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Abstract: Synovial sarcoma (SS) tumor cells, which have the chromosomal translocation t(X;18)(p11.2;q11.2), have 
an inherently greater propensity for epithelial differentiation than other mesenchymal tumors, especially spindle 
cell sarcomas. This is caused by de-repression of the transcription of E-cadherin by SYT-SSX1 and SYT-SSX2, which 
dissociate Snail or Slug, respectively, from the E-cadherin promoter. However, a subset of SS with SYT-SSX1 loses E-
cadherin expression despite adequate de-repression because of mutations in E-cadherin, resulting in monophasic 
histology. The ratio of the expression levels of SYT-SSX1 and Snail is also associated with E-cadherin expression: the 
lower the SYT-SSX1/Snail ratio, the lower the level of E-cadherin expression, and vice versa, thus affecting tumor 
histology. In addition, Wnt signal activation caused by mutation of β-catenin, APC, or Axin 1 and 2 is associated with 
monophasic histology. Remodeling of the extracellular matrix is also important. Only cells that survive all of these 
steps can finally exhibit biphasic histology. On the other hand, the SYT-SSX2 fusion has a weaker de-repression 
effect on the E-cadherin promoter than does SYT-SSX1, so it is difficult for SYT-SSX2-expressing tumors to achieve 
sufficient capacity for epithelial differentiation to form glandular structures. This review provides an interesting 
model for this epithelial differentiation that shows a possible mechanism for the aberrant mesenchymal to epithelial 
transition of SS and suggests that it might better be considered an epithelial to mesenchymal transition.
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Introduction

Synovial sarcoma (SS) accounts for 7–10% of 
all soft tissue malignancies and most common-
ly arises in the extremities of young adults [1]. A 
recurrent chromosomal translocation, t(X;18)
(p11.2;q11.2), fuses the SYT gene on chromo-
some 18 to any of three closely related genes 
on the X chromosome, SSX1, SSX2, or, rarely, 
SSX4, resulting in the formation of SYT-SSX 
fusion proteins [2]. SYT-SSX fusion genes can 
be detected in more than 95% of cases of SS, 
and the detection of such fusions has been 
established clinically as a molecular diagnostic 
test for this tumor; therefore, this translocation 
is considered the driving oncogenic event in the 
development of SS. SYT-SSX fusion proteins 
have been shown to require chromatin-remod-
eling factors, such as Brg/Brm [3], to achieve 
their transformative potential. Quite recently, 

SYT-SSX fusion has been shown to interact with 
the SWI/SNF (BAF) complex, the best-charac-
terized of the chromatin-remodeling complexes, 
by dissociating BAF47 from the complex, result-
ing in Sox2 activation [4].

SS is a unique mesenchymal tumor that exhib-
its epithelial differentiation by both morphologi-
cal and immunohistochemical criteria. It is 
divided on the basis of morphology into two 
major histological subtypes: the biphasic type 
and the monophasic fibrous type. An intriguing 
observation in SS is that the specific gene 
fusion (i.e., SYT-SSX1 vs. SYT-SSX2) correlates 
strongly with the tumor phenotype (monophasic 
vs. biphasic histology as defined by the pres-
ence of glandular epithelial differentiation with 
lumen formation), and almost all biphasic SS 
has been shown to harbor the SYT-SSX1 fusion 
gene [5, 6]. SS with the SYT-SSX1 fusion gene is 
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therefore considered to be capable of epithelial 
differentiation as defined by histological evi-
dence of gland formation and immunohisto-
chemical detection of epithelial-related pro- 
teins, although the mechanism for this differen-
tiation has not been well documented. A recent 
study demonstrated that SYT-SSX silencing 
broadened the differentiation potential of SS 
cells to include cell types such as osteocytes, 
chondrocytes, and adipocytes, providing evi-
dence that SS is a stem cell malignancy [7]. 
This finding is in line with the aforementioned 
evidence that SYT-SSX is responsible for the 
histologic features specific to SS. One interest-
ing model for this epithelial differentiation that 
provides a possible mechanism for this aber-
rant mesenchymal to epithelial transition by SS 
(and suggests that it might better be consid-
ered an epithelial to mesenchymal transitions) 
[8] posits that all SS are potentially able to 
undergo some degree of epithelial differentia-
tion as evidenced by the expression of epitheli-
al differentiation-associated genes such as 
E-cadherin but that the majority of such tumors 
lose this capability as a result of other factors, 
including remodeling of the extracellular matrix 
[9, 10]. In this review, the factors that contrib-
ute to this phenomenon are explained in turn.

Correlation between the type of SYT-SSX fu-
sion and the histological subtype

Kawai et al. were the first to describe the SYT-
SSX fusion gene as a determinant of the mor-
phology and prognosis of SS [5]. Although the 
impact of the specific fusion type on the sur-
vival of patients with SS is controversial, sever-
al independent groups have consistently 
observed an association between the type of 
SYT-SSX fusion and histological glandular dif-
ferentiation [6, 11-13]. Biphasic histology 
occurs in 38.6% of SYT-SSX1 tumors but only 
3.3% of SYT-SSX2 tumors [12]. Therefore, SS 
with SYT-SSX1 is considered to be more capa-
ble of epithelial differentiation.

Expression of epithelial markers in synovial 
sarcoma

SS may express epithelial markers such as 
cytokeratin and epithelial membrane antigen 
(EMA). Approximately 90% of all SS are cytoker-
atin-positive. In general, the intensity of stain-
ing is stronger in the epithelial cell component 
than in the spindle cell component. In mono-

phasic fibrous SS, there may be only a few cells 
throughout the section positive for EMA or cyto-
keratin. Although this feature is almost unique 
to SS among the spindle cell sarcomas, several 
other mesenchymal tumors such as glandular 
malignant peripheral nerve sheath tumor 
(MPNST) are known to show occasional mor-
phological epithelial differentiation. This rare 
variant of MPNST may be difficult to distinguish 
from biphasic SS because the glandular ele-
ment is virtually identical, and it is principally 
the spindle cell component that differentiates 
them. Subtle degrees of epithelial differentia-
tion may be evident in the spindle cell compo-
nent of biphasic SS, whereas the epithelial ele-
ment in glandular MPNST invariably arises 
rather abruptly from a spindle cell stroma con-
sisting of keratin-negative cells. SS may also 
express intercellular adhesion molecules such 
as E-cadherin and catenin family members. 
E-cadherin and catenins are intercellular adhe-
sion molecules located at structures called 
adherens junctions. The adhesion protein 
E-cadherin plays a central part in epithelial 
morphogenesis. Expression of this protein is 
downregulated during the acquisition of meta-
static potential in the late stages of epithelial 
tumor progression [14, 15]. During this pro-
cess, epithelial tumor cells also acquire fibro-
blastic morphology, a phenomenon known as 
epithelial-mesenchymal transition (EMT) [14, 
15]. These intercellular adhesion proteins are 
expressed preferentially in the glandular com-
ponent of biphasic SS and in epithelial nests 
composed of rather short-spindled and oval to 
plump cells in monophasic SS [16, 17]. SS may 
also express tight-junction-related proteins, 
including ZO-1, claudin-1, and occludin SS [18]. 
These proteins have been shown to be 
expressed weakly and focally in the spindle 
cells of biphasic and monophasic tumors [18] 
as well as in the glandular components of 
biphasic tumors.

Approximately 30–40% of SS with the SYT-
SSX1 fusion show histologically glandular epi-
thelial differentiation [12], and strong expres-
sion of E-cadherin has been shown to 
correspond well to the glandular component of 
biphasic SS [16]. However, it is not clear how 
these differences arise within SS with the SYT-
SSX1 fusion. One interesting observation is 
that mutations in the zipper structure of 
E-cadherin, which would be expected to disrupt 
its function and lead to monophasic histology, 
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occur exclusively in a subset of SS with the SYT-
SSX1 fusion [9, 10].

SYT-SSX and transcription of E-cadherin

Blocking the SYT-SSX fusion has been shown to 
suppress the growth of SS cells, as occurs in 
other translocation sarcomas (Ewing’s, etc.) [7, 
19]. Therefore, a simple difference between 
the expression levels of the SYT-SSX fusion pro-
teins was hypothesized to be responsible for 
the histological and biological differences 
between SYT-SSX1 and SYT-SSX2 tumors. 
However, one unpublished observation showed 
no difference in the SYT-SSX mRNA expression 

level as assessed by real-time PCR between 
tumors with the SYT-SSX1 and SYT-SSX2 
fusions (Saito T and Ladanyi M; unpublished 
data). Functional differences between SYT-
SSX1 and SYT-SSX2 are therefore expected to 
account for the morphological differences 
among SS with these different fusion genes. 
EMT is a phenomenon implicated in the differ-
entiation of epithelial cells into mesenchymal 
cells in which E-cadherin expression is down-
regulated and the cells acquire a fibroblastic 
morphology. This aspect of EMT is reminiscent 
of the histology of SS, especially biphasic SS in 
which the E-cadherin-positive plump tumor 
cells form glandular structures on a back-

Figure 1. Proposed model for epithelial differentiation in synovial sarcoma. Tumor cells with the chromosomal 
translocation t(X;18)(p11.2;q11.2) possess an inherently higher propensity for epithelial differentiation than other 
mesenchymal tumors, especially spindle cell sarcomas. This is caused by dissociation of Snail or Slug from the E-
cadherin promoter by SYT-SSX1 or SYT-SSX2, respectively, which relieves the repression of E-cadherin transcription. 
However, some SS with SYT-SSX1 lose E-cadherin expression because of mutation of E-cadherin, resulting in mono-
phasic histology. The ratio of the expression levels of SYT-SSX1 and Snail is also associated with the expression 
of E-cadherin: the lower the SYT-SSX1/Snail ratio, the lower the expression of E-cadherin, thus affecting the tumor 
histology. In addition, Wnt signal activation caused by mutation of β-catenin, APC, or Axin1 and 2 is associated with 
monophasic histology. The remodeling of the extracellular matrix is also important. Only tumors that survive these 
steps can finally exhibit biphasic histology. On the other hand, the SYT-SSX2 fusion is a weaker de-repressor of the 
E-cadherin promoter than is SYT-SSX1, so it is difficult for SYT-SSX2-positive tumors to acquire enough capacity for 
epithelial differentiation to show glandular formation. 
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Figure 2. Difference of E-cadherin expression in biphasic synovial sarcoma with the SYT-SSX1 fusion. The SYT-
SSX1/Snail ratio is thought to be higher in the glandular component of biphasic SS with the SYT-SSX1 fusion, 
causing greater de-repression of the E-cadherin promoter and leading to stronger expression of the protein. On the 
other hand, the SYT-SSX1/Snail ratio is thought to be lower in the spindle cell component of biphasic SS with the 
SYT-SSX1 fusion, resulting in weaker de-repression of the E-cadherin promoter and leading to weak or nonexistent 
expression of this protein. Furthermore, in the spindle cell component, the expression of Snail is more strongly up-
regulated by activated Wnt signaling and thus hampers the expression of E-cadherin.

ground of spindle-shaped E-cadherin-negative 
proliferating tumor cells. As already mentioned 
above, E-cadherin expression can be seen in a 
subset of SS and can even be heterologous in 
the same tumor, as is cytokeratin expression. 
However, most SS, like other pleomorphic spin-
dle cell sarcomas, have lost E-cadherin expres-
sion (10, and partially unpublished data). Some 
studies regarding the possible roles of Snail as 
a strong transcriptional repressor of E-cadherin 
demonstrated that Snail is strongly expressed 
in mesenchymal tissue [14, 15]. Slug was sub-
sequently shown to be able to repress 
E-cadherin expression in epithelial cells via the 
E-box elements in the proximal E-cadherin pro-
moter [20, 21]. The mRNA expression level of 
Snail does not differ between SS and other 
spindle cell sarcomas, such as pleomorphic 
sarcomas, leiomyosarcoma, and malignant 
peripheral nerve sheath tumors, suggesting 
that the SYT-SSX fusion protein affects not the 
expression levels but rather the functions of 
these EMT regulators (10, and partially unpub-

lished data). SYT-SSX1 and SYT-SSX2 were 
recently demonstrated to interfere selectively 
with Snail and Slug, respectively, and release 
their repression of E-cadherin expression [8]. In 
this model, transcriptional activation of the 
E-cadherin gene by either SYT-SSX1 or SYT-
SSX2 is caused by dissociation of Snail or Slug, 
respectively, from the E-cadherin promoter [8]. 
The SYT-SSX1 fusion protein interacts with 
Snail, which is a stronger repressor of 
E-cadherin than Slug, and dissociates Snail 
from the E-cadherin promoter, resulting in 
stronger de-repression of E-cadherin transcrip-
tion (8: modified in Figure 1). This process also 
involves hyperacetylation of histones H3 and 
H4 induced by SYT-SSX1 dissociating Snail 
from the E-cadherin promoter [8]. The involve-
ment of histone modification by SYT-SSX in the 
regulation of other genes has also been 
described [22].

In addition, a recent paper demonstrated that 
SYT-SSX signal (produced by cRNA in situ 
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hybridization) was more intensely localized in 
the epithelial components than in the spindle 
cell areas of biphasic SS [23]. In addition, 
nuclear expression of Snail is significantly lower 
in the glandular component [24]. These find-
ings suggest the possibility that selective tran-
scriptional up-regulation of E-cadherin in the 
glandular components of SS establishes and 
maintains the epithelial differentiation and 
morphology (Figure 2). One might reasonably 
ask whether SYT-SSX also de-represses other 
epithelial differentiation-related genes, such as 
claudin-1 and occludin, that have been shown 
to be expressed in SS [18] and contain E-box 
sequences similar to those of E-cadherin in 
their promoters [25]. This is not the case, how-
ever, suggesting that the regulation of epithelial 
differentiation-related genes is more complex 
than expected.

Extracellular matrix and Wnt signaling in the 
epithelial differentiation of SS

Matrix metalloproteinases (MMPs) are zinc pro-
teinases responsible for the degradation of 
extracellular matrix macromolecules in such 
pathophysiological conditions as tissue remod-
eling and tumor invasion [26]. Expression of 
MMPs has been shown to be associated with 
tumor invasion and the patient’s prognosis [27, 
28]. MMP-2 expression in SS has been well 
described [29]: it tends to occur in biphasic SS 
and monophasic SS with plump cell foci but is 
usually absent in purely monophasic fibrous 
SS. In biphasic tumors, MMP-2 is more strongly 
expressed in the glandular than in the non-
glandular component [29].

On the other hand, several cDNA microarray 
and tissue microarray studies have implicated 
the Wnt signaling pathway in a critical role in 
the formation of SS [30-34]. Nuclear β-catenin 
staining was reported in 30% to 60% of SS, pri-
marily in monophasic tumors or in the spindle 
cell component of biphasic tumors, whereas 
the epithelial component of biphasic tumors 
shows membranous staining [16, 35]. Activating 
mutations in this pathway have been sporadi-
cally reported in SS; these include mutations in 
adenomatous polyposis coli (APC) (8%) and  
β-catenin (8%), and all cases with such 
mutations have been shown to be monophasic 
SS [16, 36]. Furthermore, among SS with muta-
tions in E-cadherin that were considered to 
have abrogated E-cadherin expression, some 

tumors still exhibited an epithelioid morphology 
without any apparent formation of glandular 
structures [9]. The author noticed that all such 
cases of SS retained at least immunohisto-
chemical evidence of membranous expression 
of one of three catenins [9, 16], suggesting that 
catenins also play an important role in main-
taining the morphology of SS tumor cells. This 
invites speculation that activation of the Wnt 
signaling pathway might be involved in the mor-
phologic changes undergone by SS cells. 
Nuclear β-catenin was already known to influ-
ence growth (c-myc, cyclin D1, PPARδ), survival 
(MDR1, survivin), dedifferentiation (CDX-1, Id-2, 
ENK1), proteolysis (MMP-7, uPA-R, uPA), migra-
tion (laminin-5γ2), angiogenesis (VEGF), dis-
semination (CD44), and cellular detachment as 
a result of downregulation of E-cadherin expres-
sion [37-42]. MMP-2 is also a target of activat-
ed Wnt signaling [27, 28]. However, histological 
discordance in the expression of nuclear 
β-catenin (mainly seen in spindle cell 
components) and MMP-2 (tends to be seen in 
glandular components or epithelioid foci) in SS 
suggests that MMP-2 is not a target of activat-
ed β-catenin/Wnt signaling in SS. However, 
MMP-2 surely plays an important role in the 
stromal remodeling that allows SS tumor cells 
to acquire a plump morphology or form glandu-
lar structures. The genes targeted by activated 
β-catenin/Wnt signaling in SS seem to differ 
somewhat from those reported elsewhere, 
including cyclin D1 [35]. Furthermore, SYT-
SSX2 has been reported to recruit β-catenin to 
the nucleus, where the proteins form a tran-
scriptionally active complex [43]. The β-catenin/
Wnt signaling pathway is constitutively active in 
SYT-SSX2-positive SS regardless of the pres-
ence of the canonical Wnt signal [43]. Although 
the SYT-SSX1 fusion protein has not been 
reported to affect this phenomenon, these find-
ings may explain why SS with the SYT-SSX2 
fusion rarely show histological evidence of glan-
dular epithelial differentiation and also explain 
the association between activated Wnt signal-
ing and morphology in SS.

In conclusion, an interesting updated model for 
the epithelial differentiation mechanisms of SS 
has been presented. The aberrant mesenchy-
mal to epithelial transition (MET) behavior of 
this unique mesenchymal tumor might better 
be thought of as EMT rather than MET [8], i.e., 
all SS progenitor cells with t(X;18)(p11.2;q11.2) 
are theoretically capable of some epithelial dif-



SYT-SSX fusion protein and epithelial differentiation in synovial sarcoma

2277 Int J Clin Exp Pathol 2013;6(11):2272-2279

ferentiation as evidenced by their expression of 
epithelial differentiation-associated genes 
such as E-cadherin, but the majority lose this 
character in response to other functional and 
physiological influences, including remodeling 
of the extracellular matrix [9, 10].
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