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Abstract: Gemcitabine is a potential chemotherapy drug for treatment of head and neck squamous cell carcinoma 
(HNSCC), however, the poor or partial response of HNSCC patients to gemcitabine demonstrated the urgent need 
for gemcitabine biomarkers to improve the therapy. In present work, 10 HNSCC cell lines were employed to figure 
out the biomarkers for gemcitabine sensitivity. The sensitivities of these 10 cell lines to gemcitabine and the basal 
expression of these cell lines was investigated, the correlation between gemcitabine response (IC50 dose) and gene 
expression was investigated by Pearson correlation and FDR estimation. The top seven positive genes responsible 
for gemcitabine sensitivity were validated by qPCR in these 10 HNSCC cell lines, while only two genes (SBF1 and 
ZNF195) were expression-correlated to gemcitabine response. Furthermore, ZNF195 expression was closely associ-
ated with gemcitabine sensitivity in the subsequent independent validation in cell lines from various types of cancer. 
Our work might provide potential biomarkers for gemcitabine sensitivity in HNSCC and various type of cancer.
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Introduction

Head and neck squamous cell carcinoma 
(HNSCC) arises in the head or neck region (in 
the nasal cavity, sinuses, lips, mouth, salivary 
glands, throat, or larynx), and is the sixth lead-
ing cancer by incidence worldwide [1]. The most 
important risk factors for HNSCC are tobacco 
and alcohol consumption [2] and infection by 
high-risk types of human papillomavirus (HPV) 
[3, 4]. It is likely that approximately 650,000 
cases will arise annually worldwide, and that 
only 40-50% of patients with HNSCC will sur-
vive for 5 years [5, 6]. Among these HNSCC 
patients, about two-thirds present with locally 
or regionally advanced stage disease, com-
monly involving regional lymph nodes. Induction 
chemotherapy or concurrent chemoradiothera-
py (CRT) has advanced the treatment of locore-
gionally advanced (stage III/IV) HNSCC, allow-
ing for functional organ preservation while 
maintaining or improving locoregional control 
(LRC) compared with radiotherapy (RT) alone 
[7-9]. Cisplatin, with good antitumor activity 

and the radiosensitizing property [10, 11], is 
regarded as a standard agent in combination 
with radiation or with other agents [6]. 
Gemcitabine, a drug with effective radiosensi-
tizing roles against many cancer cells [12, 13], 
is one of the most widely used agents with prov-
en efficacy in various types of cancer, including 
HNSCC [14, 15]. Therefore, gemcitabine is a 
potent drug for induction or concurrent CRT 
treatment of HNSCC patients. However, the 
poor or partial response to gemcitabine and the 
adverse effects of gemcitabine make it urgent 
to find biomarkers for gemcitabine sensitivity to 
improve the therapy and perform personalized 
therapy.

Previous studies have suggested that the 
expression of several DNA-repair related mole-
cules, such as ribonucleotide reductase M1 
(RRM1) [16], ribonucleotide reductase M2 [17], 
human equilibrative nucleoside transporter-1 
(hENT1) and deoxycytidine kinase (dCK) [18] is 
correlated closely to gemcitabine sensitivity/
resistance in non-small cell lung cancer (NSCLC) 

http://www.ijcep.com


ZNF195 and SBF1 expression determines gemcitabine response in HNSCC cells

1515	 Int J Clin Exp Pathol 2014;7(4):1514-1523

or pancreatic ductal adenocarcinoma (PDAC). 
Moreover, inhibition of several kinases, such as 
PIM-3 [19], CK2 [20], sphingosine kinase-1 
(SphK1) [21] and polo-like kinase 1 (Plk-1) [22], 
sensitizes PDAC cells to gemcitabine. In addi-
tion, gemcitabine sensitivity/resistance was 
proposed to be associated with the p53 muta-
tion [23], NF-kB activity [24], the expression of 
multidrug resistant protein (ABCC5) [25, 26], 
apoptotic signaling molecules (Bcl2, BNIP3) 
[27, 28], sonic Hedgehog signaling-related mol-
ecules (ABCB2, MAP3K10) [29, 30], STAT3 [31], 
RON [32], NOTCH3 [33], and epithelial to mes-
enchymal transition (EMT)-related molecules 
(E-cad, Zeb-1) [34]. Although so many potential 
biomarkers for gemcitabine have been pro-
posed, few were confirmed in prospective clini-
cal trials. hENT1 expression was demonstrated 
not to correlate to gemcitabine outcome in 
phase 2 trial [35]. Additionally, there are few 
studies performed in HNSCC cells yet. 
Therefore, it is of great interest to figure out 
gemcitabine sensitivity-related biomarkers in 
HNSCC cells.

In present work, ten HNSCC cell lines with dif-
ferent sensitivities to gemcitabine were applied 
for DNA microarray analysis. The basal expres-
sion profiles were correlated to the gemcitabine 
sensitivities and those potential biomarkers for 
gemcitabine were proposed and independently 
validated in another 11 cancer cell lines. Our 
data strongly suggested that these gemcitabine 
sensitivity biomarkers could be expanded to 
other lineages and serve as very useful  
diagnosis markers in clinical therapy with 
gemcitabine.

Materials and methods

Cell culture

The human HNSCC cell lines, CEN-2, ECA-1, 
ECA-109, FADU, HEP2, HNE-1, HNE-2, HONE-1, 
KB, and TE-1, and another 11 cancer cell lines, 
HCT116, GP5D, RKO, COLO205, SK-Mel-25, 
LOVO, HCT15, GP2D, OVCAR-3, SK-Mel-28, 
BPH-1, and MG63 were used in this work. 
These cell lines were purchased from ATCC or 
China Center for Type Culture Collection. These 
cell lines were maintained in RPMI 1640 or 
DMEM medium (Gibco) supplemented with 
10% FBS (Hyclone), penicillin (100 IU/ml) and 
Streptomycin (100 μg/ml) (Life Technologies) in 
a humidified atmosphere containing 5% CO2 at 

37°C. Cells in the exponential growth phase 
were used for all the experiments.

Determination of IC50 dose by MTS assay

Cells (1×103) were grown in 100 μl of RPMI 
1640 or DMEM medium containing serum per 
well in a 96-well plate. After 24 h, the cells were 
treated with Gem (0, 1.0, 3.16, 10, 31.6, 100, 
316, 1000, 3160, and 10000 nmol/L, respec-
tively) for 144 h. Every treatment was triplicate 
in the same experiment. Then 20 μl of MTS 
(CellTiter 96 AQueous One Solution Reagent; 
Promega) was added to each well for 1 to 4 h at 
37°C. After incubation, the absorbance was 
read at a wavelength of 490 nm according to 
the manufacturer’s protocol. The cell viability 
was calculated relative to the untreated cells, 
respectively. The survival curves were plotted 
with the aid of GraphPad Prism 5.0 software via 
nonlinear regression. The IC50 calculation was 
performed with GraphPad Prism 5.0 software.

Microarray analysis

Cells (8×104) were grown in 2 ml of RPMI 1640 
or DMEM medium containing serum per well in 
a 6-well plate. All the samples were homoge-
nized with 1 ml Trizol (Invitrogen, Life Tech- 
nologies) and total RNAs were extracted accord-
ing to the manufacturer’s instruction.

500 ng total RNA was used to synthesize dou-
ble-strand cDNA and in vitro transcribed to 
cRNA, purified 10 μg cRNA was used to synthe-
size 2nd-cycle cDNA and then hydrolyzed by 
RNase H and purified. Above steps were per-
formed with Ambion WT Expression Kit. 5.5 μg 
2nd-cycle cDNA was fragmented and the sin-
gle-stranded cDNA was labeled with GeneChip2 
WT Terminal Labeling Kit and Controls Kit 
(Affymetrix, PN 702880). About 700 ng frag-
mented and labeled single-stranded cDNA 
were hybridized to an Affymetrix GeneChip 
Human Gene 1.0 ST array, which was washed 
and stained with GeneChip2 Hybridization, 
Wash and Stain kit (Affymetrix).

Data processing and significant genes predic-
tion

Gene expression in multiple cell lines from indi-
vidual or multiple lineages were measured. 
Expression of gene i across such cell line panel 
can be presented as, xi = {xi1, xi2, …, xim}, 
where there are total m cell lines. Gene expres-
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sion set, represented as a matrix X = {x1, x2, .., 
xn}, where n is the total number of genes and n 
>> m.

Cellular response to a drug (simply, drug 
response) are distinct in different cell lines 
even in same lineage. Therefore, to the same 
cell line panel, the drug response can be mea-
sured and quantitatively described as y = {y1, 
y2, …, ym}.

Pearson correlation, denoted as R, was applied 
to measure the correlation/association bet- 
ween expression of ith gene across the cell 
panel xi and the drug response y.

Since n >> m, thus we can expect that there 
should be a number of genes can be identified 
as ‘significantly’ correlated with a given sto-
chastically generated numbers yr and when giv-
ing yr for many times the number of called 
genes should be normally distributed around a 
positive integer k (± δ, the standard deviation). 
These genes called as significant here can be 
defined as the false positives. By random simu-
lation, we are able to evaluate the distribution 
of numbers of the false positives. Therefore, 
with a given y from experimental measurement, 
when we found the number k’ of positive genes 
is much larger than k, say k’ > k + N × δ, N > 5, 
we are able to count the number of the true 
positives as k’-k. The false discovery rate (FDR) 
can be therefore produced, where we use the 
number of called genes when FDR = 50%, 
GFDR50, to evaluate current learning and 
prediction.

To a given array x (1 × N), we can generate a 
stochastically distributed numeric matrix Y (M × 
N, and M >> N), where we can assert that a 
number of rows (m) can be found to consider-
ably correlate to x only by chance (as the false 
positives).

Therefore, we expect that, in a given matrix Y’ 
(which has been known to be not independent 
to x, for example, x and Y’, as different attri-
butes, are both measured from same objects 
under a particular condition), n more rows (as 
the true positives) in Y’ could be discovered to 
be correlated with x, since besides m rows are 
stochastically correlated to x, there are n rows 
indeed were affected by and associated with x 
with certain reasons. Here the false discovery 
rate (FDR) should be:

FDR = m/(m+n) × 100%.

To be more extensively accurate, we repeated 
generating the stochastically distributed 
numeric matrix Yi many times and finally pro-
duced an averaged FDR curve along with the 
correlation coefficient (r), by which we are able 
to choose the best cutoff of r with considerably 
less false discoveries and more true positives.

Similarly, to a given matrix Y’, we are also able 
to calculate the FDR to a given array x by com-
paring with many randomly generated arrays x’i 
(i = 1 to 500 in our case) with same distribution 
of x.

Notably, to a given pair of x and Y’, if the FDR 
were measured always around or over than 
100%, we can make a conclusion that, to x, 
there are NO any rows in Y’ truly correlated.

The gene expression was normalized by log2 
transformed to the microarray data and the 
drug response was log10 transformed, the R 
value and FDR for each gene were calculated. 
Those genes with R ≥ 0.85 and FDR < 0.1% 
were denoted as true positive genes responsi-
ble for gemcitabine.

Quantitative real-time PCR (qPCR)

Total RNA above isolated was synthesized to 
cDNA using PrimeScript RT reagent kit with 
gDNA Eraser (Takara, RR074A) for RT-PCR with 
mixture of oligo-dT and Random Primer (9 mer). 
The primers used for qPCR validation were list 
in Supplementary Table 1. Real-time qPCR was 
performed on CFX-96 (Bio-lab), with endoge-
nous control hActb. Gene expression was cal-
culated relative to expression of hActb endoge-
nous control and adjusted relative to expression 
in FADU cells or GP5D cells in independent 
validation. 

Statistical analysis

R values were calculated using Pearson’s cor-
relation coefficient. The significant difference 
was calculated using Student’s t-test.

Results

HNSCC cell lines display dramatic difference in 
gemcitabine sensitivities

Ten HNSCC cell lines were treated with 9 dis-
tinct doses of gemcitabine for 144 h. The cell 
viability was calculated relative to the untreat-
ed cells, respectively. The survival curves were 
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plotted with the aid of GraphPad Prism 5.0 soft-
ware via nonlinear regression (Figure 1A). The 
IC50 doses of these ten HNSCC cell lines for 

The basal expression of these ten HNSCC cell 
lines was investigated by DNA microarray. The 
prediction of significant gemcitabine-responsi-

Figure 1. Determination of IC50 doses of 10 HN-
SCC cell lines to gemcitabine. A: 10 HNSCC cell 
lines were treated with 9 doses of gemcitabine for 
144 h. The cell viability was detected by MTS as-
say. The survival curves were plotted by nonlinear 
regression with the aid of GraphPad Prism 5.0 soft-
ware. B: The IC50 doses to gemcitabine were histo-
gram. The bar represented the standard derivation 
of two repeat experiments.

Table 1. IC50 doses of 10 HNSCC cell lines to gemcitabine

Cell
R1a R2b

MEAN SD
IC50 [nM] R2* IC50 [nM] R2

KB 51.75 0.9897 98.38 0.9623 75.1 33.0
ECA-109 28.96 0.9808 9.655 0.9831 19.3 13.7
HNE-1 37.95 0.9647 40.87 0.9965 39.4 2.1
HNE-2 114.5 0.9895 27.78 0.9925 71.1 61.3
FADU 7.122 0.9324 5.872 0.9945 6.5 0.9
HEP2 209.2 0.9483 162.8 0.9895 186.0 32.8
CEN-2 185.3 0.9888 110.7 0.9929 148.0 52.8
ECA-1 86.01 0.9808 221.3 0.9971 153.7 95.7
HONE-1 59.88 0.9941 26.36 0.9979 43.1 23.7
TE-1 15.84 0.9894 3.592 0.9652 9.7 8.7
arepeat 1; brepeat 2; *correlation coefficient.

gemcitabine were histogram in 
Figure 1B and list in Table 1. The 
results showed that the sensitivi-
ties of these cell lines to gem-
citabine were distributed in a 
nearly normal fashion, ie., FADU, 
TE-1 and ECA-109 cell lines were 
hypersensitive to gemcitabine, 
HNE-1, HONE-1, HNE-2 and KB 
cell lines were moderate sensitive 
to gemcitabine, while CEN-2, 
ECA-1 and HEP2 cell lines were 
resistant to gemcitabine.

DNA microarray analysis and pre-
diction of significant gemcitabine-
responsible genes
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ble genes was performed, as described in 
Material and Methods. The gene expression 
was normalized by log2 transformed to the 
microarray data and the drug response was 
log10 transformed, the R value and FDR for 
each gene were calculated. The GFDR50 predic-
tion and the gene number required for actual 

eresponsible genes were list in Table 2. In line 
with previous studies, RRM1 was predicted to 
be a gemcitabine-responsive gene in our 
results, which can be seemed as a positive 
control.

qPCR validation

Then the top seven genes (P4HTM, SBF1, 
ZNF195, FARSA, GTF2IRD2B, IL9R, PIN4) were 
validated in these ten HNSCC cell lines by 
qPCR. The R value between gene expression 
and gemcitabine response was calculated and 
the results showed that only two genes were 
significantly correlated to the gemcitabine sen-
sitivity: ZNF195, R = 0.90, p = 0.0002; SBF1, R 
= 0.59, p = 0.037 (Figure 3). For the other 
genes, there was no significant difference (p > 
0.05).

Independent validation in other cancer cell 
lines

Then these two genes potentially responsible 
for gemcitabine sensitivity were independently 
validated in 11 cancer cell lines from various 
types of cancer, including lung cancer, colorec-
tal cancer, ovarian cancer, prostate cancer, 
melanoma and osteosarcoma. The expression 
of these two genes in these 11 cancer lines 
were investigated by qPCR assay (Table 3). The 
IC50 doses of these cancer lines were exam-
ined by MTS assay (Table 3). The correlation 
between gene expression and gemcitabine 
sensitivity was calculated by Pearson correla-
tion with the aid of GraphPad Prism 5.0 and 
plotted (Figure 4). The results showed that 

Figure 2. FDR estimation and minimal gene number for gemcitabine response pre-
diction. A: GFDR50 prediction of gene for gemcitabine response prediction. There were 
665 genes whose FDR value was below 50% in our calculation. B: Prediction of 
minimal gene number for gemcitabine response. The minimal gene number for gem-
citabine response prediction was ten or so.

Table 2. The top 20 positive genes respon-
sible for gemcitabine response

Gene R*

P4HTM 0.9436
SBF1 0.9253
ZNF195 0.9251
FARSA 0.9232
GTF2IRD2B 0.9206
IL9R 0.8980
PIN4 0.9147
AC010492.2.1 0.9042
RP11-742N3.1.1 0.8987
RPL18AP3 0.8940
ARAF 0.9057
WASH7P 0.9052
MRPL54 0.9070
GPX1P1 0.9065
FAM156B 0.8704
RRM1 0.9019
EXOSC4 0.9026
MCM7 0.8980
CENPT 0.8497
MAP1LC3B2 0.8526
*R, Pearson correlation coefficient.

prediction of gem-
citabine response in 
HSNCC cell lines were 
plotted in Figure 2A 
and 2B, respectively. 
There were 665 genes 
whose FDR value was 
below 0.5, and at least 
ten genes were needed 
for perfect prediction 
for gemcitabine res- 
ponse in these HNSCC 
cell lines. Those genes 
with R ≥ 0.85 and FDR 
< 0.1% were denoted 
as true positive genes 
responsible for gem-
citabine. The top 20 
significant gemcitabin-
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ZNF195 expression was positively correlated 
with gemcitabine sensitivity (Pearson R = 0.83, 
p = 0.0008), whereas SBF1 expression was not 
in good correlation between gene expression 
and gemcitabine sensitivity (Pearson R = 0.35, 
p = 0.27). Therefore, ZNF195 is a potent bio-
marker for gemcitabine sensitivity in various 
types of cancer.

Discussion

Gemcitabine is a potential chemotherapy drug 
for HNSCC treatment, however, the poor or par-
tial response of HNSCC patients to gemcitabine 
demonstrated the urgent need for gemcitabine 

expression was investigated by Pearson corre-
lation and FDR estimation. Those genes with 
Pearson R > 0.85 and FDR < 0.1% were denot-
ed as positive genes responsible for gem-
citabine sensitivity. Among the top 20 positive 
genes, RRM1 was predicted to be a true posi-
tive gene responsible for gemcitabine sensitiv-
ity, which was in line with previous studies [16, 
36-39]. This result suggested that our predic-
tion based on Pearson correlation and FDR 
estimation was reliable to some extent.

Then the top seven positive genes related with 
gemcitabine response (P4HTM, SBF1, ZNF195, 
FARSA, GTF2IRD2B, IL9R, PIN4) were validated 
by qPCR in these 10 HNSCC cell lines. The 
results demonstrated only two genes (SBF1 
and ZNF195) were significantly correlated to 
gemcitabine sensitivity.

SBF1, a pseudophosphatase of the myotubula-
rin family, contains an N-terminal GEF homolo-
gy domain that modulates its growth regulatory 
properties [40]. Its deficient in mice causes 
male infertility, impaired spermatogenesis, and 
azoospermia [41]. SBF1 mutation causes 
Charcot-Marie-Tooth disease type 4B3 [42]. It 
is proposed that SBF1 together with its ana-
logue MTMR2 regulates the activity of phos-
phatidylinositol 3-kinase (PI3K) and phosphati-
dylinositol 3-phosphate (PI3P) pathway [43, 
44]. As PI3K pathway is well known signaling 
vital for cell growth and survival and closely cor-
related with drug sensitivity [45-47], hence it is 

Figure 3. The correlation between the expression of 7 positive genes and gem-
citabine response in 10 HNSCC cell lines. The top seven positive genes responsi-
ble for gemcitabine response (P4HTM, SBF1, ZNF195, FARSA, GTF2IRD2B, IL9R, 
PIN4) were validated by qPCR in the 10 HNSCC cell lines and only two genes 
(SBF1 and ZNF195) were significantly correlated to gemcitabine sensitivity.

Table 3. Independent validation in 11 cancer 
cell lines

cell IC50/μM
relative expression
ZNF195 SBF

HCT116 10.00 3.83 0.29
GP5D 8.59 1.00 1.00
RKO 8.48 2.47 0.22
COLO205 6.25 2.01 0.98
SK-Mes-25 2.78 1.52 0.30
LOVO 2.52 1.26 0.18
HCT15 1.74 1.13 0.11
GP2D 1.20 0.84 0.19
OVCAR-3 0.37 0.64 0.22
SK-Mes-28 0.13 0.63 0.81
BPH-1 0.07 0.36 0.13
MG63 0.0005 0.26 0.30

biomarkers to improve the 
therapy.

In present work, we em- 
ployed 10 HNSCC cell lines 
to figure out the biomark-
ers for gemcitabine sensi-
tivity prediction. The sensi-
tivities of these 10 cell 
lines to gemcitabine were 
distributed by nearly nor-
mal fashion, therefore 
these cell lines were suit-
able for gemcitabine bio-
markers searching. Then 
the basal expression of 
these cell lines was inves-
tigated by DNA microarray. 
And the correlation betw- 
een gemcitabine response 
(IC50 dose) and gene 
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not surprising that expression of SBF1, regula-
tor of PI3K activity, was correlated with 
response chemotherapy drug. Although SBF1 
was not closely correlated with gemcitabine 
response in our independent validation, it is the 
first time to demonstrate that SBF1 expression 
is potentially associated with HNSCC initiation 
or progression but not in the other types of can-
cer. This result may warrant further investiga-
tion in more cancer cell lines and tissues.

ZNF195 encodes a protein belonging to the 
Krueppel C2H2-type zinc-finger protein family. 
These family members are transcription factors 
that are implicated in a variety of cellular pro-
cesses. ZNF195 is located near the centromer-
ic border of chromosome 11p15.5, next to an 
imprinted domain that is associated with 
maternal-specific loss of heterozygosity in 
Wilms’ tumors [48, 49]. There are few studies 
about the function of ZNF195, however, 
ZNF195 was implicated in several types of can-
cer. ZNF195 is found to be selectively expressed 
in cutaneous T-cell lymphoma (CTCL) compared 
to normal peripheral blood monocytes [50] and 
to be alternatively spliced in human embryonal 
carcinoma and embryonic stem cells [51]. In 
our work, ZNF195 expression was closely cor-
related to gemcitabine sensitivity in HNSCC 
and various types of cancer. The underlying 
mechanism by which ZNF195 expression regu-
lates cancer cell response to gemcitabine 
deserves further demonstration.

Collectively, our work might provide potential 
biomarkers for gemcitabine sensitivity in 
HNSCC and various type of cancer.
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Supplementary Table 1. Primers for qPCR validation
Gene Forward Reverse
Actb CACCATGTACCCTGGCATT GTACTTGCGCTCAGGAGGAG
P4HTM CCGAACCCTCAGCCTCAAG GATGGATGATGAGCCGACACT
SBF1 GCTCGCCGATGCCTGTAG CAGGATGGGCACATAGGTGAA
ZNF195 ATGACTCTGTTGACGTTCAGGG TGAGACCAACGGAGAACAAGT
FARSA GACCAGCACGACACCTTCTTC CTGAGAGTGGGTCCGCTTGA
GTF2IRD2B CTCTGTTCAGCTCCCCGTTCT GGACCGTGTTGCATTGCA
IL9R GGAGACCCAGCAAGGAGTT GACAGAAGGGAGCAACATGC
PIN4 GATGCGGCTTTCAGGCATT CGCTCCAGTTGCCGTACAA


