEGG pathway enrichment analysis of DEGs. A. Biological processes (BP) analysis revealed that
DEGs were predominantly enriched in terms related to muscle contraction, sarcomere organization, and monocyte
chemotaxis. B. Molecular function (MF) analysis highlighted significant associations with actin binding and struc-
tural constituents of muscle. C. Cellular component (CC) analysis indicated that the DEGs were primarily localization
to the muscle myosin complex and sarcomere. D. KEGG pathway analysis demonstrated significant enrichment in
signaling pathways such as Rheumatoid arthritis and Adrenergic signaling in cardiomyocytes.

Table 3. GSEA results showing the top 7 gene sets enriched in the OLF phenotype

Description

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION

HALLMARK_GLYCOLYSIS

HALLMARK_CHOLESTEROL_HOMEOSTASIS
HALLMARK_IL6_JAK_STAT3_SIGNALING
HALLMARK_ANDROGEN_RESPONSE
HALLMARK_INFLAMMATORY_RESPONSE

HALLMARK_HYPOXIA

NES NOM p-value FDR g-value
2.05 0 1.15E-06
2.01 0 2.03E-05
1.80 0 9.39E-05
1.77 0.001 9.93E-05
1.63 0.01 1.58E-04
1.58 0.005 9.35E-05
1.56 0.003 1.81E-04

ONSE (NES = 1.63, FDR = 1.58x10*%), HALL-
MARK_INFLAMMATORY_RESPONSE
1.58, FDR = 9.35x10°), and HALLMARK_
HYPOXIA (NES = 1.56, FDR = 1.81x10*). These
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(NES

findings indicated that OLF is characterized by
activation of EMT, metabolic reprogramming,
inflammatory signaling, and hypoxia response
pathways.
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Figure 4. PPl network construction and hub gene identification of DEGs. A. The PPl network of the 148 DEGs was
constructed using the STRING database (confidence score > 0.7), resulting in a network comprising 138 nodes
and 211 edges. Each node represents a protein encoded by a DEG, and each edge represents a protein-protein
interaction. B. Visualization of the PPI network using Cytoscape software. The nodes (blue rectangles) represent
the identified DEGs, and the edges represent the protein-protein interactions. C. Identification of hub genes using
five methods (Closeness, Betweenness, Radiality, BottleNeck, and Stress) implemented in the cytoHubba plugin
of Cytoscape. The top 5 hub genes identified by each method are displayed, with color gradients representing the
ranking scores. D. Venn diagram showing the overlap of hub genes identified by the five algorithms. Three key hub
genes (FN1, EGFR, and ACTA1) were consistently identified across all five algorithms, indicating their central roles in
the PPI network and potential importance in OLF pathogenesis.

GSVA was performed to compare pathway lism, hypoxia, androgen response, spermato-
activity at the individual sample level. GSVA genesis, and IL6/JAK/STAT3 signaling.

identified multiple differentially activated path-
ways between groups (Figure 3H), including
glycolysis, protein secretion, PI3K/AKT/mTOR
signaling, mitotic spindle, inflammatory res- To identify key hub genes in OLF pathogene-
ponse, xenobiotic metabolism, heme metabo- sis, a PPl network was constructed using the

PPl interaction network construction and hub
gene identification
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Table 4. Key central hub genes of the primary connected component

Gene name Closeness Centrality Betweenness Centrality Radiality BottleNeck Stress
FN1 0.508 0.372 0.951 1.968 4860
EGFR 0.512 0.405 0.952 1.952 4562
ACTA1 0.496 0.265 0.949 2.015 3960

STRING database with a confidence score
threshold of > 0.7. The resulting network com-
prised 138 nodes and 211 edges (Figure 4A),
which was visualized using the Cytoscape soft-
ware (Figure 4B). Hub genes were systemati-
cally identified using five complementary cen-
trality algorithms (Closeness, Betweenness,
Radiality, BottleNeck, and Stress) implemented
in the cytoHubba plugin. These algorithms as-
sess different aspects of network topology:
Closeness measures proximity to all nodes,
Betweenness quantifies bridging importance,
Radiality evaluates network centrality, Bottle-
Neck identifies module connectors, and Stress
measures pathway load. The top 5 hub genes
from each algorithm were selected (Figure 4C).
Intersection analysis using a Venn diagram re-
vealed three core hub genes - FN1 (fibronectin
1), EGFR (epidermal growth factor receptor),
and ACTA1 (actin alpha 1) - that were consis-
tently ranked among the top 5 across all five
algorithms (Figure 4D). The detailed centrality
metrics for these hub genes are presented in
Table 4. FN1 showed high scores across all
metrics (Closeness = 0.508, Betweenness =
0.372, Radiality = 0.951, BottleNeck = 1.968,
Stress = 4860), EGFR exhibited the highest
closeness (0.512) and betweenness (0.405)
centrality, and ACTA1 demonstrated substan-
tial centrality scores with the highest Bottle-
Neck value (2.015). These hub genes represent
key molecular players in OLF: FN1 is involved
in ECM remodeling, EGFR mediates growth
factor signaling and cellular proliferation, and
ACTA1 reflects the disruption of normal tissue
architecture. Their consistent identification ac-
ross multiple algorithms strongly supports their
central importance in OLF pathogenesis.

Immune cell infiltration and immune correla-
tion analysis

To characterize the immune microenvironment
in OLF, we employed CIBERSORT to quantify
22 distinct immune cell types in OLF and non-
OLF samples. The immune cell composition for
each sample is shown in Figure 5A. Compara-
tive analysis revealed that resting dendritic
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cells were significantly elevated in OLF tissues
(P < 0.05), while M1 macrophages and eosino-
phils were significantly decreased (P < 0.05)
(Figure 5B), indicating a distinct immune infil-
tration pattern in OLF. Correlation analysis
among the 22 immune cell types (Figure 5C)
revealed strong positive correlations between
naive B cells and plasma cells (r > 0.8, P <
0.01), CD4 memory resting T cells and follicular
helper T cells (r > 0.75, P < 0.01), gamma delta
T cells with resting NK cells and neutrophils (r >
0.7, P < 0.05), and resting mast cells with MO
macrophages and activated mast cells (r >
0.65, P < 0.05). In contrast, memory B cells
and resting mast cells showed the weakest cor-
relations (r < 0.2, P > 0.05).

To investigate the roles of the hub genes in
immune modulation, we performed correlation
analysis between FN1, EGFR, ACTA1l expres-
sion and immune cell infiltration. FN1 showed
significant positive correlations with MO/M2
macrophages, resting dendritic cells (r = 0.94,
P < 0.01), and mast cells, while negatively cor-
relating with B cells, monocytes, activated den-
dritic cells, and eosinophils (r =-0.76, P < 0.05)
(Figure 6A-C). ACTA1 exhibited an opposite pat-
tern, positively correlating with B cells, mono-
cytes, and activated dendritic cells, but nega-
tively correlated with macrophages, resting
dendritic cells (r = -0.81, P < 0.05), and mast
cells (Figure 6A, 6F). EGFR was found to be
positively correlated with B cells, plasma cells,
resting NK cells, and eosinophils (r = 0.88, P <
0.01), while negatively correlating with macro-
phages, resting dendritic cells (r = -0.95, P <
0.01), and mast cells (Figure 6A, 6D, 6E). The-
se findings demonstrate that the three hub
genes are intricately linked to immune cell
regulation in OLF, with FN1 and ACTA1 showing
opposing correlation patterns, suggesting their
coordinated roles in modulating the immune
microenvironment during ligamentum flavum
ossification.

Discussion

The present study provided a comprehensive
bioinformatic characterization of gene expres-
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Figure 6. Correlation analysis between hub genes and immune cell infiltration in OLF Samples. (A) Heatmap il-
lustrating correlations between hub genes (FN1, ACTAL, and EGFR) and 22 immune cell types. Notably, FN1 is
positively correlated with MO and M2 macrophages, and resting dendritic cells, while negatively correlated with B
cells and eosinophils. ACTA1 shows opposite correlation patterns to FN1. EGFR is positively correlated with B cells
and eosinophils, while negatively correlated with macrophages and resting dendritic cells. (B-F) Scatter plots with
linear regression lines displaying specific significant associations: (B) Positive correlation between FN1 and resting
dendritic cells, (C) Negative correlation between FN1 and eosinophils, (D) Negative correlation between EGFR and
resting dendritic cells, (E) Positive correlation between EGFR and eosinophils, and (F) Negative correlation between

ACTA1 and resting dendritic cells.

sion profiles in OLF, revealing key molecular
mechanisms and pathways possibly contribut-
ing to disease pathogenesis. We identified 148
DEGs distinguishing OLF from non-OLF tissues,
with functional enrichment analysis revealing a
predominant involvement in muscle contrac-
tion and immune response processes. By inte-
grating PPl network construction and immune
cell infiltration analysis, we delineated a critical
regulatory network driven by FN1, EGFR and
ACTA1. These findings suggest a mechanism
linking ECM remodeling, fibrotic transforma-
tion, and immune dysregulation in the patholo-
gy of OLF.

Functional enrichment analyses demonstrated
that OLF is closely associated with muscle con-
traction-related processes, as evidenced by
significant enrichment of DEGs in GO terms
including muscle filament sliding, sarcomere
organization, and actin binding. These findings
suggest that the mechanical properties and
contractile apparatus of the ligamentum flavum
undergo substantial alterations in OLF, which
may contribute to tissue stiffening and subse-
quent ossification. This aligns with previous
biomechanical and histological studies, which
have demonstrated that repetitive mechanical
stress and the degeneration of elastic fibers
can accelerate hypertrophy and calcification of
the ligamentum flavum, thereby predisposing
to ectopic bone formation [8, 9, 36]. Our results
are consistent with these observations and fur-
ther indicate that the dysregulation of muscle-
and cytoskeleton-related genes represents a
pivotal upstream event in the structural remod-
eling of the ligamentum flavum.

In addition, KEGG pathway analysis highlighted
the involvement of immune-related pathways,
including cytokine-cytokine receptor interac-
tions and viral protein interactions with cyto-
kines, while GSEA revealed significant enrich-
ment of epithelial-mesenchymal transition
(EMT) (NES = 2.05, FDR < 0.001), glycolysis,
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and inflammatory response pathways in OLF
samples. Previous studies have reported in-
creased expression of osteogenic markers
(e.g., RUNX2, osteocalcin, and alkaline phos-
phatase) and elevated levels of pro-inflamma-
tory cytokines (e.g., TNF-q, IL-6, and IL-1B) in
ossified ligamentum flavum specimens [16,
37, 38], supporting the concept that chronic
inflammation and dysregulated tissue remodel-
ing jointly promote endochondral ossification.
Our findings are in line with these observations
and extend the current understanding by sug-
gesting that metabolic reprogramming (glycoly-
sis and cholesterol homeostasis) and inflam-
matory activation may act in concert to drive
the critical transition from ligament hypertro-
phy to ossification. The coordinated activation
of EMT, glycolysis, and inflammatory pathways
suggests a fundamental shift in cellular metab-
olism that supports the energy demands of
actively proliferating cells involved in ectopic
bone formation.

The identification of FN1, EGFR, and ACTA1 as
hub genes within the PPl network suggests that
these genes may serve as central regulators in
the progression of OLF. These genes are recog-
nized as potent drivers of fibrosis, governing
cell adhesion, cytoskeletal organization, and
signal transduction [39-41]. Functionally, FN1
regulates the ECM microenvironment to facili-
tate cell adhesion and migration [42], while
ACTA1, drives excessive ECM accumulation via
myofibroblast differentiation and actin cyto-
skeleton dynamics [41]. Concurrently, EGFR sig-
naling mediates cell survival and proliferation,
further exacerbating fibrotic responses [43].
Together, these proteins form a critical network
that drives the pathological progression of
fibrosis in the ligamentum flavum. Their high
connectivity within our PPl network suggests
that they act as upstream regulators, coordi-
nating a complex interplay of ECM deposition
and cytoskeletal remodeling that ultimately
fuels ligament hypertrophy and ectopic ossifi-
cation.
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Immune cell infiltration analysis further re-
vealed that FN1, EGFR, and ACTA1 are intricate-
ly linked to distinct immune cell populations
within the OLF microenvironment. Specifically,
FN1 expression exhibited a significant positive
correlation with MO and M2 macrophages, rest-
ing dendritic cells, and mast cells, while show-
ing a negative correlation with B-cell subsets,
monocytes, and eosinophils. Conversely, ACTAL
and EGFR displayed distinct yet overlapping
correlation profiles with naive and memory B
cells, monocytes, dendritic cells, NK cells, and
macrophages. These findings are in line with
previous reports suggesting that macrophage
polarization, mast cell activation and B-cell
responses are pivotal drivers of chronic inflam-
mation and tissue remodeling in heterotopic
ossification [44-46]. The observed interplay
between these hub genes and immune cell
dynamics suggests a multifaceted mechanism
in which fibrotic and immune processes rein-
force each other in OLF. By integrating PPl net-
work analysis with immune infiltration profiling,
our work extends previous studies that primar-
ily focused on osteogenic differentiation and
classical signaling pathways (such as BMP/
TGF-B and Wnt/B-catenin) [8, 18], and provides
a broader immunogenomic perspective on OLF
pathogenesis.

Several limitations of this study should be
acknowledged. First, our analysis was based on
a single public microarray dataset with a rela-
tively small sample size (four OLF and four non-
OLF samples), which may have constrained the
statistical power and generalizability of the
findings. Second, the dataset comprised spe-
cimens with ligamentum flavum hypertrophy
rather than radiologically or pathologically con-
firmed ossification. While hypertrophy is widely
recognized as a critical precursor state to ossi-
fication, implying a shared pathologic continu-
um, our results may specifically reflect the early
or transitional molecular events of the disease
rather than the full transcriptomic landscape of
terminal ossification. Third, this study is purely
bioinformatic and exploratory in nature; the
predicted hub genes, pathways, and immune
cell infiltration patterns have not yet been vali-
dated experimentally. Despite these limita-
tions, our findings provide a valuable founda-
tion for future research. Future studies with
larger, independent cohorts and integrated
multi-omics analyses, combined with in vitro
and in vivo functional experiments, are needed
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to confirm the roles of FN1, EGFR, and ACTA1 in
the progression of OLF and to evaluate their
clinical use as diagnostic biomarkers or thera-
peutic targets.
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