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Abstract: Chemotherapy remains the mainstay of treatment for patients with incurable disease of esophageal car-
cinoma. Most patients respond poorly to chemotherapy, it is necessary to figure out biomarkers for chemotherapy 
sensitivity or resistance to perform the individualized therapy. In present work, the sensitivities of two ESCC cell 
lines to 9 chemotherapy drugs were identified and the transcriptome of these two cell lines were investigated by 
RNA-seq, the correlation between the sensitivity to drugs and expression of some genes was attempted to construct. 
Eca-1 was more resistant to most of the chemotherapy drugs than Eca-109 cell line. RNA-seq results showed that 
there is dramatic difference in the basal expression between these two ESCC cell lines. Pathway analysis demon-
strated that these differentially expressed genes were mainly enriched in Gαi signaling, calcium signaling, cAMP-
mediated signaling, G-protein coupled receptor signaling and actin cytoskeleton signaling pathways. The molecules 
in Gαi signaling (ADCY1 and SSTR3) and actin cytoskeleton signaling (MYH6 and MYH7) were highly expressed in 
multidrug-resistant Eca-1 cells, which were validated by quantitative PCR. Activation of these two pathways results 
in the upregulation of downstream signaling, PKA signaling and Src-STAT3, and downregulation of RAF-ERK signal-
ing, which was validated by immunoblotting experiments. Our work proposed that activation of Gαi signaling or 
actin cytoskeleton signaling may confer ESCC cells resistance to most chemotherapy drugs. Our work might provide 
potential biomarkers and therapeutic targets for treatment of EC patients.
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Introduction

Esophageal carcinoma (EC) is one of the most 
virulent malignant diseases with high mortality 
due to the advanced nature of the disease at 
presentation. At least 50% of patients present 
with metastatic cancer and most patients with 
localized disease will develop metastases 
despite potentially curative local therapy [1]. It 
ranks as the sixth leading cause of cancer-
related mortality and the eighth most common 
cancer worldwide [2-4]. EC affects more than 
481 000 people worldwide and the incidence is 
increasing rapidly [5-7]. The prognosis is poor 
and the overall 5-year survival ranges from 
15% to 28% [3, 8, 9]. Surgery and preoperative 
chemoradiotherapy are optional treatments for 
patients with resectable tumors to treat both 
esophageal adenocarcinoma (EAC) and esoph-
ageal squamous cell carcinoma (ESCC). Cyto- 

toxic chemotherapy remains the mainstay of 
treatment for patients with incurable disease 
[10]. The most commonly utilized chemothera-
py agents are fluoropyrimidine, taxanes (pacli-
taxel or docetaxel), and platinum compounds. 
Although both EAC and ESCC are responsive to 
chemotherapy, the response rates are low [1, 
11, 12], especially for patients with advanced 
diseases [13, 14]. Regarding that most patients 
respond poorly to chemotherapy, it is neces-
sary to figure out biomarkers for chemotherapy 
sensitivity or resistance to perform the individu-
alized therapy.

Previous studies have suggested that several 
categories of molecules are correlated with the 
response and/or prognosis of ESCC patients 
treated with neoadjuvant chemoradiation ther-
apy (CRT): receptor tyrosine kinase (EGFR, MET) 
[15, 16], tumor suppressors (p53, p21) [17], 
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cell cycle regulators (Cyclin D1, CDC25B, 14-3-
3sigma) [18], DNA repair molecules (p53R2, 
BRCA1, ERCC1, MLH1) [18-20], cytokines-relat-
ed (IL6, sIL6R) [21, 22], drug resistance pro-
teins (MRP2) [23], angiogenic factors (VEGF) 
[18], molecules involved in cell proliferation/
invasion/metastasis (Ki-67, COX-2) [18, 24], 
PI3K/AKT/mTOR signaling molecules (AKT2, 
mTOR) [9, 25], wnt/β-catenin signaling mole-
cules (PITX2) [26], NOTCH1 signaling molecules 
(Notch1) [27],  and hedgehog signaling mole-
cules (Gli-1) [28]. In addition, several molecules 
(heat-shock proteins and glucose-regulated 
proteins, COX7A2, CDK4/6 and Ephrin B3 
receptor) [29-32] were supposed to be associ-
ated with the sensitivity of EAC cells to chemo-
therapy. Although so many potential biomark-
ers for chemotherapy to ESCC and EAC patients 
have been proposed, few were validated in pro-
spective clinical trials. Furthermore, above bio-
markers were mostly deduced through data 
from DNA microarray, immunohistochemistry, 
or tissue microarrays. These methods, espe-
cially DNA microarray, have many limitations 
when compared to the next-generation sequen- 
cing (NGS) techniques.

RNA-seq (RNA Sequencing), also called “Whole 
Transcriptome Shotgun Sequencing”, is a tech-
nology that uses the capabilities of NGS to 
reveal a snapshot of RNA presence and quan-
tity from a genome at a given moment in time. 
This facilitates sequencing of the RNA tran-
scripts in cells, providing the ability to look at 
alternative gene spliced transcripts, post-tran-
scriptional changes, gene fusion, mutations/
SNPs and changes in gene expression [33]. In 
addition to mRNA transcripts, RNA-Seq can 
look at different populations of RNA to include 
total RNA, small RNA, such as miRNA, tRNA, 
and ribosomal profiling [34]. Moreover, RNA-
seq is demonstrated to exhibit a much wider 
dynamic range and greater precision for 97% of 
expressed genes [35, 36], compared to micro-
array-based measurements of gene express- 
ion. 

In this work, two ESCC cell lines were subjected 
to several chemotherapy drugs to test the sen-
sitivity to these drugs. And then RNA-seq was 
carried out in the cell lines and the differentially 
expressed genes were applied to pathway anal-
ysis. Then the expression signatures were 
linked with drug sensitivity, which was validated 
by qPCR and immunoblotting.

Materials and methods

Cell culture

The ESCC cell lines, Eca-109 and Eca-1, were 
used in this work. Eca-109 cell line was pur-
chased from China Center for Type Culture 
Collection, while Eca-1 cell line is a generous 
gift from Dr. Yao-Qing Yang, Tumor Cell Biology 
Research Institute of Tongji University, China. 
These two cell lines were maintained in DMEM 
medium (Gibco) supplemented with 10% FBS 
(Hyclone), penicillin (100 IU/ml) and Streptomy- 
cin (100 μg/ml) (Life Technologies) in a humidi-
fied atmosphere containing 5% CO2 at 37°C. 
Cells in the exponential growth phase were 
used for all the experiments.

Determination of IC50 dose by MTS assay

Eca-109 and Eca-1 cells (1000 cells each well) 
were grown in 100 μl of DMEM medium con-
taining serum per well in a 96-well plate. After 
24 h, the cells were treated with seven or nine 
doses of 9 chemotherapy drugs (paclitaxel, ge- 
mcitabine, docetaxel, topotecan, irinotecan, flo- 
xuridine, and cisplatin, epirubicin, and fludara-
bine) for 120 h. The seven doses were 1/125-, 
1/25-, 1/5-, 1-, 5-, 25-, and 125-fold of refer-
ence IC50, respectively. The nine doses were 
1/100-, 1/31.6-, 1/10-, 1/3.16-, 1-, 3,16-, 10-, 
31.6-, and 100-fold of reference IC50, respec-
tively. The reference IC50 doses for paclitaxel, 
gemcitabine, docetaxel, topotecan, irinotecan, 
floxuridine, and cisplatin, epirubicin, and fluda-
rabine were 0.05, 0.10, 0.005, 0.04, 10, 0.20, 
10, 0.2 and 4 μmol/L, respectively. Every treat-
ment was triplicate in the same experiment. 
Then 20 μl of MTS (CellTiter 96 AQueous One 
Solution Reagent; Promega) was added to each 
well for 1 to 4 h at 37°C. After incubation, the 
absorbance was read at a wavelength of 490 
nm according to the manufacturer’s protocol. 
The IC50 calculation was performed with 
GraphPad Prism 5.0 software.

RNA-seq

Eca-109 and Eca-1 cells (8×104) were grown in 
2 ml of DMEM medium containing serum per 
well in a 6-well plate with duplication. All the 
samples were homogenized with 1 ml Trizol 
(Invitrogen, Life Technologies) and total RNAs 
were extracted according to the manufacturer’s 
instruction.
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Preparation of cDNA followed the procedure 
described in Trapnell et al. [37]. The cDNA 
library was size-fractionated on a 2% TAE low 
melt agarose gel (Lonza catalog # 50080), a 
narrow slice (∼2 mm) of the cDNA lane cen-
tered at the 300 bp marker was cut. The slice 
was extracted using the QiaEx II kit (Qiagen 
catalog # 20021), and the extract was filtered 
over a Microcon YM-100 microconcentrator 
(Millipore catalog # 42409) to remove DNA 
fragments shorter than 100 bps. One-sixth of 
the filtered sample volume was used as tem-
plate for 15 cycles of amplification using the 
paired-end primers and amplification reagents 
supplied with the Illumina ChIP-Seq genomic 
DNA prep kit. Each library was loaded into its 
own single Illumina flow cell lane, producing an 
average of 14.5 million pairs of 51-mer reads 
per lane (8.4 million purity filtered read pairs), 
or nearly 1.5 Gb of total sequence for each 
sample. Transcripts were assembled from the 
mapped fragments sorted by reference posi- 
tion.

Quantitative real-time PCR (qPCR)

Total RNA above isolated was synthesized to 
cDNA using PrimeScript RT reagent kit with 
gDNA Eraser (Takara, RR074A) for RT-PCR with 
mixture of oligo-dT and Random Primer (9 mer). 
The primers used for qPCR validation were list 
in Table 1. Real-time qPCR was performed on 
CFX-96 (Bio-lab), with endogenous control 
hActb. Gene expression was calculated relative 
to expression of hActb endogenous control and 
adjusted relative to expression in Eca-109 
cells.

Protein isolation and western blotting

Cell pellets were resuspended in 1×SDS load-
ing buffer (1 mmol/L Na3VO4, 10 mmol/L NaF, 1 

mega) or anti-rabbit (Promega) and visualized 
by chemiluminescence detection system (Mil- 
lipore, WBKLS0500).

Results

Eca-1 cells display resistance to many cyto-
toxic drugs compared to Eca-109 

Nice chemotherapy drugs were subjected to 
Eca-109 and Eca-1 cell lines. For each drug, 7 
or 9 different doses were used to treat the two 
cell lines and the IC50 dose was calculated 
with the aid of GraphPad Prism 5.0 software 
(Figure 1A and 1B). Interestingly, Eca-1 cells 
were relatively more resistant to seven cytotox-
ic drugs (paclitaxel, gemcitabine, docetaxel, 
topotecan, irinotecan, floxuridine, and cisplat-
in) than Eca-109, while there were no dramati-
cally different sensitivities between these cell 
lines to epirubicin, Eca-109 was more resistant 
to fludarabine (drug used in the treatment of 
hematological malignancies) than Eca-1. 

RNA-seq showed that hundreds of genes were 
differentially expressed between Eca-109 and 
Eca-1 cell lines and Gαi signaling pathway was 
activated in Eca-1 cells

Total RNAs from Eca-109 and Eca-1 cells were 
applied for RNA-seq. The raw data were normal-
ized in a standard distribution, and the basal 
expression difference was analyzed. The 
results showed that there were 162 lowly- 
expressed genes and 186 highly-expressed 
genes in Eca-1 cells, compared to that in Eca-
109 cells. The expression difference was high-
er than 4-fold for these 348 genes between the 
two cell lines. The top 40 differentially-
expressed genes were list in Table 2. 

Table 1. Primers used for qPCR validation
gene forward reverse
Actb CACCATGTACCCTGGCATT GTACTTGCGCTCAGGAGGAG
ADCY1 CGTCCTGCTCCTGCTAGTATTC AGGCACCCTGGAAAACACT
SSTR3 CCTGCCTTCTTTGGGCTCTA GCGGTAGGAGAGGAAGCCATA
TRPV6 CCTGCGTGGGATAATCAACA CGAAGTGAGAACACGCAGTCA
IGFBP5 TGACCGCAAAGGATTCTACAAG CGTCAACGTACTCCATGCCT
MYH7 CTTTGCTGTTATTGCAGCCATT AGATGCCAACTTTCCTGTTGC
MYH6 CCAGACGGCACCGAAGAT TGACATACTCGTTGCCCACTTT
PAX5 ACTTGCTCATCAAGGTGTCAG TCCTCCAATTACCCCAGGCTT

mmol/L PMSF) containing 
protease inhibitors. Lysates 
(20 μg each lane) were 
applied to SDS-PAGE. Imm- 
unoblotting of Abs specific for 
GAPDH (Abmart, 080922), 
AKT (Santa Cruz, sc8312), 
p-AKT (Santa Cruz, SC7985-R, 
pS473), ERK (Abclonal, 
A0228) and p-ERK (Cell sig-
naling, # 9106S, pT202/204) 
were detected using HRP-
conjugated anti-mouse (Pro- 
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And then these 348 genes were applied to 
Ingenuity Pathway Analysis (IPA) online soft-
ware. The results showed that these genes 
were mainly enriched in Gαi signaling, calcium 
signaling, cAMP-mediated signaling, G-protein 
coupled receptor signaling and actin cytoskel-
eton signaling pathways (Figure 2A). In Gαi sig-
naling pathway, the downstream PKA and Src-
STAT3 signaling were predicted to be activated, 
while the ERK signaling was predicted to be 
suppressed in Eca-1 cell line (Figure 2B). These 
predictions were deduced basing on the highly 
expression of four genes (ADCY1, CNR1, 
PTGER3 and SSTR3) and the low expression of 
CHRM2 in Eca-1 cells, compared to that in Eca-
109 cells.

qPCR validation demonstrated that molecules 
in Gαi signaling and actin cytoskeleton signal-
ing were highly expressed in Eca-1 cells

To validate the RNA-seq data, expression of 7 
genes was investigated in Eca-109 and Eca-1 
cells by qPCR assay. The relative expression of 
these 7 genes in Eca-1 was log2 transformed 
and plotted (Figure 3). The change folds varied 
to some extent between the RNA-seq data and 
qPCR data, however, expression trends of most 
of genes were consistent between two data 
sets except that of two genes, MYH7 and MYH6. 
RNA-seq data showed that MYH7 and MYH6 
were expressed at a low level in Eca-1, while 
the qPCR data demonstrated that MYH7 and 

Figure 1. Determination of IC50 doses for nine chemother-
apy drugs. A: Eca-109 and Eca-1 cells were treated with 7 
or 9 doses of these drugs for 120 h. The cell viability was 
detected by MTS assay. The horizontal ordinate was divid-
ed by the reference IC50 (IC50ref) of each drug and log10 
transformed. The survival curves were plotted by nonlinear 
regression with the aid of GraphPad Prism 5.0 software. B: 
The IC50 relative to the reference IC50 of each drug was 
histogramed.
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MYH6 were highly expressed in Eca-1 cells. 
Expression trends of 71% (5/7) genes in RNA-
seq data were validated by qPCR, suggesting 
that the RNA-seq data were reliable for further 
analysis. ADCY1, SSTR3, TRPV6, IGFBP5, MYH7 
and MYH6 were validated to be highly 
expressed, while PAX5 was validated to be low 
expressed in Eca-1 cells.

Western blotting experiments showed that 
AKT/ERK signaling was activated in Eca-109 
cells

Then the most famous signaling molecules 
essential for cell growth and survival, AKT and 
ERK, were investigated in Eca-109 and Eca-1 
cells. Interestingly, the phosphorylation of AKT 
and ERK was activated in Eca-109, compared 
with that in Eca-1.  

Discussion

Chemotherapy remains the mainstay of treat-
ment for patients with incurable disease of 
esophageal carcinoma. Most patients respond 
poorly to chemotherapy, it is necessary to fig-
ure out biomarkers for chemotherapy sensitivi-
ty or resistance to perform the individualized 
therapy.

hematological malignancies) than Eca-109, 
suggesting that some drugs used in treatment 
of other cancers may have good antitumor 
activity in partial ESCC patients. This indicates 
that a high throughput drug screen in more 
ESCC cell lines might make us find more poten-
tial effective drugs for part of patients.

RNA-seq results showed that dramatic differ-
ence existed in the basal expression between 
these two cell lines. Pathway analysis demon-
strated that these differentially expressed 
genes were mainly enriched in Gαi signaling, 
calcium signaling, cAMP-mediated signaling, 
G-protein coupled receptor signaling and actin 
cytoskeleton signaling pathways. Gαi signaling 
pathway has been proposed to mediate the sig-
nal transduction from Hedgehog signaling to 
NF-κB signaling [38, 39], cross-talk to EGFR sig-
naling pathway [40], and regulate cancer cell 
proliferation by Src-STAT3 signaling [41]. In our 
data, Gαi signaling was predicted to be activat-
ed in Eca-1 cells mainly based on the highly 
expression of ADCY1 and SSTR3, which was 
validated by qPCR (Figure 3). Due to the highly 
expression of ADCY1, downstream PKA and 
Src-STAT3 signaling were predicted to be acti-
vated whereas the RAF-ERK signaling were pre-

Table 2. Top 40 differentially expressed genes between Eca-109 and 
Eca-1 cells

Gene Fold Change  
(Eca-1 vs Eca-109) Gene Fold Change  

(Eca-1 vs Eca-109)
KRT18P1 0.08 CCDC144NL 7.35 
AC097639.8.1 0.09 RP11-203M5.6.1 7.60 
RP11-55L3.2.1 0.10 RP11-450H5.2.1 7.91 
MPPED2 0.10 MKRN4P 8.03 
CTD-2089O24.1.1 0.11 RP11-173E2.1.1 8.16 
RP11-405A12.1.1 0.11 AC104843.3.1 8.24 
SCDP1 0.11 PRKRIRP1 8.31 
RP3-342P20.2.1 0.12 RP11-392P7.1.1 8.39 
RP11-64K12.1.1 0.12 WBP11P1 8.48 
RP11-21I10.2.1 0.12 AC006026.9.1 8.57 
HERC2P5 0.13 RP11-297L17.6.1 8.69 
API5P1 0.13 ST13P18 8.79 
RBMXP2 0.13 FTH1P12 8.93 
RP13-395E19.2.1 0.13 ST13P5 9.07 
RP11-798L4.1.1 0.13 TAF1L 9.53 
RP13-98N21.2.1 0.14 SUCLA2P1 9.89 
RP13-98N21.3.1 0.14 CTB-33G10.1.1 10.18 
ESRRAP1 0.14 RP11-244F12.1.1 10.49 
AC139452.2.1 0.14 KCNA7 12.56 
GLULP4 0.14 USP8P1 18.25 

In present work, the sensi-
tivities of two ESCC cell 
lines to 9 chemotherapy 
drugs were identified and 
the transcriptome of these 
two cell lines were investi-
gated by RNA-seq, the cor-
relation between the sensi-
tivity to drugs and expres- 
sion of some genes was 
attempted to construct.

In drug tests, we found that 
Eca-1 was relatively resis-
tant to seven most com-
monly used cytotoxic drugs 
(paclitaxel, gemcitabine, 
docetaxel, topotecan, irino-
tecan, floxuridine, and cis-
platin), compared to Eca-
109 cell line. Therefore, 
Eca-1 cell line can be con-
sidered as a multidrug-re- 
sistant ESCC cell line. In 
addition, Eca-1 was more 
sensitive to fludarabine (dr- 
ug used in the treatment of 
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Figure 2. Ingenuity pathway analysis (IPA) for those differentially expressed genes between Eca-109 and Eca-1 cells. A: The most significant canonical pathways in 
which the differentially expressed genes were enriched. The 348 differentially expressed genes (expression difference >4-fold) were applied to Ingenuity Pathway 
analysis (IPA) software, and the most significant canonical pathways were shown. B: Gαi signaling pathway was predicted to be activated in multidrug-resistant 
Eca-1 cells.
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