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Abstract: Neurodegenerative diseases are characterized by selective and progressive loss of specific populations 
of neurons, which determines the clinical presentation. The same neuronal populations can be affected in a num-
ber of different disorders. Given that the clinical presentation reflects the particular population of neurons that 
are targets of the disease process, it is clear that for any given clinical syndrome, more than one neurodegen-
erative disease can account for the clinical syndrome. Because of this clinical ambiguity, for the purpose of this 
brief review neurodegenerative disorders are classified according to the underlying molecular pathology rather than 
their clinical presentation. The major neurodegenerative diseases can be classified into amyloidoses, tauopathies, 
α-synucleinopathies and TDP-43 proteinopathies.
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Introduction

By definition a neurodegenerative disease is 
one in which there is selective and progressive 
loss of specific populations of neurons for rea-
sons that in most cases remain unknown. The 
goals of research on neurodegenerative disor-
ders are to determine the molecular basis of 
selective vulnerability and common final path-
ways of progressive neuronal loss. In the most 
common neurodegenerative disorders there are 
biochemical changes in a specific protein that 
often produces characteristic inclusion bodies 
within neurons or glia, or both. The particular 
population of neurons that are vulnerable in 
each disorder determines the clinical presenta-
tion, and each specific disorder is defined by a 
combination of clinical, pathologic and biochem-
ical features. There are genetic underpinnings 
in most of the common neurodegenerative dis-
orders, but only a small fraction of cases are 
due to causative mutations in defined genes.

The same neuronal populations can be affected 
in a number of different disorders. For example, 
neurons in the hippocampus and brainstem 
monoaminergic nuclei are vulnerable in a wide 
range of distinct clinicopathologic entities. Given 

that the clinical presentation reflects the partic-
ular population of neurons that are targets of the 
disease process, it is clear that for any given 
clinical syndrome, there will usually be more than 
one neurodegenerative disease that can account 
for the clinical syndrome. Because of this ambi-
guity, for the purpose of this brief review neuro-
degenerative disorders are classified according 
to the underlying molecular pathology rather 
than their clinical presentation. 

Molecular classification of neurodegenerative 
disorders

Table 1 is an abbreviated list of neuro-degener-
ative disorders classified by the major molecu-
lar abnormality, with a greatly simplified listing 
of anatomical and clinical features.

Amyloidoses

The presence of abnormal proteins with specific 
properties defines the amyloidoses, of which 
Alzheimer disease (AD) is the most common. 
Amyloid is a generic name for proteins with com-
mon physicochemical properties (e.g., Congo red 
birefringence) due to abnormal conformation, 
with cross beta-pleated sheets, which gives the 
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subjects with positron emission tomography, and 
these studies have also shown that a significant 
number of clinically normal elderly individuals 
have Aβ deposits [7, 8]. Whether this represents 
preclinical AD remains to be determined. Deposits 
of Aβ are also found in other neurodegenerative 
disorders, as a function of age and apolipopro-
tein E ε4 carrier state [9], which is the major 
genetic risk factor for AD [10]. Amyloid plaques 
are often abundant in dementia with Lewy bod-
ies (DLB) [11].

Amyloid of a different molecular nature accu-
mulates in a rare form of dementia originally 

protein a propensity to form fibrils and to aggre-
gate, most often as extracellular deposits. The 
amyloidoses are sometimes referred to as beta-
fibrilloses to reflect this molecular property [1, 2]. 
The amyloid protein in AD, Aβ, is derived from a 
precursor protein, amyloid precursor protein 
(APP) by regulated intramembranous proteolysis 
[3].  By most accounts this process is considered 
to be fundamental to the pathogenesis of AD [4]. 
Deposits of Aβ are not found only in AD, but also 
in elderly nondemented individuals [5], some-
times in great numbers in a process we call path-
ological aging [6]. Recently, it has become possi-
ble to detect Aβ deposits in the brains of living 

Table 1. Classification of major neurodegenerative disorders

Disorder Anatomy Major clinical feature

Amyloidoses
  Aβ Alzheimer disease Corticolimbic Dementia
  ABri Familial British dementia Corticolimbic & cerebellar Dementia & ataxia
  PrP Creutzfeldt-Jakob disease Cortical & basal ganglia Dementia & movement 

disorder
Gerstmann-Straussler-
Scheinker

Cortical & Cerebellar Ataxia & dementia

Tauopathies
  4R Progressive supranuclear 

palsy 
Basal ganglia & brainstem Parkinsonism

Corticobasal degeneration Cortical & basal ganglia Focal cortical syndrome & 
parkinsonism

Argyrophilic grain disease Limbic Amnestic cognitive impair-
ment

  3R Pick’s disease Corticolimbic Dementia & focal cortical 
syndromes

  3R+4R Tangle predominant 
dementia

Limbic Dementia

Guam Parkinson  
dementia complex

Cortex & brainstem Dementia & parkinsonism

Synucleinopathies
Parkinson disease Brainstem Parkinsonism
Dementia with Lewy 
bodies

Corticolimbic & brainstem Dementia & parkinsonism

Multiple system atrophy Basal ganglia, brainstem 
& cerebellum

Parkinsonism & ataxia

TDP-43 proteinopathies
Amyotrophic lateral 
sclerosis

Motor neurons Spasticity & weakness

Frontotemporal lobar 
degeneration with  
ubiquitinated inclusions

Cortex & basal ganglia Dementia & focal cortical 
syndromes
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feature of variant CJD, which is linked to bovine 
spongiform encephalopathy [19, 20].

Like FBD, some cases of GSS are associated 
with neurofibrillary tangles similar to those in AD 
[21, 22]. Given the widespread distribution of 
amyloid plaques and neurofibrillary tangles, 
such cases can be mistaken for an unusual vari-
ant of AD [23]. The presence of neurofibrillary 
pathology in amyloidoses due to distinct molec-
ular forms of amyloid (Aβ, ABri and PrPres) is a 
strong argument that in these disorders, neuro-
fibrillary pathology is being driven by factors 
directly related to the amyloid formation and 
can be considered “secondary tauopathies.”

Tauopathies

The major structural protein of neurofibrillary tan-
gles is the microtubule associated protein, tau 
[24]. Tau is a heat-resistant phospho-protein that 
promotes microtubule polymerization and stabili-
zation. Once considered to be relatively restricted 
to neurons [25], it is now known that tau accumu-
lates not only in neurons in neurofibrillary tangles, 
but also in glia in a wide range of neurodegenera-
tive disorders and in the aging brain. That tau 
pathology is fundamentally important has been 
proven unequivocally since mutations in the gene 
for tau (MAPT) cause neurodegeneration in 
humans [26] and in transgenic animal models 
over expressing mutant tau [27].

Disorders in which tau pathology is considered 
to be the major contributing factor to neuro-
degeneration are referred to as “primary 
tauopathies.” Tau protein in the brain is hetero-
geneous due to alternative splice forms, as well 
as post-translational modifications, including 
phosphorylation. In neurodegenera-tive diseases 
tau protein has an abnormal conformation and 
abnormal solubility properties that favor its 
aggregation and fibril formation, similar to amy-
loid, except that the fibrils are not in the extra-
cellular space, but within the cytoplasm of the 
affected cells.  Exon 10 of MAPT is alternatively 
spliced to generate tau species with either 
three or four conserved ~30 amino acid repeats 
in the microtubule binding domain of tau pro-
tein [28], referred to as 3R and 4R tau. There is 
preferential accumulation of 3R or 4R tau in 
various tauopathies, providing an additional 
subclassification of the tauopathies. In AD neu-
rofibrillary pathology is composed of an equimo-
lar ratio of 3R and 4R tau [29].

described in British families [12]. The mutation 
in familial British dementia (FBD) introduces a 
stop codon in the normal protein, ABri, creating 
a truncated protein with amyloidogenic proper-
ties. Amyloid deposits in FBD are in blood ves-
sels and adjacent tissue and are numerous in 
cortex and cerebellum (Figure 1). Like AD, FBD 
is associated with neurofibrillary tangles com-
posed of tau protein (see below), but unlike AD 
tangles are relatively restricted to the medial 
temporal lobe, while they are widespread in the 
cortex in AD [13].

Another rare form of non-Alzheimer degenera-
tive dementia associated with non-Aβ amyloid 
deposits is Creutzfeldt-Jacob disease (CJD).  
The protein deposited in tissue is an abnormal 
conformer of a normal cellular protein, PrP, 
referred to as PrPres [14], reflecting the fact that 
the abnormal protein is resistant to proteolytic 
degradation. Amyloid deposits composed of 
PrPres are particularly common in familial vari-
ants of CJD with insertion mutations in the 
prion gene (PRNP) [15] and in Gerstmann-
Straussler-Scheinker syndrome (GSS) [16], but 
are also found as dense kuru-like plaques in 
sporadic CJD.  The latter term reflects the fact 
that similar amyloid plaques are detected in 
kuru, a form of transmissible prion disease 
associated with ritualistic cannibalism in the 
Fore population of Papua New Guinea [17]. 
Sporadic CJD is classified based upon the 
nature of the electrophoretic mobility of PrPres 
and the genotype at codon 129 of PRNP [18].  
Kuru-type plaques are most common in cases 
with heterozygosity at codon 129 (M/V) and 
type 2 PrPres [18]. Amyloid plaques, in particular 
multicentric plaques with peri-plaque vacuola-
tion (“florid plaques”) are a characteristic 

Figure 1. Amyloidoses: Familial British dementia 
(a) and familial Creutzfeldt-Jakob disease (b) have 
cerebellar amyloid deposits composed on non-Aβ 
amyloid, ABri and PrP.
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with focal cortical degeneration, the distribution 
of which varies from person to person for rea-
sons that still remain to be explained. In the clas-
sical presentation, which is referred to as the 
“corticobasal syndrome (CBS),” there is asym-
metrical cortical degeneration of the superior 
frontal gyrus and superior parietal lobule and the 
patient has asymmetrical rigidity and apraxia, 
often with dystonia and alien limb sign [43]. More 
often there is focal atrophy of the frontal lobes 
producing frontal lobe dementia or of language 
areas producing progressive nonfluent aphasia 
[44]. The characteristic pathology is phospho-tau 
accumulation in cell processes of neurons and 
astrocytes in the cortex, basal ganglia, thalamus 
and brainstem [45]. The most specific lesion in 
the neuropathologic diagnosis of CBD is the 
astrocytic plaque [46] (Figure 2c), which is not 
seen in other disorders [47]. Ballooned neurons, 
also known as swollen achromatic neurons [48] 
(Figure 2c, inset), are usually numerous in affect-
ed cortical areas. On the other hand, research 
criteria for CBD emphasize presence of abnormal 
tau-positive, thread-like processes in both gray 
and white matter of cortical and subcortical 
regions (Figure 2d) , a feature that has been vali-
dated as diagnostically useful [45].

Progressive supranuclear palsy (PSP)

Progressive supranuclear palsy in most cases 
presents as an atypical parkinsonism with axial 
rigidity, postural instability and unexplained 
falls, with most patients also developing pro-
gressive vertical gaze palsy (for which the disor-
der is named), dysarthria and dysphagia [49]. 
Other clinical presentations are also recog-
nized, including dementia [50], speech apraxia 
[51], corticobasal syndrome [52] and pure aki-
nesia with gait failure [53, 54]. In a subset of 
patients the clinical features initially are similar 
to those in Parkinson disease, so-called “PSP-P” 
[55]. The distribution of tau pathology deter-
mines the particular clinical presentation; some 
cases have severe brainstem involvement (e.g., 
pure akinesia) and others have severe cortical 
involvement (e.g., dementia, corticobasal syn-
drome [56] and speech apraxia).

The core neuroanatomical regions affected in 
all cases of PSP include the basal ganglia, sub-
thalamic nucleus and the substantia nigra [57]. 
Pathology of the cerebellar dentate nucleus 
and the outflow pathway (dentato-rubro-thal-
amic pathway) is usually severe and associated 

Argyrophilic grain disease (AGD)

The most common of the primary tauopathies 
are 4R tauopathies, and all disorders of this type 
are associated with both neuronal and glial tau 
inclusions. The most common of these is argyro-
philic grain disease (AGD), which increases in fre-
quency with age and is detected in about 5% of 
autopsies of individuals with late onset dementia 
[30, 31]. It is common in mild cognitive impair-
ment [32], and it may co-exist with other degen-
erative disorders, particularly the 4R tauopathies, 
such as corticobasal degenera-tion (CBD) and 
progressive supranuclear palsy (PSP) [33].

The characteristic lesion in AGD is the comma 
shaped or grain-like structure in the neuropil of 
the medial temporal lobe [34]. Grains are aggre-
gates of tau in dendritic processes of neurons 
[35]. Neuronal tau is accompanied by tau-posi-
tive oligodendroglia (“coiled bodies” [36]) and 
ramified astrocytes [37]. Ballooned neurons are 
also common [38]. Many cases of AGD have 
varying degrees of Alzheimer type neurofibrillary 
degeneration, and it can be difficult to detect 
AGD in cases with severe Alzheimer type pathol-
ogy [34]. Use of immunohistochemistry with an 
antibody specific for 4R tau [30] permits detec-
tion of AGD even in advanced AD, since grains 
and glial lesions are selectively labeled [39] 
(Figure 2a and b). Using this technique demon-
strates AGD in more than 25% of AD cases, with 
increasing frequency with increased age.

Clinicopathologic correlations in AGD are chal-
lenging due in part to the fact that it is rarely a 
pure pathologic process, and since it is most 
common in the very old where other pathologic 
processes increase in frequency with advancing 
age [40]. The predilection of this pathology to 
the medial temporal lobe would suggest that an 
amnestic clinical syndrome should be common 
in AGD, and in patients with amnestic mild cogni-
tive impairment who come to autopsy, AGD is 
sometimes found [41]. Saito and co-workers 
have suggested a staging scheme for AGD, with 
extension to other limbic related structures in 
advanced stages of the disease; rarely AGD 
spreads beyond limbic lobe structures, so-called 
“diffuse AGD,” in patients with dementia [42].

Corticobasal degeneration (CBD)

CBD is a 4R tauopathy that has a range of clinical 
presentations due to the fact that it is associated 
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Figure 2. Tauopathies: a & b Argyrophilic grain disease (AGD); c & d Corticobasal degeneration (CBD); e & f Pro-
gressive supranuclear palsy (PSP); g-j Pick’s disease (PiD); k & l Guam Parkinson dementia complex (PDC). The 
neuropil of AGD has small round inclusions in neuronal processes (a) that are composed of 4R tau as shown 
with a monoclonal antibody specific to 4R tau (b). The histologic hallmarks of CBD are astrocytic plaques, which 
appears as a cluster of short tau positive processes around a central astrocyte (c), ballooned neurons (inset) 
and thread-like processes in both gray and white matter (d). In PSP the characteristic astrocytic lesion appears 
as a tuft of abnormal fibers (3), globose neurofibrillary tangles (inset) are the typical neuronal lesion and oligo-
dendroglia in white matter have inclusions referred to as “coiled bodies (f). The defining histologic lesion in PiD 
is the Pick bodies shown with phospho-tau immunohistochemistry in pyramidal neurons of the hippocampus (g) 
and granular neurons of the dentate gyrus (i).  The inclusions are composed to 3R tau as demonstrated with a 
monoclonal antibody to 3R tau (h and j). In Guam PDC there are numerous neurofibrillary tangles in cortex and 
hippocampus (k & l) with many of the tangles released into the extracellular compartment after neuronal death 
(Bielschowsky stain in k). The tangles are positive for 3R and 4R tau, but extracellular tangles show preferential 
immunoreactivity for 3R tau (l).
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matter. Tau-immunoreactive glial inclusions are 
sometimes present in PiD [63]. Interestingly, the 
glial lesions contain predominantly 4R tau, which 
may contribute to the variability in the ratio 
between 3R and 4R tau observed in some cases 
of Pick’s disease [66]. Involvement of the deep 
gray matter and the brainstem is typical, with a 
predilection for the monoaminergic nuclei [67]. 
Neuro-chemical studies demonstrate deficits in 
intrinsic cortical neurotransmitter systems (e.g., 
somatostatin), but usually less involvement of 
transmitters in systems projecting to the cortex, 
such as the cholinergic neurons of the basal 
nucleus of Meynert [68].

Tangle predominant dementia

Tangle predominant dementia is a disorder of 
the very old (80 years and greater), where it may 
account for more than 5% of dementia cases 
[69-73]. It is associated with predominantly an 
amnestic clinical syndrome and can sometimes 
be differentiated from AD because of this [70], 
although it still remains an entity that is better 
known to neuro-pathologists than to clinicians. 
Unlike AD, it is not associated with increased 
frequency of apolipoprotein E ε4 allele [71-73].

Pathologically, it is characterized by diffuse 
cerebral atrophy with the most severe atrophy 
in the medial temporal lobe, which corresponds 
to the distribution of neuro-fibrillary tangles. 
Tangles are most dense in the hippocampus, 
amygdala and medial temporal cortex, with 
fewer in convexity cortices.  There are usually 
no or very few neocortical neuritic plaques, but 
there may be diffuse amyloid deposits [74], 
which are diagnostically nonspecific, since they 
can be found in large numbers in the brains of 
neurologically normal elderly individuals (i.e. 
pathological aging) as mentioned previously 
[6].  The tangles are histologically and biochem-
ically similar to those in AD, with an admixture 
of 3R and 4R tau [69] (Figure 2k & l). Many of 
the tangles are extracellular “ghost” tangles. 
For reasons that remain unclear extracellular 
tangles preferentially are immunoreactive for 
3R tau (Figure 2l), while intracellular tangles 
have a mixture of 3R and 4R tau [69].

Guam Parkinson dementia complex (PDC)

Guam PDC is an endemic disease affecting the 
Chamorro people of Guam characterized by pro-
gressive dementia and parkinsonism first 

with profound atrophy of the superior cerebel-
lar peduncle [58], which can be used as a 
biologic marker of disease progression with 
structural imaging [59].

The hallmark neuronal lesion is the globose 
neurofibrillary tangle (Figure 2e, inset), while 
tuft-shaped astrocytes or tufted astrocytes 
(Figure 2e) are the most characteristic glial 
lesion in PSP [60]. Tufted astrocytes are most 
abundant in the motor cortex and the corpus 
striatum. Neuronal loss and gliosis is most 
marked in the substantia nigra and subthalamic 
nucleus, where many thread-like processes and 
oligodendroglial coiled bodies are often found 
(Figure 2f). In PSP threads and coiled bodies 
are found together, while in CBD many threads 
are detected in the near complete absence of 
coiled bodies (compare Figure 2d and 2f). 

Pick’s disease (PiD)

PiD is a rare cause of frontal lobe dementia, 
accounting for less than 5% in autopsy series of 
dementia [61]. It is associated with circum-
scribed “lobar” atrophy; like CBD the distribu-
tion of focal cortical degeneration determines 
the presentation. Behavioral and personality 
deterioration deficits are typical in cases with 
frontotemporal atrophy, while frontoparietal 
atrophy presents with apraxia or aphasia simi-
lar to CBD. When the amnestic symptoms pre-
vail the clinical diagnosis is often initially AD. It 
is a disorder that affects men and women 
equally and is usually a “presenile dementia” 
with age of onset younger than 65 years. 
Mutations in the tau gene (MAPT) account for 
most cases of pathologically confirmed cases 
of familial PiD [62, 63].

The cardinal neuropathologic features are cir-
cumscribed cortical atrophy associated with 
neuronal loss, gliosis and argyrophilic, round 
intraneuronal inclusions (Pick bodies). Pyramidal 
neurons in the hippocampus and granular neu-
rons in the dentate fascia are particularly vulner-
able (Figure 2g and i). Pick bodies are composed 
of tau protein enriched in 3R tau, which can be 
shown with biochemical studies [64], or more 
recently with antibodies specific to tau isoforms 
[65] (Figure 2h and j). Less specific features 
include leukoencephalopathy and ballooned 
cortical neurons (Pick cells), which are similar to 
those found in CBD. Glial reaction is often pro-
nounced in affected cerebral gray and white 
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disorders, as well, including as many as 10% of 
neurologically normal elderly over age 60 years, 
where they are considered coincidental [89]. 
They are the sine qua non of DLB and have been 
noted in a subset of other neurodegenerative 
disorders, such as AGD, PSP, CBD and PiD [90]. 
In these disorders they are considered to be 
coincidental [91]. Lewy bodies are also common 
in AD, particularly in the amygdala [81, 92], 
where up to 50% of AD cases are positive [93]. 
Lewy bodies and α-synuclein immunoreactive 
axonal spheroids have been described in some 
of the neuroaxonal dystrophies, particularly 
neurodegeneration with brain iron, formerly 
known as Hallervorden-Spatz disease [94, 95].

PD is a disorder characterized by bradykinesia, 
tremor and rigidity with gait and balance disor-
ders. Motor deficits in PD are associated with 
loss of substantia nigra dopaminergic neurons 
[96]. Much current interest in PD is focused on 
non-motor aspects of the illness, such as hypos-
mia, autonomic dysfunction and sleep disorders 
that may precede motor problems by decades 
[97-99], as well as on cognitive deficits that occur 
late in the disease course in about 40% of cases 
[100]. Braak and co-workers have proposed a 
staging scheme for PD in which early pathology 
is in peripheral autonomic nervous system, with 
later involvement of the olfactory bulb and the 
lower brainstem autonomic and sleep related 
nuclei, spreading in a caudal-to-rostral manner, 
ending with widespread cortical involvement 
[101]. This scheme fits with premotor aspects of 
PD and late developing dementia in PD [101-
103]. The scheme posits a direct cell-to-cell 
transmission of a causative agent to account for 
the interrelation of vulnerable neuronal popula-
tions. Recently, in vitro  studies  have  provided   
support  for  the notion that abnormal conform-
ers of α-synuclein can be transmitted from cell-
to-cell [104], which may explain the intriguing 
observation that Lewy bodies are found in 
engrafted tissue many years after fetal tissue 
transplants for treatment of PD [105, 106]. The 
results suggest that α-synuclein may have prop-
erties similar to other transmissible amyloid pro-
teins, such as prion protein [107].

The Lewy body is a concentric hyaline perikary-
al inclusion (Figure 3a) that is immunereactive 
for α-synuclein, but similar inclusions are also 
present in neuronal cell processes as so-called 
intraneuritic Lewy bodies. Less well defined 
inclusions, so-called cortical Lewy bodies are 

described by Hirano and colleagues [75, 76]. A 
similar disorder occurs in the Kii peninsula in 
Japan [77]. In both populations, the disorder 
clusters in families and there is also increased 
frequency of motor neuron disease. The etiology 
is unknown and despite more than three decades 
of research, a genetic cause is unknown [78].

Pathologically, Guam PDC is characterized by 
diffuse cerebral atrophy with degeneration of 
brainstem monoaminergic nuclei. In areas of 
cortical and subcortical degeneration, neurons 
have tangles similar to those in AD [79], with 3R 
and 4R tau. Some cases have Lewy bodies 
[80], but they are usually restricted to the 
amygdala, as is common in AD [81]. Recently, 
TAR DNA binding protein of 43 kDa (TDP-43) 
has been shown to be present in most cases of 
Guam PDC [82, 83]. In cases with motor neuron 
disease, the TDP-43 pathology resembles than 
seen in sporadic amyotrophic lateral sclerosis 
(see below), but in PDC cases lacking motor 
neuron pathology TDP-43 pathology is present 
in cortical and subcortical areas in the form 
neuronal cytoplasmic inclusions, dystrophic 
neurites and oligodendroglia inclusions [83].

Synucleinopathies

Alpha-synuclein is a member of a family of pro-
teins that also contains β-synuclein and 
γ-synuclein that are pleiotropic in terms of func-
tion [84]. In the central nervous system 
α-synuclein has been implicated in several dis-
orders. It was originally discovered as a non-
amyloid component of senile plaques that was 
enriched in presynaptic termini [85, 86], but 
little attention was paid to it until mutations 
were discovered in the gene for α-synuclein 
(SNCA) in familial Parkinson disease (PD) [87] 
and it was found to be the major structural 
protein in Lewy bodies, the hallmark histopath-
ologic lesion in PD and dementia with Lewy 
bodies (DLB) [88]. Availability of antibodies to 
α-synuclein proved essential to the greater rec-
ognition of the importance of Lewy body disor-
ders and the presence of α-synuclein in other 
neurodegenerative disorders, the synucleinop-
athies, which includes multiple system atrophy 
and neuroaxonal dystrophies.

Lewy body disorders

As noted above, Lewy bodies are the histologic 
hallmark of PD, but they are found in other 
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Figure 3. Synucleinopathies: a-d Lewy body disease (LBD); e & f Multiple system atrophy (MSA). Vulnerable 
neurons in LBD, such as the basal nucleus of Meynert (a) have dense round inclusions (Lewy bodies) as well as 
Lewy bodies with axons (a). In cases with dementia, there are also neuronal inclusions in cortical neurons (b), as 
well as many neurites in the hippocampus (c) and amygdala (d). The morphology of the neurites in the amygdala 
are often grain-like and have been referred to as Lewy dots to distinguish them from argyrophilic grains. In some 
cases there are sparse oligodendroglial inclusions (inset in d), which are clearly different from the glial cytoplas-
mic inclusions (GCI) that are the hallmark of MSA (e). GCI are abundant in the basal ganglia, pons (e), medulla 
and cerebellum. In addition to GCI neuronal inclusions (arrow in f) are present in many cases and are usually 
most numerous in the pontine base (f) where they are accompanied by dystrophic neurites and synuclein positive 
fibrillar inclusions within some neuronal nuclei (inset).
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determined. Neuronal inclusions and dystro-
phic neurites (Figure 3d) are detected in most 
cases, but they are highly variable in density, 
not clearly associated with neuronal loss and 
largely confined to the putamen, pontine nuclei 
and inferior olive. In some cases there are 
α-synuclein immunoreactive intranuclear inclu-
sions [126] (Figure 3d, inset).

TDP-43 proteinopathies

Transactive response DNA binding protein of 
43 kDa (TDP-43) has structural properties simi-
lar to heterogenous nuclear ribonucleo-pro-
teins, including RNA binding domains, which 
appear necessary in its role in transcriptional 
regulation [127]. More recently, TDP-43 has 
been shown to be a component of RNA gran-
ules [128], which play a critical role in cellular 
response to cell stress by arresting translation 
[129]. Interest in TDP-43 grew when it was 
shown to be a component of the neuronal inclu-
sions of amyotrophic lateral sclerosis (ALS) and 
frontotemporal lobar degeneration with ubiquit-
inated inclusions (FTLD-U) [130]. While initially 
considered specific to ALS and FTLD-U, it has 
become clear that TDP-43 immunoreactive 
neuronal inclusions are found in other disor-
ders, such as AD and hippocampal sclerosis 
[131], Guam PDC [82] and LBD [132].

Amyotrophic lateral sclerosis (ALS)

ALS is a neurodegenerative disease process 
known for its selective involvement of upper 
and lower motor neurons, but increasingly it is 
has been shown to be a multisystem degenera-
tion with pathology in extra-motor locations 
[133]. As is true for most neurodegenerative 
diseases, a small subset of ALS is due to genet-
ic mutations. Autosomal dominant forms of ALS 
are due to mutations in superoxide dismutase 
1 (SOD1) [134], angiogenic (ANG) [135] and 
TARDBP, the gene for TDP-43 on chromosome 
1 [136]. Recently, mutations in TARDBP have 
been reported in a family with frontotemporal 
dementia [137], but most mutations in TARDBP 
are associated with ALS.

In addition to neuronal loss, affected neurons 
in ALS have characteristic inclusions bodies, 
including Bunina bodies, Lewy-like hyaline inclu-
sions and skein-like inclusions [133]. Bunina 
bodies are eosinophilic granular cytoplasmic 
inclusions that are found in degenerating motor 

found in the cortex in PD with dementia (PDD) 
and in DLB (Figure 3b). DLB is a disorder char-
acterized by dementia with visual hallucina-
tions, fluctua-tions and parkinsonism [108, 
109]. It is distinguished from PDD by the tem-
poral sequence of cognitive impairment with 
respect to parkinsonism, being early in DLB 
and late in PDD [110]. Pathologically, most 
cases of rigorously diagnosed DLB have diffuse 
cortical Lewy bodies with mild Alzheimer type 
pathology (Braak stage IV or less with mostly 
diffuse type amyloid plaques) [111].

The largest burden of abnormal α-synuclein in 
DLB, as well as in PD and PDD, is not in Lewy 
bodies, but rather dystrophic neurites, so-
called Lewy neurites. Lewy neurites are curvi-
linear or dot-like processes [112] that are found 
in regions with the highest density of Lewy 
bodies, such as limbic cortex and amygdala 
(Figure 3d). They are also found in most cases 
of PDD and DLB in the CA2/3 sector of the hip-
pocampus [113, 114] (Figure 3c). The density 
of cortical Lewy bodies and neurites correlates 
with cognitive impairment in some studies 
[115-118].  On the other hand, some studies 
fail to find a clear correlation [119-121]. In many 
cases of PD, α-synuclein is also present in small 
glial cells consistent with oligodendroglia 
(Figure 3d, inset); these can be particularly 
numerous in early onset PD due to mutations in 
SNCA [122]. The glial lesions in PD and DLB are 
never as numerous as in multiple system atro-
phy (MSA).

Multiple system atrophy (MSA)

MSA is a sporadic synucleinopathy character-
ized by autonomic dysfunction, parkin-sonism 
and cerebellar ataxia, associated with neurode-
generation of the substantia nigra, basal gan-
glia, pontine nuclei, inferior olivary nucleus and 
the cerebellum [123]. Depending upon the pre-
vailing clinical features, it is sub-classified as 
MSA-P (for parkinsonism) and MSA-C (for cere-
bellar ataxia). While it is usually sporadic, there 
are recent reports suggesting that variants in 
SNCA may be associated with increased risk 
for MSA [124].

Neurodegeneration in MSA is associated with 
extensive α-synuclein pathology in oligo- 
dendrocytes, so-called glial cytoplasmic inclu-
sions (GCI) [125] (Figure 3e). How glial pathology 
is linked to neuronal loss remains to be 
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with frontal dementia and mimicking PiD except 
that the inclusion bodies contain α-synuclein 
rather than tau [146, 147].

A recently recognized class of FTLD has neu-
ronal inclusions composed of the protein FUS 
(“fused in sarcoma”) [148], which is also a rare 
cause of familial ALS [149].  Like TDP-43, FUS 
is an RNA binding protein that is normally locat-
ed in the nucleus, with relocation to cytoplas-
mic inclusions in disease.

Rare cases of FTLD-U have ubiquitinated 
inclusions for which the protein remains to be 
determined. One of these is associated with 
mutations in endosomal ESCRTIII-complex sub-
unit CHMP2B [150]. Sparse TDP-43 ubiquitin 
positive inclusions are detected in this disorder, 
but largely confined to the hippocampal den-
tate fascia [151].

Given the heterogeneity of the pathology of 
FTLD a proposed nomenclature for this group 
of disorders is shown in Table 2 [152]. We have 
taken the liberty of adding FTLD-AS (for FTLD 
associated with α-synuclein), since the scheme 
was meant to be updated as the protein in the 
ubiquitin immunoreactive neuronal inclusions 
was discovered, as is the case for the recently 
added FTLD-FUS [148].

Subclassification of FTLD-TDP

The FTLD-TDP group of disorders has been sub-
classified based upon characteristic appear-
ance and distribution of the TDP-43 inclusions 
[153, 154]. We recently expanded the analyses 
to include multiple subcortical regions of 
analysis, as was also done by Alafuzoff and  
co-workers [155]. Like that study, we also found 
that the classification scheme originally pro-
posed by Mackenzie and co-workers had the 
best clinicopathologic correlations, and it also 
was associated with distinctive subcortical 
pathology [156]. The Mackenzie classification 
scheme originally took into account only two 
regions – cortex and hippocampus [154]. We 
have added amygdala, basal ganglia, thalamus, 
midbrain and medulla. Mackenzie type 1 (simi-
lar to Cairns type 3 [153]) is characterized by 
superficial cortical spongiosis with pleo-mor-
phic TDP-43 neuronal inclusions and short cur-
vilinear neurites in the same superificial layers 
(Figure 5b). The dentate fascia neurons are 
affected and have crescent shaped or round 

neurons and are immune-reactive for cystatin C 
[138]. The hyaline neuronal and glial inclusions 
in SOD1-linked familial ALS are immunoreactive 
for SOD1, but not TDP-43 [139]. In contrast, 
Lewy-like hyaline inclusions and skein-like inclu-
sions in ALS are TDP-43-positive (Figure 4).

Frontotemporal lobar degeneration with  
ubiquitin inclusions (FTLD-U)

Frontotemporal lobar degeneration (FTLD) is a 
generic term for the group of non-Alzheimer 
degenerative dementias with focal cortical 
pathology in frontal and temporal lobes [140]. It 
encompasses a range of different clinical syn-
dromes – behavioral variant fronto-temporal 
dementia (FTDbv), progressive nonfluent apha-
sia (PNFA), semantic dementia (SD) and cortico-
basal syndrome (CBS) – and a range of different 
pathologies. The most common is FTLD-U, with 
tauopathies considered slightly less common 
and including PSP, CBD and PiD [141]. Mutations 
in MAPT account for a subset of the familial 
FTLD, all of which are associated with tauopa-
thies (FTLD-TAU) [26]. Mutations in the gene for 
progranulin (GRN) account for most of the cases 
of familial FTLD-U [142]. A rare cause of familial 
FTLD-U is mutation in valosin containing protein 
(VCP), which produces dementia with Paget’s 
disease of bone and inclusion body myositis 
(IBM) [143]. In this disorder there are also TDP-
43 positive neuronal inclusions, with many 
neuronal intranuclear inclusions the most char-
acteristic feature [144].

Rare causes of FTLD include disorders associ-
ated with neuronal inclusions composed of 
neuronal intermediate filament proteins, includ-
ing alpha-internexin [145]. There are also sev-
eral case reports of atypical MSA presenting 

Figure 4. TDP-43 in ALS: Both skein-like (a) and 
Lewy-like hyaline inclusions (b) are positive for 
TDP-43.
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are also Pick-body like inclusions in the dentate 
fascia (Figure 5d), amygdala and basal ganglia. 
This form of FTLD-TDP has minimal pathology 
in diencephalon or brainstem.

Mackenzie type 3 (Cairns type 1) is associated 
with FTLD with motor neuron disease and ALS. 
There are TDP-43 inclusions in neuronal cell 
bodies (Figure 5g), but few or no neurites. Some 
of the inclusions have diffuse granular cyto-
plasmic staining typical of “pre-inclusions’ 
(Figure 5h). The dentate fascia is variably 
affected. This form of FTLD-TDP has a predilec-
tion for the frontal cortex and has highly vari-
able involvement in the lower neuroaxis, the 
exception being the regular involvement of the 
hypoglossal nucleus (Figure 5i), which is affect-
ed in cases with motor neuron. Glial inclusions 
(Figure 5i, arrow) are common in this type of 
FTLD-TDP.

inclusions (Figure 5a). A distinctive histologic 
feature is the presence of delicate thin neurites 
in the pyramidal layer of the hippocampus, first 
reported by Hatanpaa [157] (Figure 5c). This 
form of FTLD-TDP is associated with the most 
widespread pathology, and there are often 
inclusions in the amygdala, basal ganglia, thal-
amus and brainstem. The clinical presentation 
is FTDbv, PNFA or occasionally CBS. Mutations 
in GRN are associated with this pathology and 
all such cases have neuronal intranuclear inclu-
sions [158, 159].

Mackenzie type 2 (Cairns type 1) FTLD-TDP is 
associated with temporal atrophy, especially 
affecting the dominant hemisphere and 
associated with SD. The hallmark histo-patho-
logic lesions are long, thick neurites  (Figure 5f) 
with no cortical laminar predilection (Figure 5e) 
often involving the lower cortical layers. There 

Table 2. Classification of frontotemporal lobar degenerations (adapted from [152])

FTLD-Molecular abnormality Genetic loci

FTLD-TDP
Frontotemporal lobar degeneration with TDP-43 inclusions
  Subtype 1 (associated with SD) None known
  Subtype 2 (associated with MND) Chromosome 9
  Subtype 3 (associated with FTDbv and PNFA) GRN
  Subtype 4  (associated with Paget’s and IBM) VCP
FTLD-TAU
Frontotemporal lobar degeneration with tauopathy MAPT
  Pick’s disease (3R tauopathy)
  Corticobasal degeneration (4R tauopathy)
  Progressive supranuclear palsy
  Multisystem tauopathy (4R tauopathy)
FTLD-IF
  Frontotemporal lobar degeneration with intermediate filament inclusions None known
FTLD-FUS
  Frontotemporal lobar degeneration with FUS inclusions FUS
FTLD-UPS
 � Frontotemporal lobar degeneration with inclusions composed of ubiquitin and 

other components of ubiquitin-proteasome system (e.g., P62-sequestosome)
CHMP2b

FTLD-AS
 � Frontotemporal lobar degeneration with inclusions composed of α-synuclein 

(atypical Pick’s disease)
SNCA?

FTLD-NI
  Frontotemporal lobar degeneration with no inclusions None known

FTLD-TDP Subtype 1 = Mackenzie Type 2; FTLD-TDP Subtype 2 = Mackenzie Type 3; FTLD-TDP Subtype 3 = Mackenzie Type 1; 
FTLD-TDP Subtype 4 = no Mackenzie type assigned. 
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argued that it is a distinct process from FTLD-
TDP, analogous to the presence of α-synuclein in 
limbic lobe neurons, sometimes in neurons with 
tangles, in AD [81]. The proportion of AD cases 
with TDP-43 pathology ranges from 20 to 50% 
depending upon whether tangle-associated 
TDP-43 is included [131, 160, 163]. Except for 
our study, where we did not include tangle- 
associated TDP-43, none of the other reports 
has made this distinction. It is of interest that 
TDP-43 associated with Lewy body disorders is 
also so some extent a function of concurrent AD 
pathology [132, 160, 161]. Tangle associated 
TDP-43 appears to be a phenomenon that is 
relatively unique to 3R+4R tauopathies, such as 
AD, Guam PDC and in tangle predominant 

TDP-43 pathology in AD

TDP-43 immunoreactive neurons are sometimes 
detected in the setting of other disorders, par-
ticularly AD [131, 160-162], where it may be 
seen in neurons with neurofibrillary tangles 
[131]. In many of these cases the TDP-43 pathol-
ogy is relatively restricted to the limbic lobe and 
not associated with many dystrophic neurites.  It 
is thus, similar to Mackenzie type 3, but given 
the co-localization in neurons with tau tangles 
and the absence of TDP-43 pathology in motor 
neurons, it is actually a distinct type of TDP-43 
proteinopathy. At present, this tangle-associated 
TDP-43 has not been incorporated into classifi-
cation schemes for FTLD-TDP and it could be 

Figure 5. TDP-43 proteinopathies: a, b & c FTLD-TDP Type 1; d, e & f FTLD-TDP Type 2; g, h & I FTLD-TDP Type 3. 
Distinct patterns of TDP-43 pathology define subtypes of TDP-43 proteinopathies. In Type 1 there is widespread 
pathology in forebrain and hindbrain structures, with neurites and neuronal cytoplasmic inclusions (NCI) in hip-
pocampal dentate fascia (a) and neocortex (b). A characteristic feature of many Type 1 cases is the presence of 
many small fine neurites in the pyramidal layer of the hippocampus (c). In Type 2 there are round dense NCI in the 
hippocampal dentate fascia (d) (as well as in the amygdala and basal ganglia), but predominantly long thick neu-
rites in the cortex (e & f).  The pathology is minimal in the hindbrain in Type 2. In Type 3 cases the predominant 
pathology is NCI with a paucity of dystrophic neurites. In addition to the hippocampus (g) and cortex (h), NCI are 
found in motor neurons of the brainstem and spinal cord (i). Inclusions in Type 3 are similar to those in ALS, with 
more widespread forebrain involvement in cases with dementia than in those with only motor neuron signs.
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subsequently assemble into filaments aggre-
gates [177]. Thus, TDP-43 inclusions could have 
more specificity with respect to mechanism of 
neurodegeneration than to disease type [178].  

Concluding remarks

This brief overview of select aspects of non-AD 
neurodegenerative diseases highlights some 
common features of these clinically and patho-
logically diverse disorders. Among these key 
principles is the importance of abnormal pro-
tein conformers, particularly conformers with 
amyloid-like beta-sheet secondary structure 
that have a propensity to aggregate either in 
the extracellular domain or within the cyto-
plasm of neurons or glia, or both. Another 
important point is that for most, but not all, of 
these disorders mutations are found in the 
gene that encodes the abnormal protein that is 
found in these aggregates and genetic variants 
in these genes contribute to increased risk for 
the disease in sporadic cases. Several exam-
ples can be cited: mutations in MAPT give rise 
to FTLD-TAU [179], while genetic variants in 
MAPT predispose to the tauopathies PSP and 
CBD [180]; mutations in SNCA give rise to famil-
ial PD [87], while genetic variants in SNCA pre-
dispose to the α-synucleinopathies PD [181] 
and MSA [124]; while progranulin does not 
accumulate in FTLD-TDP, mutations in GRN give 
rise to FTLD-TDP [142] and genetic variants in 
GRN predispose to sporadic FTLD-TDP [182]. 
Further studies are needed to determine what 
determine non-genetic risk factors and if there 
are common mechanisms for selective neu-
ronal vulnerability that is the defining feature of 
these disorders.
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dementia. In a large series of PSP cases (over 
250 cases), we have not seen TDP-43 pathology, 
except in cases with concurrent AD or hippocam-
pal sclerosis (unpublished observations).

Hippocampal sclerosis (HpScl)

Hippocampal sclerosis (HpScl) is a pathologic 
finding characterized by neuronal loss in the 
subiculum and CA1 of the hippocampus.  It is a 
common finding in elderly subjects with demen-
tia, either alone or more often accompanied by 
other pathologic processes [164-168]. It is 
even more frequent in FTLD-U, where over 70% 
of cases have HpScl [169]. Conversely, in stud-
ies of HpScl, up to 12% of cases have ubiquitin-
immunoreactive inclu-sions similar to FTLD-U 
[170]. Due to this strong association, when 
HpScl is detected, it is important to rule out 
FTLD-U. In our series of HpScl we detected 
TDP-43 immunoreactivity, most often similar to 
Mackenzie type 1, in over 70% of cases [131]. 
In contrast to FTLD-TDP, TDP-43 pathology in 
HpScl may be limited to limbic lobe structures, 
particularly the amygdala and entorhinal cor-
tex, rather than being more widespread [131]. 
This suggests that TDP-43 in the setting of 
HpScl may be a forme fruste of FTLD-TDP. It is 
important to emphasize that HpScl that occurs 
in the setting of temporal lobe epilepsy or after 
cardiac arrest and anoxic brain injury is nega-
tive for TDP-43 [131, 171, 172].

When TDP-43 occurs in the setting of other well 
recognized neurodegenerative disorders, such 
as AD and HpScl, the significance of this finding 
is debated. Does it represent concurrent FTLD-
TDP or co-deposition of fibrillogenic proteins in a 
vulnerable set of neurons? Experimental obser-
vations by Zhang, and co-workers suggests that 
TDP-43 becomes more fibrillogenic when it 
undergoes cleavage and that this cleavage can 
be promoted by apoptosis [173]. That TDP-43 is 
vulnerable to proteolytic cleavage comes from 
global mapping of proteolytic events in apopto-
sis [174]; TDP-43 is one of the many proteins 
that is cleaved during apoptosis. In addition, 
carboxyl terminal fragments of TDP-43 have 
been shown to be more toxic than full length 
protein and to have greater propensity to form 
inclusions [175, 176]. Thus, it could be hypoth-
esized that under certain conditions of cell 
stress that lead to activation of proteolysis 
associated with programmed cell death, TDP-
43 is cleaved. The cleaved TDP-43 fragments 
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