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Abstract: Recent studies indicated that bone marrow mesenchymal stem cells (BM-MSCs) derived from multiple 
myeloma (MM) patients were different from those of normal subjects in a variety of aspects. However, it is largely 
unknown whether BM-MSCs derived from MM patients display any aberrant chemotactic migration. To this aim, we 
compared the chemotactic migration of BM-MSCs derived from MM patients with those from normal subjects. Our 
results showed that BM-MSCs derived from MM patients migrated more vigorously to myeloma cell line. Further-
more, proteasome inhibitor bortezomib was showed to suppress chemotactic migration of BM-MSCs whatever their 
origins. However, although the chemotactic migration of BM-MSCs derived from MM patients to myeloma cell line 
was more significantly suppressed by bortezomib treatment, migration to SDF-1 or FBS of BM-MSCs was less com-
promised. Both SDF-1 and TNF-α enhanced phosphorylation of iκ-Bα in BM-MSCs. Although bortezomib significantly 
inhibited the iκ-Bα phosphorylation by SDF-1, it had little effect on iκ-Bα phosphorylation by TNF-α. Collectively, our 
results suggested that aberrant chemotactic migration of BM-MSCs derived from MM patients and the possible 
migration-regulatory role of bortezomib treatment. 
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Introduction

Multiple myeloma (MM) is a clonal plasma cell 
disorder characterized by the synthesis of an 
abnormal monoclonal immunoglobulin and/or 
light chain, bone destruction, immunodeficien-
cy, and renal impairment. The genetic basis of 
the disease includes recurrent and complex 
genetic abnormalities in myeloma cells. In addi-
tion, the interaction of MM cells with the bone 
marrow (BM) microenvironment in the patho-
genesis of this disorder is nowadays widely 
accepted [1]. 

Bone marrow mesenchymal stem cells (BM- 
MSCs) not only provide microenvironmental 
support for hematopoietic stem cells, but also 
can also differentiate into various mesodermal 
lineages [2]. Recently, several studies showed 
that BM-MSCs derived from MM patients dis-

played multiple aberrant characteristics such 
as certain cytokines production, abnormal pro-
liferative capacity, and distinctive gene expres-
sion profile [3-6]. Moreover, in a variety of can-
cers, MSCs were showed to exhibit tropism for 
migrating to tumor sites [7-9]. Once MSCs were 
in close contact with tumor cells, tumor cells 
behaved more aggressively [9]. However, there 
is few study addressing chemotactic features of 
BM-MSCs in MM patients so far.

Aimed to investigate whether there is any differ-
ence in chemotactic migration of BM-MSCs 
between MM patients and normal subjects, we 
compared chemotactic migration of BM-MSCs 
between two cohorts. Bortezomib is the first 
proteasome inhibitor that has demonstrated 
efficacy in the treatment of MM [10]. In addition 
to inhibitory effects on MM cells, bortezomib 
was also indicated to exert positive effect on 
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osteoblastic activity [11-13]. So the effects of 
bortezomib on BM-MSCs’ migration were also 
investigated in this study. 

Materials and methods 

Patients

We studied 13 newly diagnosed patients with 
symptomatic myeloma defined by International 
Myeloma Working Group (IMWG). The median 
age in patient cohort is 56-year-old (range from 
48 to 73). All patients’ BM samples were obta- 
ined before any anti-myeloma treatment. As a 
control, 11 normal donors’ BM samples were 
also obtained. These control subjects had the 
marched age range as the MM patients. Infor- 
med consent was obtained from all patients 
and all protocols were in accordance with ethi-
cal standards and approved by local institution-
al ethics committee. 

Cell culture

To obtain human BM-MSCs, marrow mononu-
cleated cells were isolated by centrifugation at 
400 g on Ficoll-Hypaque (1.077 g/mL; StemCell, 
BC, Canada) and resuspended in DMEM medi-
um supplemented with 10% FBS (Gibico, Carl- 
sbad, CA, USA). After 24 h incubation, non-ad- 
herent cells were removed. The medium was 
changed every 3-4 days thereafter. After a 
mean 10 to 14-day culture, all adherent cells 
were digested with 0.25% trypsin-EDTA and 

2.5 nmol/L bortezomib or 1 ng/mL TNF-α for 
24 hours, then the cells were harvested for fur-
ther assays.

MTT assay

The MTT (4,5-dimethylthiazol-2-yl)-2,5-diphen-
yltetrazolium bromide, Sigma-Aldrich, St. Louis, 
Missouri, USA) test was used for assessment of 
cell viability following bortezomib treatment. 
P3-P4 BM-MSCs were seeded into 96-well 
plates at the concentration of 3 × 103 cells/well 
and incubated for at 37°C and 5% CO2 until 
50% confluence. Then the medium of each well 
was replaced with 10 μl of 0.5 mg/ml MTT 
stock solution diluted in 90 μl PBS. After 2 h of 
incubation, isopropanol with 0.04 M HCl was 
added (100 μl/well). The absorbance was 
determined using a multiwell scanning spectro-
photometer at 570 nm (GeneQuantpro, Bioch- 
rom Ltd, England). Growth inhibition was expre- 
ssed as a percentage of viable cells under bort-
ezomib treatment relative to control cells treat-
ed by an identical sequence of protocol steps 
except for bortezomib treatment. 

Chemotactic migration assays

Chemotactic migration assays were performed 
in transwell dishes (Corning Costar, Lowell, MA, 
USA) with 8-μm pore filters. The upper side of 
the transwell filter was coated for 1 hour at 
37°C with 0.1% (wt/vol) bovine gelatin (Sigma-
Aldrich, St. Louis, Missouri, USA) in phosphate-
buffered saline (PBS). Untreated or treated 

Table 1. Primers used in RT-PCR 
Name Forward & reverse primers Product size
SDF-1 Forward 5’-AGATGCCCTTGCCGATTC-3’ 200 bp

Reverse 5’-TTTGGCTGTTGTGCTTACTTG-3’
MCP-1 Forward 5’-GCTCATAGCAGCCACCTTCATTC-3’        147 bp

Reverse    5’-GGACACTTGCTGCTGGTGATTC-3’
HGF Forward 5’-GACCCTGGTGTTTCACAAGCAA-3’ 132 bp

Reverse 5’-TGCCTGATTCTGTATGATCCATGAG-3’
VEGF Forward 5’-GAGCCTTGCCTTGCTGCTCTAC-3’ 148 bp

Reverse 5’-CACCAGGGTCTCGATTGGATG-3’
IGF-1R Forward 5’-GGTCTCTGAGGCCAGAAATGGA-3’ 124 bp

Reverse 5’-TGGACGAACTTATTGGCGTTGA-3’
PDGF-Rα   Forward 5’-GTGCGAAGACTGAGCCAGATTG-3’ 121 bp

Reverse 5’-CGATAAACAGAATGCTTGAGCTGTG-3’
GAPDH Forward 5’-TGGGTGGAATCATATTGGAAC-3’ 136 bp

Reverse 5’-TCAACGGATTTGGTCGTATTG-3’

split into new flasks. Subculture 
of BM-MSCs was performed in 
the same way when they re- 
ached 90% confluence. Myelo- 
ma cell line U266 was brought 
from ATCC and maintained in 
10% FBS RPMI 1640. 

Bortezomib was purchased fr- 
om Millennium Pharmaceutic- 
als Inc. (Cambridge, Massachu-
setts, USA). It was reconstitut-
ed in dimethylsulfoxide (DMSO, 
Sigma-Aldrich, St. Louis, Miss- 
ouri, USA) at a stock concentra-
tion of 50 mM. For the treat-
ment with either bortezomib or 
TNF-α (Prospec, Ness-Ziona, 
Israel), BM-MSCs were first cul-
tured in the medium containing 
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P3-P4 BM-MSCs (2 × 105 cells) were added to 
the upper chamber, and 600 μL of migration 
medium containing either SDF-1 (Prospec, Ness- 
Ziona, Israel), or 30% FBS, or 2 × 105 myeloma 
cell line U266 cells was added to the bottom 
chamber. After overnight incubation at 37°C, 
the upper side of the filters was carefully wa- 
shed with PBS, and cells remaining on the 
upper face of the filters were removed with a 
cotton wool swab. Transwell filters were stained 
using Wright’s staining, cut out with a scalpel, 
and mounted onto glass slides, putting the 
lower face on the top. Ten random fields were 
selected for microscopic count at × 100 magni-
fication by Nikon TE300 inverted microscope 
(Nikon Instrument Inc, Melville, NY, USA). Each 
experiment was performed in duplicate.

Western blotting analysis

Cells were lysed with SDS sample buffer con-
taining 20 mM Tris-HCl (pH 7.6), 250 mM NaCl, 
0.5% NP-40, 3 mM ethylenediaminetetraacetic 
acid, and 1.5 mM ethylene glycoltetraacetic 
acid with 10 mg/mL aprotinin, 10 mg/mL leu-
peptin, 1 mM DTT, 1 mM paranitrophenyl phos-
phate, and 0.1 mM Na3VO4 as protease and 
phosphatase inhibitor (all from Sigma-Aldrich, 
St. Louis, Missouri, USA). Cell lysates were sep-
arated by sodium dodecyl sulfate-polyacryl-
amide gel (SDS-PAGE) electrophoresis and 
transferred to a polyvinylidene difluoride (PVDF) 
membrane (Millipore, Billerica, MA, USA). Blots 
were probed by anti-phospho-iκ-Bα, anti-iκ-Bα, 
or anti-GAPDH antibody (Cell Signaling Techno- 
logy, Danvers, Massachusetts, USA) before 
visualizing with horseradish peroxidase-conju-
gated secondary antibodies (Cell Signaling 
Technology, Danvers, Massachusetts, USA) fol-
lowed by development with FluorChem FC2 
System (Alpha Innotech Corporation, San Lean- 
dro, CA, USA).  

Real-time RT-PCR assays of chemotaxis associ-
ated genes

Total RNA was isolated from cultured BM-MSCs 
using single-step method with TRIzol (Invitrogen 
A/S, Taastrup, Denmark) according to the man-
ufacturer’s instructions. Total RNA (1 µg) was 
then reverse transcribed into DNA using cDNA 
synthesis kit (Promega, Fitchburg, Wisconsin, 
USA). Quantitative PCR was done with an SYBR 
Premix Ex Taq TM detection system (Takara 
Bio, Otsu, Shiga, Japan) according to manufac-
turer’s instructions. After initial denaturation at 
95°C for 2 minutes, 40 cycles of denaturation 
at 95°C for 10 seconds, annealing at 62°C for 
15 seconds, and extension at 72°C for 27 sec-
onds were carried out on Mx3000P PCR mach-
ine (Agilent Technologies Co., Santa Clara, CA, 
USA) and then analyzed by MxPRO-Mx3000P 
version 2.0 software. Each reaction was run in 
triplet. Primer sequences are listed in Table 1.

To adjust for differences in PCR efficiency, rela-
tive standard curves were obtained from 8-fold 
dilutions of pooled cDNA from pooled control 
BM-MSCs for either target or reference genes 
described by Standal et al. [14]. 

Flow cytometry

Flow cytometry (FCM) was performed as previ-
ously described [15]. Briefly, the cells were 
incubated for 20 min at 4°C with the following 
MoAb: CD10, CD13, CD14, CD15, CD34, CD45, 
CD73, CD90, CD19 and HLA-DR (Immunotech, 
Marseulle Cedex, France). As a control, corre-
sponding cells labeled with isotype IgG were 
used. After washing with PBS, they were ana-
lyzed on ELITE Coulter flow cytometer (Coulter 
Electronics, Fullerton, CA, USA) using Epics list-
mode software by the acquisition of 10,000 
events for each sample. 

Table 2. Proliferation inhibitory rates of BM-MSCs at a range of bortezomib concentration 

Bortezomib (nmol/L)
BM-MSCs 

24 h (n = 5) 48 h (n = 5) 96 h (n = 3)
1.25 0.0606 ± 0.05009 0.0972 ± 0.10805 0.1709 ± 0.25959
2.5 0.0711 ± 0.05596 0.1115 ± 0.10149 0.2158 ± 0.23668
5 0.1183 ± 0.06824 0.1871 ± 0.14086 0.3427 ± 0.19321
10 0.1720 ± 0.08421 0.2856 ± 0.12359 0.4239 ± 0.14305
25 0.2424 ± 0.07828 0.3229 ± 0.11671 0.5378 ± 0.1355
50 0.3309 ± 0.07628 0.4052 ± 0.14212 0.6427 ± 0.11057
100 0.4186 ± 0.12718 0.478 ± 0.10371 0.6619 ± 0.09383
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Statistical analysis

Student’s independent t-test or Paired t-test for 
data was used to test the probability of signifi-
cant differences between samples. A value of P 
< 0.05 was used to define statistical significan- 
ce.

Results

BM-MSCs immunophenotypic characteristics

As our previous results [15], the immunopheno-
type of normal BM-MSCs is positive for CD13, 
CD73 and CD90, but lacked CD45, CD14, 
CD15, CD34, CD10 and HLA-DR. In consistent 
with other reports [4, 16], the immunopheno-
type of BM-MSCs of MM patients was similar to 
that of control subjects (data did not show).

High concentrations of bortezomib inhibited 
BM-MSCs in vitro proliferation

It was previously reported that 2.5 nmol/L of 
bortezomib did not significantly inhibit prolifera-
tion and survival of osteoblastic cells [11]. In 
this study, we had the similar finding of BM- 

MSCs. However, if the treatment period is lon-
ger than 24 hours, the inhibitory effect on 
BM-MSCs would be more pronounced (Table 
2). So we employed 24-hour incubation for all 
the subsequent assays experiments. 

Chemotacticl migration of MM BM-MSCs to 
SDF-1 or FBS less compromised by bortezomib

As shown in Figure 1, for both MM and control 
BM-MSCs, there is “spontaneous” transwell mi- 
gration (48.00 ± 9.76 vs. 73.17 ± 8.55 cells/10 
fields) when cultured in serum-free medium. 
BM-MSCs’ migration was enhanced by either 
SDF-1(164.78 ± 19.97 vs. 117.92 ± 12.63 
cells/10 fields) or 30% FBS (211.67 ± 30.03 vs. 
155.67 ± 21.77 cells/10 fields) (Figure 1A). 
However, there was no statistical difference in 
migration between two cohorts (Independent 
t-test, P = 0.052).

After a 24-hour bortezomib treatment, the 
spontaneous migration (26.67 ± 7.28 vs. 42.58 
± 5.74 cells/10 fields), migration to either SDF-1 
(92.00 ± 15.54 vs. 51.58 ± 7.10 cells/10 fields) 
or 30% FBS (96.22 ± 19.92 vs. 47.11 ± 8.55 

Figure 1. Transwell chemotactic migration of BM-MSCs. (A) Spontaneous transwell migration or chemotaxis of BM-
MSCs to SDF-1 or 30% FBS. BM-MSCs were first treated with 2.5 nmol/l bortezomib (B) or 1 ng/ml TNF-α (C) for 
24 hours, then spontaneous transwell migration or chemotaxis of BM-MSCs to SDF-1 or 30% FBS were assayed. 
D. Chemotactic migration of BM-MSCs to myeloma cell line U266 in the presence (Bor+) or absence (Bor-) of bort-
ezomib treatment. NM-MSC: BM-MSCs derived from control cohort (n = 11). MM-MSCs: BM-MSCs derived from MM 
patients (n = 13). *Indicated there was statistic difference between two cohorts (independent t-test, P < 0.05).



Bortezomib modulate MM-MSCs migratory aberrancies

6709 Int J Clin Exp Pathol 2014;7(10):6705-6715

cells/10 fields) were suppressed in both MM 
and control cohorts. Interestingly, although th- 
ere was no statistical difference for spontane-
ous migration between two cohorts (Indepen- 
dent t-test, P > 0.05), the migration of MM 
BM-MSCs toward SDF-1 (independent t-test, P 
= 0.016) or 30% FBS (independent t-test, P = 
0.038) was less compromised than that of con-
trol by bortezomib treatment (Figure 1B). 

MM and control BM-MSCs show no difference 
in transwell migratory capacity in the presence 
of TNF-α

TNF-α was previously reported to enhance in 
vitro migration of MSCs [17]. After BM-MSCs 
were treated with TNF-α for 24 hours, the spon-
taneous transwell migration, migration to SDF-1 
or 30% FBS of either MM or control BM-MSCs 

were 74.00 ± 7.68 vs. 106.18 ± 26.67cells/10 
fields, 126.67 ± 11.76 vs. 121.64 ± 33.08 
cells/10 fields, 152.00 ± 20.60 vs. 153.25 ± 
43.67 cells/10 fields, respectively. However, 
there was no statistical difference in transwell 
migration between MM and control cohorts no 
matter spontaneous or migration to SDF-1 or 
30% FBS (Figure 1C; independent t-test, all P > 
0.05).

MM BM-MSCs display more vigorous migration 
to MM cell line

We then investigate BM-MSCs’ transwell migra-
tion to myeloma cell line U266. On the contrary 
to the results with SDF-1 or 30% FBS, there was 
statistical difference in migration between MM 
and control cohorts (153.56 ± 58.47 vs. 
104.72 ± 21.90 cells/10 fields), with the MM 

Figure 2. Bortezomib suppressed NF-κB pathway activation in BM-MSCs by SDF-1. A. Firtstly, BM-MSCs were sti-
mulated by SDF-1 for 5, 15, 30 and 60 minutes, respectively. Then iκ-Bα or phospho-iκ-Bα (P-iκ-Bα) in BM-MSCs 
were detected by Western blot. To test the effect of bortezomib on iκ-Bα or P-iκ-Bα, BM-MSCs were pre-treated by 
bortezomib for 24 hours before SDF-1 stimulation. B. Firstly, BM-MSCs were stimulated by TNF-α, iκ-Bα or phospho-
iκ-Bα (P-iκ-Bα) in BM-MSCs was detected by Western blot 5 minutes later. To test the effect of bortezomib on iκ-Bα 
or P-iκ-Bα, BM-MSCs were pre-treated by bortezomib for 24 hours before TNF-α stimulation. Results are shown in 
two representative samples (Pt1 & Pt2).
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BM-MSCs migrated more vigorously than the 
control cells (Figure 1D; independent t-test, P = 
0.04). Similar to the results with SDF-1 or 30% 
FBS, the transwell migration of BM-MSCs from 
both MM and control cohorts was suppressed 
by bortezomib treatment (100.83 ± 53.55 vs. 
62.67 ± 25.98 cells/10 fields; paired t-test, P < 
0.00). However, there was no statistical differ-
ence in transwell migration of BM-MSCs bet- 
ween two cohorts (Figure 1D; independent 
t-test, P > 0.05).

Bortezomib suppressed NF-κB pathway activa-
tion by SDF-1

When unstimulated, the level of phospho-iκ-B α 
in BM-MSCs was undetectable or minimal 
although there was an evident accumulation of 
iκ-Bα in BM-MSCs, (Figure 2A, 2B). After SDF-1 
stimulation, the level of phospho-iκ-Bα in BM- 
MSCs increased markedly, achieving its high-
est level at 5 minutes post-stimulation and gra- 
dually decreasing thereafter. However, if BM- 
MSCs were pre-treated by bortezomib for 24 
hours before SDF-1 stimulation, the levels of 
phospho-iκ-Bα for each time point in BM-MSCs 
were lower than control ones (Figure 2A). As 
another NF-κB agonist, TNF-α significantly inc- 
reased the level of phospho-iκ-Bα and dec- 
reased the level of iκ-Bα in BM-MSCs. However, 
in contrast to the results with SDF-1, pre-treat-
ment of BM-MSCs by bortezomib couldn’t effe- 
ctively suppress the phosphorylation of iκ-Bα 
(Figure 2B). 

Levels of mRNAs for chemotaxix associated 
genes differentially expressed between MM 
and control BM-MSCs

As shown in Figure 3, the relative copies of 
SDF-1 (1.83 ± 0.91 vs. 3.12 ± 1.38), VEGF 
(1.05 ± 0.58 vs. 0.55 ± 0.17) and HGF (0.40 ± 
0.21 vs. 0.20 ± 0.18) in BM-MSCs were statisti-
cally different between two cohorts (Indepen- 
dent t-test, P < 0.05), with the mRNA level of 
SDF-1 in MM cohort was lower, while the levels 
of VEGF and HGF were higher than those of 
control cohort. However, there was no differ-
ence in the mRNA levels of MCP-1 (1.92 ± 1.22 
vs. 1.55 ± 1.46), IGF-1R (0.53 ± 0.36 vs. 0.34 
± 0.18) and PDGF-Rα (1.18 ± 0.83 vs. 0.85 ± 
0.57) between two cohorts (Figure 3A).

Next, we investigated the effects of bortezomib 
on mRNA levels of these genes in BM-MSCs. As 

shown in Figure 3B, 3C, bortezomib down-regu-
lated expression of all these investigated genes 
in BM-MSCs whatever their origins (Paired t- 
test, all P < 0.05). Interestingly, it seemed that 
bortezomib down-regulated mRNA levels of 
tested genes in the control cohort more mark-
edly than those in the MM cohort (Figure 3D).

Discussion

The pivotal role of the BM microenvironment in 
MM pathogenesis is now well established. 
Specifically, the balanced homeostasis among 
the cellular, extracellular and liquid compart-
ments within the BM is disrupted [1]. Bortezomib 
is a novel approach to treat MM and it acts on 
a unique target in cells, the proteasome. These 
effects are partly mediated through inhibition 
of the NF-κB pathway. In addition to target on 
myeloma cells directly, bortezomib was also 
showed to exert positive effect on abnormal 
marrow environment of MM. De Matteo et al. 
[18] reported that bortezomib up-regulated the 
osterix transcription. In another study by Giu- 
liani et al. [11], they reported that a stimulatory 
effect of bortezomib on bone nodule formation 
in osteoblastic progenitors. 

In our previous study, transwell migration of 
BM-MSCs was shown to be inhibited after 48- 
hour incubation with bortezomib [19]. However, 
it is unclear whether bortezomib could modu-
late the chemotactic migration of BM-MSCs 
derived from MM or normal subjects differen-
tially. This study showed that BM-MSCs derived 
from MM patients exhibited more vigorous che-
motactic migration to U266 than that of con-
trol. Besides, after a 24-hour bortezomib treat-
ment, the migration of BM-MSCs derived from 
MM subjects to 30% FBS or SDF-1 seemed to 
be less affected. All those findings implied that 
the chemotactic capacity of BM-MSCs derived 
from MM patients was different of that of nor-
mal individuals. Furthermore, bortezomib treat-
ment was showed to reverse the migratory dif-
ference to U266 between two cohorts. These 
finding implied that bortezomib only partially 
modulate MM BM-MSCs’ aberrant chemotactic 
migration .

Recently, there were reports that once tumor 
cells were in close contact with MSCs, they 
showed more aggressive behavior. For exam-
ple, Kurtova et al. [20] reported that MSCs pro-
tect Mantle cell lymphoma (MCL) cells from 
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Figure 3. Real-time PCR assays of BM-MSCs pre- or post-bortezomib treatment. MCP-1, SDF-1, VEGF, HGF, IGF-1R and PDGF-Rα mRNA levels of BM-MSCs derived 
from MM or control cohorts (A). mRNA levels of BM-MSCs in control cohort pre- or post-bortezomib treatment (B). mRNA levels of BM-MSCs in MM cohort pre- or 
post-bortezomib treatment (C). Comparison of mRNA levels of MM and control cohorts’ post-bortezomib treatment (D). *There was statistical difference between 
MM and control BM-MSCs (Independent t-test, P < 0.05). #Indicated that there was significant statistical difference between non-treated and bortezomib-treated 
BM-MSCs derived from either control or MM subjects (Paired t-test, P < 0.01). NMSC, control BM-MSCs.
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cytotoxic effect of fludarabine and 4-hydroper-
oxycyclophosphamide when MCL cells were co-
cultured with MSCs. In another study, other-
wise weakly metastatic human breast carci- 
noma cells exhibited highly metastatic behav-
ior when mixed with BM-MSCs [8]. Since the 
chemotactic migration of MSCs to MM cells will 
bring them into a closer proximity, it probably 
enhances the cross-talk between MM cells and 
BM-MSCs, and then favors the survival of MM 
cells [21]. Because bortezomib was shown to 
disrupt the chemotactic migration of BM-MSCs, 
so it could also inhibit the direct interaction 
between BM-MSCs and MM cells, which makes 
MM cells more vulnerable to the stress and 
therapy.

As one of important non-hemapoietic stem 
cells in BM, BM-MSCs were recently also sh- 
owed to be able to modulate B-cell function 
such as immunoglobulin production, chemo-
kine receptor expression [22]. SDF-1 (CXCL12) 
is the ligand for CXCR4, which was reported to 
be expressed in normal B-cells, plasma cells 
and myeloma cells [22-24]. SDF-1-expressing 
bone marrow stromal cells were indicated to be 
essential for the survival of long-lived plasma 
cells [25]. In MM, the SDF-1\CXCR4 axis was 
also believed to be important for the survival of 
MM cells [26, 27]. In this study, one of interest-
ing findings is that the mRNA levels of SDF-1, 
VEGF and HGF in BM-MSCs were differentially 
expressed between MM and control cohorts (P 
< 0.05). It was previously reported that the con-
centrations of VEGF and HGF were higher in the 
BM of MM patients [28-31]. In contrast to VEGF 
and HGF, the mRNA level of SDF-1 was lower in 
the MM BM-MSCs. Since SDF-1 is a critical sol-
uble factor for MM cells survival, it is surprised 
to find so. However, we assumed that low SDF-1 
level in marrow might do more harm to the sur-
viving niche of normal long-lived plasma cells 
[25], because SDF-1 could also be abundantly 
produced by myeloma cells themselves [32].

When BM-MSCs were treated by bortezomib for 
24 hours, all the mRNA levels of chemotaxis-
associated factors/receptors in BM-MSCs were 
down-regulated. According to published resear- 
ches, MCP-1, SDF-1, VEGF and HGF were invol- 
ved in pro-myeloma cell activity and/or marrow 
microenvironment abnormality in myeloma 
patients [21, 29, 31-34). Besides, IGF-1R and 
PDGF-Rα were reported to be associated with 

the chemotactic migration of human BM-MSCs 
[17, 35]. The suppression of those tested gene 
by bortezomib may be one of mechanisms that 
bortezomib inhibited migration of BM-MSCs. 

Bortezomib was showed to induce myeloma 
cell apoptosis and interfere with NF-κB-de- 
pendent induction of cytokine secretion [10]. In 
addition to direct anti-myeloma effects, it was 
also showed to suppress the NF-κB-dependent 
transcription in bone marrow stromal cells [36]. 
Our study demonstrated that pre-treatment of 
BM-MSCs with bortezomib significantly inhibit-
ed phosphorylation of iκBα by SDF-1. For cells 
such as microglia and neural progenitor cell, 
SDF-1 was showed to up-regulate NF-κB path-
way activity [37, 38]. Besides, the migration of 
some types of cells was partially regulated by 
NF-κB pathway [38, 39]. Since NF-κB pathway 
regulates a large panel of target genes (http://
www.bu.edu/nf-kb/gene-resources/target-ge- 
nes/) and some of them are involved in cell 
migration, it is reasonable to believe that bort-
ezomib inhibit BM-MSCs chemotactic migra-
tion to SDF-1 at least partially via NF-κB path-
way. As for TNF-α, it was also reported to be a 
NF-κB pathway agonist for MSCs [39, 40]. In 
consistent with those reports, we observed 
that TNF-α activated NF-κB pathway in BM- 
MSCs as well. However, unlike the results with 
SDF-1, pre-treatment of BM-MSCs with bort-
ezomib was not enough to inhibit phosphoryla-
tion of iκBα by TNF-α. It may imply that bortezo-
mib pre-treatment does not antagonize NF-κB 
pathway agonists TNF-α as effectively as SDF-1 
in BM-MSCs.

In summary, our study showed that there is dif-
ference in migratory capacity of BM-MSCs 
between MM patients and normal subjects, 
and bortezomib was showed to be able to par-
tially reverse the differences. Besides, bortezo-
mib was also showed to inhibit NF-κB pathway 
activation by SDF-1 in BM-MSCs. Our finding 
implied that bortezomib might exert its anti-
myeloma activities partially by both depriving 
extracellular survival signals for myeloma cells 
and re-adjustment of abnormal marrow micro-
environment which used to favor the survival 
for myeloma cells. However, bortezomib itself 
may not be able to reverse all the abnormalities 
in BM microenvironment and more effective 
treatment should be developed for the correc-
tion of aberrant BM microenvironment. 
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