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Review Article
HMGB1, an innate alarmin, in the pathogenesis of  
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Abstract: HMGB1, an evolutionarily conserved chromosomal protein, was recently re-discovered to act as a “danger 
signal” (alarmin) to alert the innate immune system for the initiation of host defense or tissue repair. Extracellular 
HMGB1 can be either passively released from damaged/necrotic cells or secreted by activated immune cells. Upon 
stimulation, dendritic cells (DCs), macrophages and natural killer (NK) cells secrete high levels of HMGB1 into the 
intercellular milieu. HMGB1 is potent to target DCs, macrophages, neutrophils and CD4+ T cells. It also upregulates 
the expression of BCL-XL by which it may prevent the elimination of activated immune cells. As a result, HMGB1 
has been suggested to be implicated in the pathogenesis of autoimmune disorders such as systemic lupus erythe-
matosus (SLE), rheumatoid arthritis (RA), and experimental allergic encephalomyelitis (EAE). Given the similarities 
of autoimmune response against beta cell self-antigens in type 1 diabetes (T1D), in this view we will discuss the 
possible implications of HMGB1 in T1D pathogenesis. Specifically, we will summarize and update the advancement 
of HMGB1 in the pathogenesis of autoimmune initiation and progression during T1D development, as well as islet 
allograft rejection of diabetic patients after islet transplantation. Elucidation of the role for HMGB1 in T1D pathogen-
esis would not only enhance the understanding of disease etiology, but also have the potential to shed new insight 
into the development of therapeutic strategies for prevention or intervention of this disorder. 
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Introduction

Type 1 diabetes (T1D) is an autoimmune disor-
der characterized by the specific destruction of 
the insulin secreting beta cells of the pancreat-
ic islets by a certain population of autoreactive 
immune cells [1-4]. The early stages of the dis-
ease process leading to the development of 
diabetes are characterized by insulitis, the infil-
tration of the pancreatic islets by mononuclear 
cells such as dendritic cells (DCs), macrophag-
es and T cells [5]. The autoimmune etiology of 
T1D is also manifested by the presence of 
circulating autoantibodies, specific for beta 
cell proteins including insulin, glutamic acid 
decarboxylase 65 (GAD65), and protein tyrosine 
phosphatase-like protein IA2 (IA-2). These 

autoantibodies are present in 85-90% of 
subjects with diabetes at the time of diagnosis 
[6, 7]. Although it is unclear whether they par-
ticipate directly in beta cell destruction, they 
can be served as markers to monitor disease 
progression [8, 9]. Since autoimmune response 
progresses many years before the onset of clin-
ical diabetes, studies in T1D pathogenesis for 
the past several decades have been mainly 
focused on the role of adaptive immunity. T 
cells are believed to be the major effector cells 
responsible for beta cell destruction. CD8+ T 
cells have been found to be critical for disease 
pathogenesis in both T1D patients and NOD 
mice, a mouse model for spontaneous autoim-
mune diabetes [10, 11]. Autoreactive T cells 
target beta cell specific self-antigens including 
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insulin and glucose 6-phosphatase catalytic 
subunit-related protein and consequently medi-
ate beta cell destruction [12, 13]. In addition, 
CD4+ T cells activated against self-antigens 
can also promote B cell to produce autoanti-
bodies against those self-antigens. Therefore, T 
cell mediated adaptive immunity was empha-
sized so much that the role of innate immunity 
in disease etiology was overshadowed and 
ignored. 

During evolution from unicellular to multicellular 
organisms, the immune system has developed 
a set of mechanisms to sense either non-self 
component invaded into hosts or damaged self 
tissues, so that organisms can initiate a defen-
sive response and repair damaged tissue to 
restore tissue homeostasis, which are also 
called “inflammatory response”. The inflamma-
tory response is begun with the recognition of 
those life-threatening events called “danger 
signals”, which then alert the innate immune 
system and trigger defensive immune responses. 
Those “danger signals” can be categorized into 
pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular 
patterns (DAMPs). PAMPs are defined as exog-
enous molecules that can alert innate immune 
system of life-threatening pathogens, such as 
lipopolysacharide (LPS) and viral RNA. The 
receptors on immune cells that can recognize 
PAMPs is so-called pattern recognition receptors 
(PRRs). A well-known family of PRRs is the 
toll-like receptor (TLR) family in which each 
member recognizes a specific set of PAMPs 
[14-16]. On ligation with PAMPs, PRRs trans-
duce activation signals that lead to the produc-
tion of proinflammatory molecules such as 
tumour necrosis factor (TNF) to enhance immune 
response [17, 18]. DAMPs are endogenous mol-
ecules now called as alarmins, and once they 
have released from the damaged cells, they can 
initiate and promote host inflammatory response 
and tissue repair [19]. 

Along with the realization of PAMPs (innate 
alarmins) that can be recognized by the PPRs 
expressed on immune cells, there is now com-
pelling evidence suggesting the implication of 
innate immunity in T1D pathogenesis. Cells 
infiltrated into insulitis lesion derive from both 
innate and adaptive immune system such as T 
lymphocytes, B lymphocytes, DCs, macrophages 
and natural killer (NK) cells [20-23]. Abnormalities 
in some of the innate cells have been addressed 

both in animal model and human T1D patients as 
well as those subjects at risk to the disease [24]. 
The observation that LPS, viral infections, or gen-
eralized activation of APCs delays or prevents the 
establishment of peripheral tolerance further 
underscored the importance of innate immunity in 
the development of autoimmune diabetes 
[25-27]. In this review, we will focus on high-
mobility group box 1 (HMGB1), a recently identi-
fied endogenous alarmin, in the pathogenesis 
of autoimmune initiation and progression dur-
ing T1D development, as well as islet allograft 
rejection in diabetic patients after islet trans-
plantation. Understanding of these advance-
ments could shed new insight into the possibilities 
for developing novel therapeutic strategies to 
mitigate or prevent type 1 diabetes.

The characterization and rediscovery of 
proinflammatory properties for HMGB1

HMGB1 is a member of high mobility group 
(HMG) nuclear proteins. This family of non-histone, 
chromatin associated nuclear proteins was 
discovered as specific regulators of gene 
expression more than 35 years ago [28]. HMG 
proteins are constitutively expressed in the 
nucleus of eukaryotic cells. They were con-
firmed to be involved in DNA organization and 
regulation of transcription. They share function-
al motifs that bind specific DNA structures and 
induce conformational changes without speci-
ficity for target sequences. They have such 
structural characteristics as transcripts with 
long AT-rich 3’ untranslated regions and highly 
negatively charged carboxy-terminals [29]. 

HMGB1 is probably originated more than 500 
million years ago before the split between the 
animal and plant kingdoms (Figure 1A). It is 
among the most evolutionarily conserved pro-
teins in the eukaryotic kingdom and shares 
100% amino acid (AA) identity between mice 
and rats, and 99% AA identity between rodents 
and humans (Figure 1B). HMGB1 has a concen-
tration about 106 molecules per cell and is con-
stitutively expressed in quiescent cells, and a 
large “pool” of performed HMGB1 is stored in 
the nucleus [29]. As a nuclear protein, HMGB1 
is implicated in diverse cellular functions, 

including the regulation of nucleosomal struc-
ture and stability, and transcription factors 
binding to their cognate DNA sequences 
[29-34]. The binding activity of HMGB1 to DNA 
is regulated by the two 80-amino acid DNA 
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Figure 1. Sequence analysis showing evolutionary conservation of HMGB1 between diverse species. A: A phylogenetic 
tree showing evolutionary relationships of the HMGB1 gene between different species. The phylogenetic tree 
was constructed according to the calculation of the best match for the selected sequences. B: HMGB1 amino 
acid sequence alignment showing evolutionary conservation between diverse species. Sequence homology: 
black, 100% identical; pink, >75% identical; blue, >50% identical; and white, 0% identical.

Figure 2. Functional domains within the HMGB1 amino acid sequence. The full-length HMGB1 contains 2 
homogenous domains (A- and B-box) and an acidic C-terminal tail. The B-box is associated with its properties 
relevant to proinflammatory activity and RAGE binding, while the A-box is a specific antagonist by which it inhibits 
the proinflammatory properties of HMGB1. The C-terminal acidic tail is required for transcription stimulatory 
function of HMGB1.
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binding domains, the A-box and B-box, with 
each structurally represented as three α-helices in 
a characteristic L-shaped fold [35] (Figure 2). In 
addition to A- and B-box, there is an acidic tail in 
the C-terminal of HMGB1. The C-terminal acidic 
tail is important for the transcription stimulatory 
function of HMGB1 [35-38]. The two boxes bind 
to the minor groove of chromatin thus modify-
ing the DNA architecture. This facilitates the 
binding of regulatory proteins of various tran-
scription factors to their cognate sequences, 
including the steroid/nuclear hormones proges-
terone [39] and estrogen [40, 41], HOX proteins 

[42], p53, homeobox-containing proteins, 
recombination activating gene 1/2 (RAG1/2) 
proteins and transcription factor II B [43]. Mice 
deficient for HMGB1 are viable for several days 
if given glucose parenterally, then waste away 
probably due to the inactivation of glucocorticoid 
receptor (GR) transcribed genes [44]. Phenotypic 
features include small size, ruffled and disorga-
nized fur, long hind paws, and absence of fat. 
Cell lines lacking HMGB1 grow normally, but 
the activation of gene expression by different 
factors including glucocorticoid receptor, is 
impaired [44].

In late 1990s, in the search for a broader thera-
peutic window for the treatment of sepsis and 
endotoxemia, Wang and colleagues re-discov-
ered HMGB1 as a late mediator of endotoxin 
lethality in a murine model [45], and blockade 
of HMGB1 by the administration of neutralizing 
antibodies protects against LPS lethality in 
mice. Follow-up studies demonstrated that extra-
cellular HGMB1 acts as a potent innate “danger 
signal” to alert the innate immune system for the 
exogenous invasive microorganisms, the endog-
enous tissue injury or the presence of intercel-
lular inflammatory mediators, which then initi-
ates host defense or tissue repair. B-box domain 
is important for the proinflammatory properties 
of HMGB1 including cytokine release [46, 47]. 
Instead of possessing proinflammatory proper-
ties, the A-box competes with full length HMGB1 
for binding sites leading to attenuation of the 
inflammatory cascade [48] (Figure 2). 

Two distinct mechanisms have subsequently 
been proposed for cells to liberate HMGB1 into 
the extracellular milieu. The damaged/necrotic 
cells can passively release HMGB1 into extra-
cellular milieu, which represents an intracel-
lular marker selected by the innate immune 

system to recognize tissue damage and initiate 
reparative responses [49, 50]. Caspase-
dependent oxidization of HMGB1 by reactive 
oxygen species (ROS) has been suggested to 
be critical for tolerance induction by damaged 
or apoptotic cells [51]. The second mechanism 
is the “active secretion” of HMGB1 by activated 
immune cells to mimic the necrotic process and 
activate innate immune response during an 
immunological challenge. Unlike passive 
release, HMGB1 active secretion has been 
shown to be associated with extensive acetyla-
tion of lysine residues [52]. Extracellular HMGB1 
exerts not only paracrine activity, but also auto-
crine activity on the cells from which it is secret-
ed to enhance chemotaxis and innate immune 
response, and subsequently to initiate and 
promote adaptive immune response [53]. 

Receptors associated with HMGB1 signaling 
pathways

There are several important receptors have 
thus far been characterized to be implicated in 
HMGB1 signaling, including the receptor for 
advanced glycation end products (RAGE) and 
some members of the Toll-like family of receptors. 
RAGE is thought to be one of the primary recep-
tors for HMGB1 [54]. RAGE is a transmembrane 
protein expressed at low levels in normal tis-
sues, but it is upregulated at sites where its 
ligands accumulate [55]. RAGE expression is 
detected on monocytes, macrophages, neu-
rons, and endothelial cells, as well as on a vari-
ety of tumor cells [56, 57]. Binding of RAGE by 
HMGB1 can activate both CDC42/Rac pathway 
and MAPKs-NFκB pathway [56, 58, 59]. These 
two HMGB1 signaling pathways then through 
RAGE promotes chemotaxis, production of 
cytokines relevant to NFκB activation [60, 61], 
activation of endothelial cells [62, 63], maturation 
and migration of immune cells [47, 64-70]. 

Despite the characterization of RAGE as the 
receptor for HMGB1, RAGE alone, however, 
could not explain all the observed effects of 
HMGB1, suggesting the existence of additional 
receptor(s) relevant to HMGB1 signaling. 
Consistent with this assumption, follow up 
studies further characterized that toll-like 
receptors 2 (TLR2) and 4 (TLR4) are involved in 
HMGB1 signaling [71-73]. TLR4 is the main 
receptor for endotoxin, whereas TLR2 responds 
to Gram-positive components and fungi [74]. 
HMGB1 signaling through TLR2 and TLR4 is 
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mediated by Rac1/PI3K/CDC42 pathway and 
MyD88 dependent NFκB activation pathway 
[61, 71-76]. More recently, Ivanov and col-
leagues further demonstrated that HMGB1 
acts as a CpG-ODN–binding protein, by which it 
interacts and preassociates with TLR9 in the 
endoplasmic reticulum-Golgi intermediate 
compartment (ERGIC), and as a result, forms a 
complex within specialized vesicles [77]. CpG-
ODN stimulates macrophages and DCs to 
secrete high levels of HMGB1, which in turn 
accelerates the delivery of CpG-ODNs to its 
receptor, leading to a TLR9-dependent aug-
mentation of IL-6, IL-12, and TNFα secretion. It 
seems that HMGB1 does not affect the uptake 
of CpG DNA or its entry into early endosomes, 
but rather accelerates the redistribution of 
TLR9 from the endoplasmic reticulum to the 
early endosomes in response to CpG DNA [77].

HMGB1 in the pathogenesis of autoimmune 
initiation during T1D development

The initiation of autoimmune response during 
T1D development is a multifactorial and complex 
process that requires genetic predisposition to 
synergize with unknown exogenous and/or 
endogenous triggers [78-83]. Once triggered by 
those factors, macrophages and DCs infiltrated 
into islets and followed shortly thereafter by the 
recruitment of T and B lymphocytes [20-23, 84,  
85]. Apoptosis is a normal physiological process 
contributing to tissue turnover during the devel-
opment and regulation of tissue homeostasis in 
the adult [86]. Unlike necrosis, apoptosis is usually 
considered to be a non-inflammatory process. 
However, recent investigations ranging from 
animal models to human pathology lend sup-
port to the view that apoptosis plays a pivotal role 
in the development of autoimmunity [87-93]. 
Apoptotic cells are a source of autoantigens, 
and apoptosis has been suggested in certain 
conditions, contributing to autoimmune response 
in multiple autoimmune disorders including 
systemic lupus erythematosus (SLE) [89, 91, 94], 
rheumatoid arthritis (RA) [95, 96], and experi-
mental allergic encephalomyelitis (EAE) [97, 
98]. A number of recent studies indicate that 
HMGB1 can be passively released from late 
apoptotic cells in a cell type dependent manner 
[99, 100], probably through a mechanism by 
binding to some nuclear molecules such as 
DNA that can be leaked out from apoptotic 
cells [99, 101, 102].

To address whether HMGB1 can be passively 
released from late apoptotic beta cells, we first 
induced NIT-1 cell (a NOD-derived β cell  
line) apoptosis by combination of cytokines 
(100U/ml INFY, 10U/ml IL-1β and 100U/ml 
TNFα) [103]. After 72h of treatment, around 
73% of NIT-1 cells became apoptotic, and 79% 
of which were undergoing secondary necrosis 
as determined by propidium iodide (PI) and 
annexin V staining. Western blot analysis of cul-
ture supernatants derived from cells treated 
with cytokines detected high levels of HMGB1, 
while HMGB1 was absent from control culture 
supernatants, indicating passive release of 
HMGB1 from late apoptotic beta cells [103]. To 
further address the question, we performed 
follow-up studies to examine the effect of late 
apoptotic beta cells on NOD DC activation and 
functionality. NIT-1 cells were first induced apop-
tosis by UV treatment and the resulting pro-
apoptotic cells were subsequently labeled with 
carboxyfluorescein succinimidyl ester (CFSE). 
Immature NOD bone marrow-derived DCs 
(BMDCs) were then co-cultured with CSFE-
labeled apoptotic NIT-1 cells at 1:20 ratio for 
4h, followed by staining DCs with a PE-labeled 
anti-CD11c antibody. Flow cytometry analysis 
indicated that approximately 81% of DCs were 
double positive for CD11c and CFSE, indicating 
that NOD DCs have high potency for uptake of 
apoptotic NIT-1 cells (unpublished data). 
Confocal microscopic analysis of DCs in differ-
ent layers further confirmed that some DCs 
can actually ingest more than one apoptotic 
NIT-1 cells. More interestingly, NOD DCs after 
internalizing CSFE-labeled NIT-1 cells show a 
matured phenotype as manifested by high lev-
els of surface MHC II expressions (unpublished 
data). Together, all of these observations pro-
vide an overall support for the scenario that 
HMGB1 originated from late apoptotic beta 
cells has high potency to stimulate NOD DC 
activation, which could then initiate autoim-
mune response against beta cell self antigens 
leading to beta cell destruction. 

Previous studies including ours have consis-
tently demonstrated that NOD neonates show 
abnormal beta cell apoptosis during beta 
mass turnover after birth, probably due to 
defective clearance of apoptotic cells in NOD 
mice [104-107]. In situ TUNEL assays of pan-
creatic sections originated from NOD and B6 
neonates indicate that NOD newborns have at 
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least 2-fold higher apoptosis as compared to 
that of B6 newborns (Figure 3 A vs. B). Insulin 
co-staining further confirmed that these apop-
totic cells were actually insulin-producing beta 
cells (Figure 3A, inset figure, where insulin 
stained blue, apoptotic cell stained red, and the 
apoptotic cell was indicated by an arrow). Since 
excessive apoptosis is usually associated with 
secondary necrosis [108], in vivo propidium 
iodide (PI) staining was then carried out to 
check beta cell necrosis by injection of 15µl PI 
(20µg per gram of body weight) into 2wk-old NOD 
and control newborns via tail vein. Pancreatic fro-
zen sections were prepared after 3h injection. In 
line with previous observations, PI positive cells 
(necrotic cells) were observed in the sections of 
NOD neonates, while necrosis was almost unde-
tectable in B6 neonates (Figure 3, C vs. D). Since 
HMGB1 passive release is associated with sec-
ondary necrosis, in situ HMGB1 immunostaining 
was then conducted in pancreatic sections of 
NOD neonates. Unlike B6 neonate islets in which 
HMGB1 is solely localized in the nucleus of islet 
cells, some islet cells in NOD neonate show con-
densed nuclei, plasma membrane blebbings, and 
displayed positive nuclear and cytoplasmic stain-
ing of HMGB1 (unpublished data), indicating 
HMGB1 passive release from secondary necrotic 
beta cells. These passively released HMGB1 in 
turn, may function as an innate alarmin to acti-
vate DCs for the presentation of beta cell self-
antigens, predisposing to the development of 
autoimmune diabetes. Although the experi-
mental evidence is currently lacking, it would 

not be difficult to extrapolate that blockade of 
HMGB1 during NOD neonate beta mass turn-
over would prevent or delay insulitis, a typical 
characteristic of autoimmune response during 
T1D development.

HMGB1 in autoimmune progression during 
T1D development

Upon the presence of activation signals 
derived from PRR transduction, beta cell-spe-
cific antigens would be recognized by APCs 
which then become activated to initiate 
autoimmune response. Once autoimmune 
response initiated, disease undergoes a pro-
gression stage in which adaptive immunity is 
activated by self-reactive APCs and plays a 
major role in beta cell destruction. The subse-
quent beta cell destruction would further 
increase the amount of self-antigens for APCs 
which then activate additional autoreactive T 
and B cells. Therefore, as T1D progresses in 
severity, so does the number of autoreactive T 
and B cell clones, known as epitope spread-
ing [109]. Once the disease enters the pro-
gression stage of autoimmune-mediated beta 
cell destruction, the difficulty of therapy will 
be dramatically increased. Unfortunately, at 
the time of clinical diagnosis all diabetic 
patients have already been in the progression 
stage. Therefore, understanding the mecha-
nism of autoimmune process in diabetes 
progression stage is pivotal for the development 
of novel therapeutic strategies.

Figure 3. Altered beta-cell apoptosis during NOD physiological beta mass turnover after birth. A & B: TUNEL assay 
of pancreatic beta cell apoptosis during NOD and B6 neonate beta mass turnover. Insulin costaining indicates 
that the apoptotic cells are beta cells (A, the apoptotic cell is indicated by an arrow). C & D: Propidium Iodide (PI) 
staining of secondary necrotic beta cells in pancreatic sections originated from neonates undergoing beta 
mass turnover.
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As aforementioned, in addition to passive 
release from damaged beta cells, HMGB1 can 
also be secreted by activated immune cells 
such as DCs [64, 66]. By examining HMGB1 
subcellular localization in DCs we have clearly 
demonstrated that NOD DCs have high potency 
to actively secrete HMGB1 upon stimulation. 
Before stimulation, HMGB1 was solely localized 
in the nucleus, while a major proportion of 
HMGB1 translocated into the cytoplasm upon 
LPS or TNFα/IFNγ stimulation. In line with this 
observation, Western blot analysis of culture 
supernatants detected high levels of HMGB1 
derived from stimulated NOD DCs in a time-
dependent manner [103]. To demonstrate the 
evidence of HMGB1 active secretion by NOD 
islet infiltrated DCs, in situ HMGB1 immunos-
taining was carried out using pancreatic sec-
tions originated from NOD mice with insulitis 
(14wk-old). It was found that a large proportion 
of HMGB1 had translocated into the cytoplasm 
in the islet infiltrated DCs as they were also 
positive for CD11c staining, demonstrating 
HMGB1 active secretion by activated autoreactive 
DCs, which could then enhance autoimmune 
progression [103].

Two sets of experiments were carried out to 
demonstrate the direct evidence for HMGB1 in 
the pathogenesis of autoimmune progression 
during T1D development. An endotoxin-free 
HMGB1 neutralizing antibody was used for the 
purpose. The study was first carried out in NOD 
mice at the early stage of autoimmunity (8wk-
old). The blocking antibody was administered 
into those mice once a week (600μg/mouse) 
for 18 consecutive weeks and then monitored 
for diabetes onset up to 35wk-old. Remarkably, 
HMGB1 antibody treatment reduced diabetes 
incidence by almost 2-fold. Furthermore, the 
treatment also significantly delayed the onset 
of diabetes. In average, the age for onset of dia-
betes in HMGB1 antibody treated mice was 
28.7 ± 3.4wk, while the control IgG treated 
mice was only 18.4 ± 3.1wk [103]. Examination 
of insulitis severity by histological analysis of 
pancreatic sections further confirmed that the 
extent of insulitis in HMGB1 antibody treated  
mice was significantly less severe than the 
control IgG treated mice at 12wk, 15wk and 
18wk time point examined. To demonstrate the 
implication of HMGB1 in late stage of autoim-
munity, HMGB1 blocking antibody was then 
administered into 12wk-old NOD mice by then 

autoimmune infiltration in these mice had 
already progressed for at least 5wk [110]. 
Similar as above, the mice were administered 
with HMGB1 blocking antibody once a week for 
13 consecutive weeks and then monitored for 
diabetes onset. Consistently, blockade of 
HMGB1 significantly reduced diabetes incidence, 
but unlike animals in the early stage of autoim-
munity, the treatment failed to delay the 
onset of diabetes [103]. 

Given the critical role of DCs in T1D associated 
autoimmunity, we first checked the impact of 
HMGB1 blocking antibody on DCs, the most 
potent APCs known today. It was found that 
antibody treatment reduced the number and 
maturation of a subset of DCs probably associ-
ated with auto-antigen presentation to naïve T 
cells in the pancreatic lymph nodes (PLN). We 
also noticed a skewed population of 
CD11c+CD8a+ DCs in mice after blockade of 
HMGB1. As those cells showed less potency to 
stimulate alloimmune response, they were 
probably responsible for inducing peripheral 
tolerance to tissue associated antigens [111]. 
In line with this assumption, there was a signifi-
cant increase for the CD4+Foxp3+ regulatory T 
cells (Tregs) in the PLN of mice treated with 
neutralizing antibody [103]. Taken together, 
these data demonstrated strong evidence 
indicating that HMGB1 is implicated in the 
progression of autoimmune response during 
T1D development. 

HMGB1 in islet allograft rejection of diabetic 
patients after islet transplantation

Current therapeutic strategy for T1D is lifelong 
commitment of exogenous insulin, monitoring 
blood glucose, taking healthy foods plus main-
taining a healthy weight. However, insulin therapy 
and healthy lifestyle cannot provide adequate 
glycemic control for some patients with severe 
type 1 diabetes, or with complications that can-
not be efficiently managed by insulin. 
Furthermore, insulin administration cannot 
control blood glucose accurately enough to 
maintain at a perfect level even with careful 
insulin administration, and thus would result in 
chronic complications. It has been shown that 
even transient hyperglycemia can lead to per-
sistent epigenetic changes predisposing to the 
development of diabetic complications. In 
battle against type 1 diabetes, pancreatic 
transplantation has been considered to offer a 
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successful therapeutic approach for many years 
[112, 113]. However, similar as other solid organ 

transplantation, lifelong immunosuppression is 
required and donor organs are in short supply 
[79]. An alternative approach, transplantation of 
donor islets, was later established, which seems 
to be a promising therapeutic approach to tightly 
maintain blood glucose levels for patients with 
type 1 diabetes [114]. Some centers have actually 
achieved high rate for long-term independence of 
exogenous insulin. Nevertheless, the total suc-
cess rate is still not high enough [115, 116]. 

The major problem hampering islet transplan-
tation is islet allograft dysfunction caused by 
rejection although it is less severe than solid 
organ transplantation. Similar as the study field 
of autoimmunity, the role of adaptive immunity in  
allograft rejection has been extensively studied for 
decades. It has been suggested that acute 
allograft rejection is principally a T cell-mediated 
adaptive immune response [117]. However, the 
contribution of innate immunity to allograft 
rejection has generally been ignored until the 
discovery of the TLR system and the subse-
quent realization of innate immunity in driving 
and shaping adaptive immunity. Early islet loss 
is considered to be responsible for islet allograft 
dysfunction, and it is believed to be attributable 
to inflammatory events in which innate immu-
nity plays an important role [118]. Early loss of 
islet results in the release of alloantigen and 
some endogenous alarmins such as HMGB1 
which then initiate alloimmune response against 
islet allograft. Therefore, similar as its role in 
autoimmunity relevant to T1D pathogenesis, 
HMGB1 could be also implicated in the initiation 
and progression of islet allograft rejection. 

It has been suggested that ischemia/reperfusion 
is a major pathophysiological component of 
acute allograft malfunction after transplanta-
tion, which includes direct cellular damage and 
acute allograft rejection. To demonstrate the 
implication of HMGB1 in this process, we exam-
ined HMGB1 passive release from allograft 
damaged cells and active secretion by allograft 
infiltrated immune cells. By analysis of cyto-
plasmic proteins originated from cardiac 
allografts that underwent around one hour of 
cold ischemic insult, we have obtained strong  
evidence supporting that HMGB1 can be passively 
released from allograft damaged cells [117]. 
Consistent with this observation, HMGB1 has 

been found to be critical in mediating hepatic  
injury after murine ischemia/reperfusion [119]. 
We further confirmed that allograft infiltrated 
immune cells actively secrete high levels of 
HMGB1 into the intercellular milieu through 
immuno histochemical analysis of cardiac allograft 
sections that underwent acute rejection [117]. 
A steady increase for HMGB1 expression in the 
allografts after transplantation was noticed by 
comparative analysis of HMGB1 temporal 
expression changes between syngeneic and 
allogeneic cardiac grafts, and the increase of 
HMGB1 expression in allografts is accompa-
nied by the interstitial infiltration and active 
secretion of HMGB1 by infiltrated immune cells. 
In sharp contrast, the increase for HMGB1 
expression in syngenic grafts was only noticed 
after first 3-day of transplantation, and after 
which, the expression of HMGB1 dropped back 
to the normal levels. Together, these data indi-
cate that HMGB1 is implicated in acute rejec-
tion of allografts and tissue repair of syngeneic 
grafts. Based on these observations, an endo-
toxin-free recombinant peptide encoding 
HMGB1 A-box (rA-box) was used to treat recipi-
ents after cardiac allograft transplantation. 
Notably, rA-box treatment significantly prolonged 
allograft survival (12.5 ± 1.87 days vs. 6.5 ± 
1.04 days) [117]. In line with this result, recipi-
ent mice received rA-box displayed well pre-
served myocardium and significant reduced 
inflammatory infiltration after day 7 of transplan-
tation. This protective effect was associated with 
suppressed production of pathogenic CD8+IFNγ+ 
(Tc1) and CD4+IFNγ+ (Th1) cells. Similarly, 
blockade of RAGE, a primary receptor for HMGB1, 
prevented cardiac allograft rejection [120].

The implication of TLRs in the pathogenesis 
of allograft rejection further supports a role 
for HMGB1 in islet allograft rejection. Chen et 
al. revealed that inhibition of TLR signaling 
promoted the acceptance of allografts that 
are resistant to tolerance induction such as 
skin, whereas administration of TLR agonist 
during perioperative period abrogated toler-
ance [121, 122]. MyD88 deficiency inhibited 
the activation, migration of macrophages in 
mice transplanted with porcine islet xeno-
grafts [123]. Loss of MyD88 signaling reduced 
mature DCs in the draining lymph nodes and 
prevented the development of T cell response 
against graft, and thus induced acceptance 
of allograft [124, 125]. More interestingly, 
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TLRs on beta cells are also involved in islet 
allograft rejection. Enhanced TLR expression 
was observed on porcine islets exposed to 
macrophages [126]. Goldberg et al. reported 
that TLR4 expression was elevated on beta 
cells during islet iso lation process, and 
enhanced TLR4 promoted beta cell death 
and graft rejection after islet transplantation 
[124]. In contrast, suppression of TLR4 on 
donor beta cells by either carbon monoxide 
(CO) exposure or pre-infection with a TLR4 
dominant negative virus prevented the initia-
tion of inflammation and subsequent islet 
allograft rejection [124]. Similarly, RAGE, 
another receptor for HMGB1, is also implicat-
ed in the rejection of islet allografts. Loss of 
RAGE or blockade of RAGE by its antagonist 
TTP488 in recipient mice suppressed T cell 
response and prolonged islet allograft sur-
vival [127]. All together, similar as its role in 
autoimmune response during T1D develop-
ment, HMGB1 also plays a pivotal role in the 
initiation and progression of islet allograft 
rejection and contributes to islet allograft 
dysfunction after transplantation. 

Conclusion remarks

HMGB1, an evolutionarily conserved chromo-
somal protein, was recently re-discovered to be 
an alarmin that alerts the innate immune system 
to initiate defensive response. Monocytes, 
macrophages, NK, myeloid and plasmacytoid 
DCs secrete high levels of HMGB1 in response 
to pathogen or damage associated molecules. 
Extracellular HMGB1 targets myeloid DCs, 
plasmacytoid DCs, macrophages, neutrophils 
and CD4+ T cells. HMGB1 increases matura-
tion and cytokine secretion from myeloid and 
plasmacytoid DCs that have been stimulated 
with TLR ligands [53]. Upon interaction, DCs 
secrete IL-18, causing NK cells to secrete 
HMGB1, which in return acts back on DCs to 
prevent them from NK cell mediated lysis [53] 
(Figure 4). Based on its importance in orches-
trating and modulating adaptive immune 
responses, here we have discussed the pos-
sible implications of HMGB1 in multiple stages 
of autoimmunity, from innate recognition of self 
antigens to progression of adaptive autoimmune 
response against beta cells, as well as islet 

Figure 4. The immuno-regulatory properties for extracellular HMGB1. HMGB1 secretion by activated immune 
cells is indicated by blue arrows. Extracellular HMGB1 targets myeloid DCs, plasmacytoid DCs, macrophages, 
neutrophils and CD4+ T cells via the corresponding receptor(s) expressed on their surface. HMGB1 has also been 
found to upregulate the expression of BCL-XL, which may in turn prevent the elimination of activated autoreactive 
immune cells.
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allograft rejection after transplantation in dia-
betic patients. The challenge for future studies 
would be the development of high potent 
HMGB1 blockade to evaluate its impact on 
reversal of overt type 1 diabetes and recurrence  
of autoimmunity after islet transplantation.
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