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Abstract: Previously, we demonstrated that Tim-1-Fc prevents acute cardiac graft rejection by inhibiting Th1 re-
sponse. In the present report, we tackled the impact of Tim-1-Fc on Th17 cells in a model of cardiac chronic rejec-
tion. Administration of Tim-1-Fc did not result in a detectable impact on innate immunity and regulatory T cells, 
while it provided protection for Bm12-derive cardiac grafts against chronic rejection in B6 recipients, as manifested 
by the reduction of inflammatory infiltration along with less severity of vasculopathy. Studies in T-bet-/- recipients by 
implanting Bm12-derived cardiac grafts further revealed that Tim-1-Fc significantly protected cardiac grafts from 
chronic rejection along with attenuated production of IL-17 producing T cells. Depletion of CD4 and CD8 T cells or 
blockade of IL-17 in T-bet-/- recipients demonstrated that Tim-1-Fc selectively suppresses Th17 differentiation along 
with attenuated IL-17 secretion. Together, our data suggest that Tim-1-Fc protects cardiac grafts from chronic rejec-
tion by suppressing CD4 Th17 development and functionality. Therefore, Tim-1-Fc might be a potential immunosup-
pressive agent in the setting of cardiac transplantation.
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Introduction

Cardiac transplantation is an effective treat-
ment for congestive heart failure, particularly 
for those patients resistant to aggressive medi-
cal therapy [1, 2]. Although short-term survival 
rate for patients after cardiac transplantation 
has been greatly improved [3, 4], long-term sur-
vival is still challenged by chronic rejection, one 
of the major risk factors for such patients [5, 6]. 
A characteristic feature for chronic rejection is 
the manifestation of coronary artery disease or 
cardiac vasculopathy, which is associated with 
coronary luminal occlusion and eventual graft 
failure [6, 7]. Despite past extensive studies, 
the cellular and molecular mechanisms under-
lying chronic rejection, however, are yet to be 
fully elucidated [8-10]. 

Generally, Th1 mediated immune response 
along with activation of macrophages are 
thought to be responsible for allograft rejec-

tion, while Th2 response is considered benefi-
cial to long-term allograft survival [11]. 
Nevertheless, fully mismatched cardiac allog- 
rafts were also rapidly rejected in recipient mice 
deficient in IFN-γ or STAT4, the two key mole-
cules essential for Th1 response [12, 13]. 
Particularly, cardiac recipient mice lack of Th1 
transcription factor T-bet, displayed exacerbat-
ed vasculopathy [14]. Together, these observa-
tions challenge the above described dogma. 
Indeed, there is ample evidence indicating a 
role for Th17 cells and IL-17 in allograft rejec-
tion, especially in the pathological remodeling 
during the course of chronic rejection [2]. IL-17 
is a cytokine associated with inflammation, 
angiogenesis and fibrosis, which are character-
istic features relevant to chronic cardiac rejec-
tion [14]. In line with these results, Th17 
response has been noted with implication in 
the pathogenesis of chronic renal graft rejec-
tion in humans [15], and chronic cardiac rejec-
tion in mouse models [16, 17]. 
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Tim-1 belongs to the Tim protein family impli-
cated in the regulation of Th1 and Th2 response. 
Ligation of Tim-1 on T cells with its ligand Tim-4 
on antigen presenting cells provides co-stimu-
latory signals for T cell activation and prolifera-
tion [18-20]. However, the regulation of immune 
responses by Tim-1 and Tim-4 are much more 
complex than what we originally thought. For 
example, Tim-4-Ig can either stimulate or inhib-
it T cell proliferation based on the dose admin-
istered [18, 20, 21], while anti-Tim-1 mAbs are 
also found to serve as a double-edged sword in 
T cell activation given their differences in bind-
ing affinity [22, 23]. Previously, we demonstrat-
ed evidence suggesting the existence of a novel 
Tim-1 ligand other than the aforementioned 
Tim-4, and by which Tim-1-Fc suppresses 
allograft acute rejection [24]. In the present 
report, we extended our studies of Tim-1-Fc to 
chronic cardiac vasculopathy. By transplanta-
tion of Bm12-derived cardiac grafts into B6 and 
T-bet-/- mice, we obtained evidence supporting 
that Tim-1-Fc attenuates chronic cardiac graft 
rejection by suppressing Th17 differentiation 
and functionality. 

Materials and methods

Mice 

C57BL/6 mice were purchased from Joint 
Ventures Sipper BK Experimental Animals Co. 
(Shanghai, China). B6-Bm12 (Bm12) mice and 
Tbx21-/- (the gene encodes T-bet) mice in B6 
background were obtained from the Jackson’s 
Laboratory (Bar Harbor, ME, USA). The animal 
protocol of this study was approved by the 

Animal Care and Use Committee at the Second 
Military Medical University. 

Antibodies and reagents

Anti-CD4 (L3T4), anti-CD8 (Ly2), anti-IFN-γ 
(XMG1.2), and anti-IL-17A (TC11-18H10) were 
purchased from BD Pharmalgen (San Diego, 
CA, USA). Mouse IL-17A mAb (MAB421) was 
from R&D Systems (Minneapolis, MN, USA). 
Recombinant mouse IL-17A was from BioLegend 
(San Diego, CA, USA). Tim-1-Fc was prepared as 
previously described [24].

Heart transplantation

Cardiac grafts from Bm12 donors were implant-
ed into B6 or T-bet-/- mice as previously 
described [25]. Recipient mice were injected 
intraperitoneally every other day with 10 mg/kg 
of Tim-1-Fc or hIgG1 until day 14. In some 
cases, recombinant IL-17 (200 ng/mouse) or 
anti-IL-17 (0.1 mg/mouse) was also adminis-
tered. The contraction of heart grafts was mon-
itored daily by two independent observers with-
out prior knowledge of the treatment protocol. 
The complete cessation of cardiac contraction 
was defined as the endpoint.

Histological analysis 

Cardiac grafts were harvested on indicated 
days and fixed in 10% formalin and embedded 
in paraffin. Sections were cut at 4 mm, and 
were counterstained for 1 min with hematoxylin 
eosin. The severity of vasculopathy was graded 
according to the percentage of luminal occlu-
sion by intimal thickening with a scoring system 
described previously [26, 27]. Briefly, a vessel 
score of 0 indicated a normal artery; 1, <10% 
luminal occlusion; 2, 20 to 50% luminal occlu-
sion; and 3, >50% luminal occlusion. Only ves-
sels that were cut orthogonally and displayed a 
clear internal elastic lamina were scored. An 
examiner blinded to the groups scored all the 
samples.

Th17 cell differentiation

T cells were enriched from splenocytes using a 
mouse MACS CD4+ T cell kit (Miltenyi Biotec, 
Bergisch Gladbach, Germany). The cells were 
activated by plate-bound anti-CD3 (5 μg/ml) 
and anti-CD28 (5 μg/ml) (Biolegend, San Diego, 
CA, USA) for 3 days. For induction of Th17 dif-
ferentiation with DCs, CD4 T cells were cocul-

Table 1. Real time PCR Primers sequences
Gene symbol Primer sequence (5’ to 3’)
Il2 Forward TGAGCAGGATGGAGAATTACAGG

Reverse GTCCAAGTTCATCTTCTAGGCAC
Il17a Forward TTTAACTCCCTTGGCGCAAAA

Reverse CTTTCCCTCCGCATTGACAC
Il6 Forward CCAAGAGGTGAGTGCTTCCC

Reverse CTGTTGTTCAGACTCTCTCCCT
Il4 Forward GCCGATGATCTCTCTCAAGTGAT

Reverse GCCGATGATCTCTCTCAAGTGAT
IFNγ Forward ATGAACGCTACACACTGCATC

Reverse CCATCCTTTTGCCAGTTCCTC
Beta-actin Forward GCTGCGTTTTACACCCTTTC

Reverse GCTGTCGCCTTCACCGTTC
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tured with DCs along with the addition of anti-
CD3 into the cultures. For Th17 polarization, 
naïve CD4 T cells were cultured with IL-6 (10 
ng/ml) and TGF-β1 (5 ng/ml) in the presence of 
anti-IFN-γ (10 μg/ml) and anti-IL-4 (10 μg/ml). 
All cytokines were obtained from R&D Systems 
(Minneapolis, MN, USA).

RNA isolation and real-time PCR

RNA was isolated using RNAfast200 (Fastagen, 
China) according to the manufacturer’s instruc-
tions. Intragraft expression of IL-2, IFN-γ, IL-4, 
IL-17, CD11b, CD3 and IL-6 were quantified by 
real-time RT-PCR. β-actin was used as an 
endogenous control. The 2-ΔΔCt method was 
used to calculate the fold change as reported 
[28]. Primer sequences used in this study are 
shown in Table 1. 

Flow cytometry

Surface staining was performed as described 
previously [24]. For intracellular cytokine stain-
ing, the cells were stimulated with 25 ng/ml 
PMA and 500 ng/ml ionomycin (Sigma-Aldrich, 
St. Louis, MO, USA) for 6 h at 37°C. Brefeldin A 
(10 mg/ml, eBioscience, San Diego, CA, USA) 

was added for the last 4 h of incubation. The 
cells were stained with the Cytofix/Cytoperm 
kit according to the manufacturer’s instructions 
(eBioscience, San Diego, CA, USA), followed by 
flow cytometry analysis as reported [29]. 

T cell depletion and IL-17A neutralization 

To deplete CD4 or CD8 T cells, the mice were 
i.v. injected with 200 μg anti-CD4 (GK1.5, eBio-
science) or anti-CD8 (2.43, eBioscience) mAb 3 
days before transplantation and days 2, 7, and 
12 after transplantation, and depletion of CD4 
or CD8 T cells was confirmed by flow cytometry. 
For neutralization of IL-17A, 100 μg/mouse 
anti-mouse IL-17A mAb or rat IgG2a isotype 
control (eBioscience, San Diego, CA, USA) were 
injected into mice via tail vein every other day 
till day 15 after transplantation. 

ELISA analysis of cytokine production 

The IL-2, IL-4, IFN-γ and IL-17 levels in the serum 
and culture supernatants were assessed by 
ELISA using the kits from R&D Systems 
(Minneapolis, MN, USA) as previously described 
[30].

Figure 1. Tim-1-Fc attenuates chronic cardiac rejection in MHC II mismatched cardiac grafts. A: Survival rate of 
Bm12-derived cardiac grafts in B6 recipients treated with either Tim-1-Fc or control IgG. Loss of graft function was 
defined as cessation of a palpable impulse. B: Hematoxylin and eosin (H&E) staining of cardiac graft sections har-
vested after day 35 of transplantation. C: Scores for the severity of vasculopathy in cardiac grafts after day 35 of 
transplantation. D: Intragraft expression of IL-2, IL4, IFN-γ, IL-17 and IL-6. The relative expression levels of cytokines 
within the grafts were assessed by real-time PCR. E: Administration of recombinant IL-17 abolished the protective ef-
fect conferred by Tim-1-Fc. Recombinant IL-17 was administrated along with Tim-1-Fc or control IgG after transplan-
tation every other day until day 15. Histological data and real-time PCR data were obtained from studies of 3 mice. 
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Statistical analysis

All data are presented as mean ± SD. Student’s 
t-test was used to compare two groups. For 
graft survival rate, the Kaplan-Meier graphs 
were constructed and log-rank comparison was 
used to calculate p values. Differences were 
considered significant when p<0.05.

Results

Tim-1-Fc alleviates chronic cardiac rejection by 
attenuating IL-17 secretion 

Given Bm12 mice only manifest MHC II mis-
match with B6 mice [31], we thus implanted 
Bm12-derived cardiac grafts into B6 mice to 
address the impact of Tim-1-Fc on chronic car-
diac graft rejection. Interestingly, administra-
tion of Tim-1-Fc significantly attenuated chronic 
cardiac graft rejection, in which all grafts from 
Tim-1-Fc treated mice survived longer than 60 
days, while only 60% of control IgG treated 
mice manifested graft survival >60 days (Figure 
1A). Histological analysis of graft sections from 
recipient mice 5 weeks after transplantation 
revealed a significant reduction for the severity 
of inflammatory infiltration in Tim-1-Fc treated 

mice as compared with that of control mice 
(Figure 1B). The severity of cardiac allograft 
vasculopathy (CAV) was next assessed by vas-
culopathy scores as described, much lower CAV 
scores were noted in Tim-1-Fc treated mice 
than that of control mice (Figure 1C). 

Next, we analyzed the expression of inflamma-
tory cytokines in the grafts. As shown in Figure 
1D, a moderate reduction for cytokines IL-6, 
IFN-γ and IL-2 was noted in Tim-1-Fc treated 
grafts, while the expression of IL-17 was 
reduced by 1.1-fold as compared with that of 
control grafts. Given that IL-17 has been dem-
onstrated to promote mesenchymal and CD4 T 
cells secretion of IL-6 and IFN-γ [32, 33], we 
thus hypothesized that Tim-1-Fc attenuates 
chronic cardiac graft rejection by suppressing 
IL-17 expression. To address this question, 
recombinant IL-17 was administered into recipi-
ent mice along with Tim-1-Fc. Indeed, 
Administration of exogenous recombinant IL-17 
accelerated allograft rejection and completely 
abolished the protective effect of Tim-1-Fc on 
cardiac graft rejection (Figure 1E). 

To further address the above question, we 
transplanted Bm12-derived cardiac grafts into 

Figure 2. Tim-1-Fc protects Bm12-derived cardiac grafts from rejection in T-bet deficient recipients. A: Survival rate 
of Bm12-derived cardiac grafts in T-bet-/- recipients after treating with Tim-1-Fc or control IgG (n=5 for each study 
group). B: Results for H&E staining and vasculopathy scores of cardiac grafts after day 14 of transplantation. C: 
Relative expression levels for IL-2, IL-4, IFN-γ, IL-17, CD11b and CD3 in the grafts after 14 days of transplantation. 
D: Serum levels for cytokines IL4, IFN-γ and IL-17 in the recipient mice. All data are presented as means ± SD, and 
3 replications were included for each assay. 
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T-bet-/- mice, by which we were able to exclude 
the impact of IFN-γ. Treatment of T-bet-/- recipi-
ents with Tim-1-Fc significantly prolonged car-
diac graft mean survival time (MST) as com-
pared with that of IgG treated mice (18 ± 3.46 
days vs. 14 ± 2 days, Figure 2A). Consistently, 
histological analysis revealed higher severity 
for vasculopathy in control mice as compared 
with that of Tim-1-Fc treated mice (Figure 2B). A 
remarkable reduction for CD11b (macrophages 
and neutrophils) and CD3 (CD4 and CD8 T cells) 
expression was observed in the grafts originat-
ed from Tim-1-Fc treated recipients (Figure 2C), 
indicating an attenuated inflammatory infiltra-
tion. No perceptible change for IL-2, IL-4 and 
IFN-γ expression in the grafts was noted 
between Tim-1-Fc treated and control mice, 
while the expression of IL-17 decreased by 1.3-
fold in Tim-1-Fc treated mice (Figure 2C). In line 
with this result, a significant reduction for 
serum IL-17 was indentified in Tim-1-Fc treated 
recipients (Figure 2D). All together, our data 
support that administration of Tim-1-Fc pro-

Administration of Tim-1-Fc does not affect DC 
functionality

Given that Tim-1-Fc administration may lead to 
DC depletion through activating complement or 
antibody dependent cytotoxicity, which then 
contributes to the reduced activation of CD4 
and CD8 T cells, we thus further examined the 
impact of Tim-1-Fc on DC functionality. Splenic 
cells collected from recipient mice 2 weeks 
after transplantation was subjected to flow 
cytometry analysis of DC number and matura-
tion status. Interestingly, we failed to detect a 
discernable difference for the number of 
CD11c+MHCIIhi DCs between Tim-1-Fc treated 
and control IgG treated recipients (Figure 4A). 
Similarly, no perceptible difference was noted 
for the expression of surface markers CD80 
and CD86 between two groups of mice (Figure 
4B). We further examined the number for mac-
rophages, DCs, B cells, NK cells and neutro-
phils, and failed to detect a significant differ-
ence between two groups of mice (Figure 4C). 

Figure 3. Tim-1-Fc inhibits the number of effector T cells. A: Flow cytometry 
analysis of lymphocytes in the periphery blood of T-bet-/- recipients. Tim-1-
Fc treatment significantly reduced the number of CD44hiCD62low effecter T 
cells. B: Flow cytometry data for regulatory T cells. Addition of Tim-1-Fc did 
not affect the number of regulatory T cells. All experiments were conducted 
with 3 replications. *, P<0.01.

tects cardiac grafts from rejec-
tion by suppressing IL-17 sec- 
retion.

Tim-1-Fc suppresses the num-
ber of effector T cells

Next, we assessed the impact 
of Tim-1-Fc on CD4 and CD8 T 
effector cell differentiation in 
recipient mice. Peripheral blo- 
od originated from recipient 
mice 2 weeks after transplan-
tation was subjected to flow 
cytometry analysis. Interesting- 
ly, Tim-1-Fc treated recipients 
displayed less amount of effec-
tor or effector memory (CD- 
44hiCD62Llow) CD4 T cells 
(9.7% vs. 15.4%) and CD8 T 
cells (12% vs. 19%) (Figure 
3A). This result prompted us to 
investigate whether the reduc-
tion of effector cells was 
caused by the increase of regu-
latory T cells (Tregs). Unexpec- 
tedly, analysis of peripheral 
blood of recipient mice 2 we- 
eks after transplantation reve- 
aled similar number of Tregs in 
total CD4 T cells between Tim-
1-Fc treated and control mice 
(Figure 3B).
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Together, these data suggest that innate 
immune cells are not involved in Tim-1-Fc medi-
ated cardiac graft protection.

Tim-1-Fc is potent to suppress Th17 cell dif-
ferentiation

To address the impact of Tim-1-Fc on Th17 
development, we specifically examined T-bet-/- 
recipients after receiving Bm12-derived cardi-
ac grafts. Remarkably, the frequency of allore-

cardiac grafts against rejection. Interestingly, 
the protective effect conferred by Tim-1-Fc 
treatment was completely masked by the 
depletion of CD4 T cells (Figure 6A). In sharp 
contrast, depletion of CD8 T cells only mani-
fested a mild protection, and more importantly, 
the protection conferred by Tim-1-Fc was still 
noted in CD8 T cell depleted recipient mice 
(Figure 6B). Inflammatory cytokine expression 
profiles in the grafts further supported the 
above observations (Figure 6C). Finally, IL-17 

Figure 4. The impact of Tim-1-Fc administration on DC number and matu-
ration. A: Tim-1-Fc treatment did not result in a significant change for the 
number of splenic DCs and MHC II expressions. B: Flow cytometry data for 
CD80 and CD86 expressions. Data are a representative of 3 independent 
experiments conducted.

active CD4 T cells expressing 
Th17 associated cytokine IL-17 
was markedly decreased in 
Tim-1-Fc treated mice as com-
pared with that of control mice, 
while the number of IFN-γ posi-
tive Th1 cells and IL-4 positive 
Th2 cells was the same (Figure 
5A). We next examined wheth-
er Tim-1-Fc affected IL-17 pro-
ducing CD8 T cells, but failed 
to identify a detectable differ-
ence between two groups of 
mice (Figure 5B), suggesting 
that Tim-1-Fc specifically atten-
uates CD4 Th17 differentia-
tion. To further address this 
issue, naïve CD4 T cells were 
cultured under Th17 condition 
in the presence of Tim-1-Fc or 
control IgG for 3 days and then 
subjected to analysis for the 
production of Th17 cells. In- 
deed, Tim-1-Fc dose-depend-
ently suppressed the number 
of Th17 cells (Figure 5C). Simi- 
lar results were also obtained 
in a system using DCs for indu- 
ction of Th17 cells (Figure 5D). 

Tim-1-Fc prevents cardiac 
graft rejection relying on its 
effect on CD4 Th17 cells

To further demonstrate that 
Tim-1-Fc protects cardiac graf- 
ts from chronic rejection by 
suppressing CD4 Th17 devel-
opment, we depleted CD4 and 
CD8 T cells in T-bet-/- recipients 
and then implanted BM12-
derived cardiac grafts. As 
expected, depletion of CD4 T 
cells provided protection for 
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neutralizing antibodies were administered into 
T-bet-/- recipients along with control IgG or Tim-
1-Fc. Remarkably, administration of IL-17 neu-
tralizing antibodies completely abolished the 
protective effect conferred by Tim-1-Fc, and all 
grafts survived over 40 days (Figure 6D). 
Collectively, our data support that Tim-1-Fc pro-
tects cardiac grafts from chronic rejection 
dependent on its effect on suppression of CD4 
Th17 development.

Discussion

The manifestation of vasculopathy during 
chronic cardiac allograft rejection acts as a 

onstrated that Tim-1-Fc prevents acute cardiac 
rejection by inhibiting Th1 response [24]. We 
now in the present report tackled the impact of 
Tim-1-Fc on Th17 cells in a model of cardiac 
chronic rejection. We first demonstrated that 
administration of Tim-1-Fc provided protection 
for Bm12-derive grafts against chronic rejec-
tion. We next implanted BM12-derived cardiac 
grafts into T-bet-/- recipients, in which the 
impact of Th1 response on chronic rejection 
can be excluded. Interestingly, Tim-1-Fc signifi-
cantly protected cardiac grafts from chronic 
rejection along with attenuated production of 
IL-17 producing T cells. Next, we depleted CD4 

Figure 5. Tim-1-Fc suppresses Th17 cell differentiation. Bm12-derived car-
diac grafts were implanted into T-bet-/- recipients, and Tim-1-Fc or control 
IgG were administered as described earlier. The recipient mice were sac-
rificed 14 day after transplantation, and splenic T cells were prepared for 
flow cytometry analysis of Th17 production. A: Results for IL-17 producing 
Th17 cells. Splenic T cells were stained for CD4 and then co-stained for IL-
17, IL-4 and IFN-γ, respectively. A significant reduction for CD4 Th17 cells 
was noted in Tim-1-Fc treated recipient mice. B: Results for flow cytometry 
analysis of IL-17 producing CD8 T cells. The above prepared splenic T cells 
were first stained for CD8 and then co-stained for IL-17. Staining of CD4 
Th17 cells was used as a control. No detectable change was noted for IL-
17 producing CD8 T cells. C: Tim-1-Fc dose-dependently suppressed the 
production of CD4 Th17 cells. CD4 naive T cells were cultured under Th17 
condition in the presence of different doses of Tim-1-Fc or control IgG for 
3 days, and then subjected to flow cytometry analysis of Th17 production. 
D: Tim-1-Fc attenuated DC induced Th17 differentiation. CD4 naive T cells 
were induced for Th17 differentiation with DCs in the presence of Tim-1-Fc 
or control IgG as described. All data are shown as means ± SD of 3 inde-
pendent experiments conducted. 

major contributing factor limit-
ing long-term survival of cardi-
ac grafts in the clinical settings 
[34, 35]. In general, intimal 
thickening can be noted within 
the first year, while CAV devel-
opment could occur up to 80% 
of cardiac grafts within the first 
5-year of transplantation [36, 
37]. It is believed that Th1 cells 
are undisputedly involved in 
the development of chronic 
CAV, as manifested by that car-
diac grafts are protected from 
chronic allograft vasculopathy 
in recipient mice deficient in 
STAT4 or IFN-γ [38, 39]. 
However, discrepant results 
are also noted, in which cardi-
ac grafts displayed accelerat-
ed rejection along with the 
presence of vasculopathy in 
Th1 transcription factor T-bet 
deficient recipients [40]. Ind- 
eed, more and more studies 
support that Th17 cells play a 
critical role in cardiac vascu-
lopathy during the course of 
chronic rejection [16, 17]. We 
thus proposed that Th17 cells 
play a pathogenic role during 
chronic cardiac rejection, while 
Th1 cells affect chronic rejec-
tion by modulating acute allo-
immune responses. Transplan- 
tation of Bm12-derived cardiac 
grafts into B6 recipients was 
employed for the establish-
ment of a model for chronic 
rejection. Previously, we dem-
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and CD8 T cells in T-bet-/- mice, and then 
implanted Bm12-derived cardiac grafts. 
Depletion of CD4 T cells completely masked 
the protective effect of Tim-1-Fc on chronic car-
diac rejection, while the protective effect con-
ferred by Tim-1-Fc was still noted in CD8 T cell 
depleted recipients. Finally, we blocked IL-17 in 
T-bet-/- recipient mice by administration of IL-17 
neutralizing antibodies. Blockade of IL-17 com-
pletely diminished the protective effect on 
chronic cardiac graft rejection conferred by 
Tim-1-Fc. All together, we demonstrated ample 
evidence that Tim-1-Fc protects cardiac grafts 
from chronic rejection by attenuating CD4 Th17 
development. 

To exclude the involvement of innate immune 
cells in Tim-1-Fc mediated protection, we first 
examine the impact of Tim-1-Fc on DC function-
ality. Flow cytometry analysis revealed similar 
number and similar levels of surface marker 
expression on DCs originated from Tim-1-Fc 
treated and control IgG treated recipients, indi-
cating that administration of Tim-1-Fc did not 
affect DC development and maturation. Other 

than DCs, macrophages, B cells, NK cells and 
neutrophils have also been recognized contrib-
uting to CAV pathogenesis [41-43]. We thus fur-
ther examined those cells but failed to detect a 
perceptible difference between two groups of 
mice, indicating that Tim-1-Fc protection of car-
diac grafts from chronic rejection is indepen-
dent of innate immunity. We further extended 
our studies to regulatory T cells, and demon-
strated that administration of Tim-1-Fc did not 
result in a detectable change for Tregs. 

Other than CD4 Th17 cells, IL-17 can be also 
produced by CD8 T cells or γδT cells [16, 44, 
45]. Nevertheless, analysis of Bm12-derived 
cardiac grafts in T-bet-/- mice revealed that 
those infiltrated T cells expressed αβ TCR [40], 
demonstrating that γδT cells were not involved 
in chronic rejection of cardiac allograft. On the 
other hand, depletion of CD8 T cells did not 
result in a similar protective effect on chronic 
cardiac graft rejection as that of depletion of 
CD4 T cells, and more importantly, administra-
tion of Tim-1-Fc further protected cardiac graft 
from rejection in CD8 T cell depleted recipients. 

Figure 6. Tim-1-Fc confers protection against cardiac rejection relying on its effect on CD4 Th17 cells. A: Depletion 
of CD4 T cells diminished the protection conferred by Tim-1-Fc treatment. T-bet-/- recipients were depleted for CD4 
T cells and then implanted with Bm12-derived cardiac grafts along with administration of Tim-1-Fc or control IgG as 
described (n=5 for each study group). B: Administration of Tim-1-Fc provided protection for cardiac grafts against 
rejection in CD8 depleted T-bet-/- recipients (n=5 for each study group). C: Results for intragraft cytokine expressions 
by real-time PCR. Data presented here are means ± SD of 3 independent experiments. D: Neutralization of IL-17 
completely abolished the protection conferred by Tim-1-Fc (n=5 for each study group). IL-17 was neutralized with 
a mAb in T-bet-/- recipients after receiving Bm12-derived cardiac grafts along with treatment of Tim-1-Fc or control 
IgG as described.
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Together, these data support that the produc-
tion of IL-17 in cardiac grafts is likely originated 
from CD4 Th17 cells rather than CD8 T cells or 
γδT cells, and Tim-1-Fc attenuates chronic car-
diac graft rejection by suppressing CD4 Th17 
function. 

Previous studies including ours suggested the 
existence of additional Tim-1 ligand other than 
the currently identified Tim-4 [24, 46]. To 
address this possibility, we conducted immuno-
precipitation of membrane proteins from acti-
vated T cells with Tim-1-Fc, and the resulting 
precipitates were next subjected to mass spec-
trometry analysis. Unfortunately, no informa-
tive data were resulted from this study. We then 
embarked on phosphatidylserine and leuko-
cyte mono-Ig-like receptor 5 (LMIR5/CD300b), 
a potential Tim-1 ligand suggested by previous 
studies [47-49]. Unexpectedly, we noted that 
LMIR5 was only expressed in myeloid cells, not 
in naïve CD4 T cells or activated T cells. As 
such, we were unable to provide novel informa-
tion in terms of new Tim-1 ligand in the present 
report. Clearly, additional studies are neces-
sary to address this challenging question. 

In summary, we demonstrated evidence sup-
porting that Tim-1-Fc possesses the capability 
to prolong cardiac graft survival and prevents 
chronic cardiac vasculopathy. Administration of 
Tim-1-Fc did not result in a perceptible impact 
on innate immunity and regulatory T cells, while 
a significant reduction for the number of Th17 
cells and the secretion of IL-17 was noted. Our 
studies in recipient mice by depleting CD4 and 
CD8 T cells or blocking IL-17 further revealed 
that Tim-1-Fc selectively attenuates the devel-
opment and functionality of CD4 Th17 cells. 
Together, our data suggest that Tim-1-Fc might 
be a viable immunosuppressive agent in the 
setting of cardiac transplantation.
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