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Abstract: The mechanisms leading to cerebral malaria (CM) are not completely understood. Brain edema has been 
suggested as having an important role in experimental CM. In this study, CBA/CaH mice were infected with Plas-
modium berghei ANKA blood-stage and when typical symptoms of CM developed on day 7, brain tissues were 
processed for electron-microscopic and immunohistochemical studies. The study demonstrated ultrastructural hall-
marks of cerebral edema by perivascular edema and astroglial dilatation confirming existing evidence of vasogenic 
and cytogenic edema. This correlates closely with the clinical features of CM. An adaptive response of astrocytic ac-
tivity, represented by increasing glial fibrillary acidic protein (GFAP) expression in the perivascular area and increas-
ing numbers of large astrocyte clusters were predominately found in the CM mice. The presence of multivesicular 
and lamellar bodies indicates the severity of cerebral damage in experimental CM. Congestion of the microvessels 
with occluded white blood cells (WBCs), parasitized red blood cells (PRBCs) and platelets is also a crucial covariate 
role for CM pathogenesis.
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Introduction

The most widely studied murine cerebral malar-
ia (CM) model is Plasmodium berghei ANKA 
(PbA) in CBA or C57BL/6 mice [1]; it results in 
cerebral syndromes seven days post infection 
[2]. The pathogenic mechanisms underlining 
the occurrence of cerebral lesions are still 
incompletely understood, but may result from 
accompanying microvessel obstruction and 
inflammation [3]. A fatal outcome generally 
depends on sequestration of activated blood 
cells particularly monocytes and macrophages, 
parasitized erythrocytes, and platelets in the 
cerebral vessels [1] consequence of increased 
pinocytotic activity occurring in the endothelial 
cells, associated with degenerative changes in 
the basement membrane and perivascular 
astrocyte swelling and contributes to the 

appearance of a perivascular edema [4]. The 
mouse model of CM, in which cerebral edema 
appears to play an important role, bears more 
resemblance to the CM observed in African chil-
dren than that in South East Asian adults [5]. 
Maegraith and Fletcher demonstrated exces-
sive movement of water and proteins into the 
brain of P. berghei-infected rodents [6]. Damage 
to the blood brain barrier (BBB) in P. berghei-
infected mice was detected, which led to endo-
thelial lesions, edema, and hemorrhage [4, 7].

The two main types of brain edema are cyto-
genic and vasogenic [8]. Vasogenic edema 
involves accumulation of excess fluid in the 
extracellular space of the brain parenchyma 
because of a leaky BBB [9]. Cytogenic edema 
consists of intracellular fluid accumulation that 
occurs during anoxia generating conditions 
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such as hypoxia [10]. Both cytogenic and vaso-
genic edema are predominant features of 
experimental CM [4], however evidence of 
these in experimental CM has yet not been 
demonstrated by quantitative electron micro-
scopic study.

Astrocytic swelling is also seen in vasogenic 
edema. One function of this swelling appears to 
be uptake of the extravasated plasma protein 
[11]. Perivascular astrocyte swelling contrib-
utes to the appearance of a cytogenic edema 
seen in reactive astrogliosis, in which the cell 
cytoplasm is packed with glial fibrillary acidic 
protein (GFAP) [12]. It is believed that the astro-
cyte is the major cell type showing swelling 
after ischemia and trauma [13]. Astrocyte 
swelling may be an important early event pre-
disposing the brain to further damage, because 
of the impairment of protective homeostatic 
mechanisms [14].

Considering the evidence of a causal relation-
ship between brain edema and GFAP expres-
sion in experimental CM, this study set out to 
compare CM-susceptible mice; CBA/CaH mice 
(CM) and CM-non susceptible mice; BALB/cA 
mice (non-CM) that inoculated with P. berghei 
ANKA (PbA). This study was designed to com-
pare the evidence of astrogliosis and perivas-
cular GFAP expression between CM and non-
CM mice using immunohistochemical study. 
Fine morphological structure in the perivascu-
lar space and within vessels of CM and non-CM 
mice was also evaluated using an ultrastruc-
tural study. The findings of this study demon-
strated the correlation between the evidence of 
astrogliosis and GFAP expression on CM and 
explained the pathogenic role of cytogenic and 
vasogenic brain edema together with other 
related ultrastructural changes in an experi-
mental CM model.

Materials and methods

Animals and parasites

Animal studies were conducted in accord with 
guidelines under of the Australian Code of 
Practice for the Care and Use of Animals for 
Scientific Purposes, and were approved by the 
University of Sydney Animal Ethics Committee. 
14 female CBA/CaH mice (CM) and 15 female 
BALB/c mice (non CM) (8-10 weeks old) were 
used in this study, 3 of each were used as con-
trols and 11 CBA/CaH (CM) and 12 BALB/c 

(non CM) that were infected with P. berghei 
ANKA by intraperitoneal injection of 106 para-
sitized erythrocytes, as described in Grau et al. 
[15]. The mice were housed in individual venti-
lation cages and fed ad libitum in the laborato-
ry animal facility of the Department of 
Pathology, University of Sydney. The mice were 
screened daily for neurological manifestations.

Specimen processing

Mice were euthanized with an over dose inhala-
tion of Isoflurane® on 7 days post inoculation, 
when the mice showed terminal-stage of severe 
cerebral complications, including convulsions, 
paralysis, and coma [16]. A median cranial inci-
sion of the brain was done. All specimens were 
fixed in 10% neutral buffer formalin for 8-h, at 
4°C [17]. Fixed specimens were dehydrated 
and infiltrated using standard tissue process-
ing. The tissues were embedded in paraffin and 
sectioned at 5 µm. The continuous tissue sec-
tions were mounted on SuperFrost Plus slides 
(Menzel GmbH & Co KG, SF41296PL) for the 
immunohistochemistry study.

Immunohistochemistry for GFAP

Heat-induced antigen retrieval with citrate buf-
fer, pH 6 was used to unmask the antigen. 
Endogenous peroxidase was quenched with 1% 
v/v hydrogen peroxide in methanol after sec-
tions were cooled. Sections were washed with 
0.2% v/v Tween in Tris buffered saline (TBS) 
and blocked with 10% w/v skimmed milk for 20 
min. Sections were incubated for 30 min at 
room temperature with 1:40 rabbit anti-GFAP 
(Biogenex, San Ramon, CA, USA) diluted in TBS 
with 1% v/v normal goat serum (NGS, Vector, 
USA, S1000). The sections were washed in TBS 
and incubated for 30 min with 1:200 biotinyl-
ated goat anti-rabbit antibodies (Vector, USA, 
BA1000) in 1% NGS/TBS at room temperature. 
The slides were washed, incubated with avidin 
biotin peroxidase complex (ABC Vectastain, 
Vector, USA, PK4000) in TBS for 30 min at 
room temperature, and visualized with diamino-
benzidine (DAB, DAKO, K3468). Slides were 
counterstained with hematoxylin before perma-
nent mounting with Vectamount (Vector, USA).

Quantitative immunohistochemistry analysis

In each group, multiple random fields were 
examined for a total of 100 microvessels. From 
each specimen, color images of 640 × 480 
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pixel resolution (at 400X) were acquired with a 
light microscope (BX51, Olympus®) and digital 
camera (DP70, Olympus®). GFAP expression, 
microvessel labeling, was then analyzed by 
semi-quantitative digitalized image analysis 
using analySIS FIVE, Olympus® as described by 
Kaczmarek et al. and Ampawong et al. [18, 19]. 
Color images were adjusted, turning the color 
of non-interesting area to white by replace color 
mode. Adjusted images were converted to grey-
scale images. Then, the area of positive reac-

tion was estimated by the number of black pix-
els. Thus, the area fraction of the positive 
reaction was determined as the percentage of 
black pixels in the binary image.

All of the obvious astrocytic cells were included 
for counting. The measurement was applied to 
all areas to determine the number of astrocytic 
clusters that could be classified as small (astro-
cytic number < 5 cells/cluster) and large clus-
ter (astrocytic number ≥ 5 cells/cluster).

Figure 1. Immunohistochemistry of perivascular 
GFAP (A & C: CM, B & D: non-CM) and large cluster 
of astrocytes (E).
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Electron microscopy

After euthanizing the mice with an overdose 
inhalation of Isoflurane® on day 7 post inocula-
tion, specimens were collected from four areas 
of the brain: cerebellum, cerebrum, brainstem, 
and the remaining area which composed of 
midbrain or colliculum hippocampus, and dien-
cephalons. Tissues were then fixed in 2% glu-
taraldehyde in 0.1 M phosphate buffer, pH 7.4, 
post-fixation with 1% osmium tetroxide in 0.1 M 
phosphate buffer, pH 7.4, dehydrated in a grad-
ed ethanol series, infiltrated with propylene 
oxide, and embedded in Spurr’s epoxy resin 
(TABB Laboratories, Reading, UK). Thin sec-
tions were cut with glass knives on an ultrami-
crotome. Copper grids (200-mesh squares) 
(Agar Scientific, Stansted, UK) were used to col-
lect the thin sections, which were stained with 

uranyl acetate and lead citrate before electron 
microscopic examination [20].

Quantitative ultrastructural analysis

Qualitative examinations of pathologic features 
from these samples were performed as 
described in Pongponratn et al. [20]. In the peri-
vascular space, the presence of perivascular 
edema, astroglial dilatation, and multivesicular 
and lamellar bodies in the astrocytes were 
examined. Within the vessels, the nature and 
severity of the following changes were recorded 
by counting the vessels showing sequestered 
white blood cells (WBCs), parasitized red blood 
cells (PRBCs), and platelets. Endothelial cells 
were assessed for pseudopodia formation, cell 
swelling, vacuolation, changes in organelle 
structure, and intercellular bridges. These fea-

Figure 2. Electron micrographs of perivascular edema and astroglial dilatation. Perivascular edema (★), A: CM and 
B: non-CM. Astroglial dilatation (*), C: CM and D: non-CM, microvessicular body (►).
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tures were examined in four different areas of 
the brain per group. Electron micrographs were 
taken of relevant areas.

Statistical analysis

Data analysis used IBM® SPSS® statistical soft-
ware version 20. To determine the level of GFAP 
expression in each group, Kruskal-Wallis test 
was used. Pearson’s correlation test was used 
to determine any correlations among variables 
of interest. Chi-square test with Yates’ correc-
tion and Fisher’s exact test were used to com-
pare between four different brain areas of 
CM-susceptible mice (CM) and CM-non suscep-
tible mice (non-CM).

Results

GFAP

The perivascular GFAP expression pattern in 
CM mice (Figure 1A and 1C) was significantly 
higher than in non-CM mice (Figure 1B and 1D) 
(13.50 ± 1.57 and 9.75 ± 1.00, respectively) 
and the number of small astrogliosis clusters 
were identical in both groups (5.0 ± 4.00 and 
5.1 ± 3.00). However the number of large astro-
gliosis clusters (Figure 1E) in the CM mice was 
significantly higher than in the non-CM mice 
(6.2 ± 2.00 and 4.2 ± 3.50). There was a posi-
tive correlation between perivascular GFAP 

and 0.020, respectively. Perivascular edema in 
all investigated areas was significantly more 
pronounced in CM than non-CM mice (Table 1), 
while astroglial dilatation was only significantly 
higher in cerebrum and brain stem (Table 2). 
There was a positive correlation between the 
presence of perivascular space and astroglial 
dilatation to CM (Pearson’s correlation coeffi-
cient 0.344 and 0.108: p-value 0.000 and 
0.017 respectively).

The fine morphological structure of secondary 
lysosome which may indicate severity brain 
damage could be identified by multivesicular 
and lamellar bodies in their advanced stages 
(Figure 3A and 3B). The numbers of secondary 
lysosomes among the groups of CM and non-
CM were significantly different. Multivesicular 
bodies in the non-CM mice (27.3%; 68/249) 
were significantly higher than in the CM mice 
(17.5%; 42/240), in contrast with, number of 
lamellar bodies, which was significantly greater 
in the CM mice (18.8%; 45/240) than the non-
CM mice (9.6%; 24/249). The features of the 
secondary lysosomes in each area of the brain 
are detailed in Tables 3 and 4. There is a posi-
tive correlation between the presence of lamel-
lar bodies to CM (Pearson’s correlation coeffi-
cient 0.131: p-value 0.004), while there was a 
negative correlation between the presence of 
multivesicular bodies and CM (Pearson’s corre-
lation coefficient -0.117: p-value 0.009).

Table 1. Presence of perivascular edema in four different brain 
areas comparing CM and non-CM groups

Brain area CM:
% (+ve/vessel counted)

Non-CM:
% (+ve/vessel counted) P value

Cerebrum 42.6 (40/94) 31.3 (20/64) 0.049
Cerebellum 69.4 (43/62) 15.9 (11/69) 0.000
Brain stem 65.7 (23/35) 17.6 (12/68) 0.000
Remaining 49.0 (24/49) 18.8 (9/48) 0.000
Total 54.2 (130/240) 20.8 (52/249) 0.000

Table 2. Presence of astroglial dilatation in four different brain 
areas comparing CM and non-CM groups

Brain area CM:
% (+ve/vessel counted)

Non-CM:
% (+ve/vessel counted) P value

Cerebrum 57.4 (54/94) 18.8 (12/64) 0.000 
Cerebellum 22.6 (14/62) 24.6 (17/69) 0.839 
Brain stem 54.3 (19/35) 22.1 (15/68) 0.002 
Remaining 16.3 (8/49) 60.4 (29/48) 0.000 
Total 39.5 (95/240) 29.3 (73/249) 0.020

expression and the presence of 
large astrogliosis clusters to CM 
with Pearson’s correlation coef-
ficient 0.239 and 0.312 at p-val-
ues 0.001 and 0.004.

Fine morphology in the perivas-
cular space

Brain edema can be identified by 
perivascular space and astrogli-
al dilatation (Figure 2) which 
were frequently observed in this 
study. The results showed that 
perivascular space and astrogli-
al dilatation in the brains of CM 
mice (54.2%; 130/240 vessels, 
39.5%; 95/240 vessels, respec-
tively) were significantly higher 
than in those from non-CM mice 
(20.8%; 52/249 vessels and 
29.3%; 73/249 vessels, respec-
tively), with p-values of 0.000 
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Figure 3. Fine morphological structure of secondary lysosome. A: A multivesicular body is round to oval contain-
ing more small vesicles and limited by a double membrane. B: A lamellar body is round to oval containing lots of 
thin electron dense lamellae and limited by a double membrane. Fine morphological structure of endothelial cell 
changes: C & D: (P = pseudopodia formation, R = erythrocyte, V = vacuolation, ES = endothelial cell swelling). Fine 
morphological structure of platelets in brain microvessel: E & F: E: The vascular occluded by red blood cells and 
platelets with the presence of perivascular edema. F: Evidence of platelets in the cerebral microvessels. (R = eryth-
rocyte, Plt = platelet, PRBC = parasitized red blood cell).
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Fine morphology within vessels

The cerebral endothelial cell changes in the 
PbA model included pseudopodia formation, 
endothelial cell swelling and vacuolization 
(Figure 3C and 3D). There was no significant 
difference between CM (23.8%; 57/240, 17.1%; 
41/240, 14.2%; 34/240, respectively) and 
non-CM mice (28.5%; 71/249, 20.5%; 51/249, 
20.9%; 34/249, respectively). The presence of 
those endothelial cell changes in each brain 
area was also identical in both groups.

Despite the rare evidence of platelets in the 
examined brains, the presence of platelets in 
the brain microvessels (Figure 3E and 3F) in 
the CM group (6.7%; 16/240) showed a signifi-
cantly higher trend than in the non-CM mice 
(1.6%; 4/249). The significantly higher numbers 
of platelets were found in the cerebrums of the 
CM mice. There was a positive correlation 
between the presence of platelets and CM 
(Pearson’s correlation coefficient 0.128: p-val-
ue 0.005).

The presence of PRBCs within cerebral 
microvessels quantified by electron microscopy 
showed that non-CM mice (32.1%; 80/249) 
exhibited significantly higher levels than CM 
mice (15.8%; 38/240), and this corresponded 
with percentage of parasitemia on day 6 post 
infection, when non-CM and CM mice were 

(especially WBCs, PRBCs, and platelets) adher-
ence to the vascular endothelium, ischemia 
and hypoxia, loss of vascular cell integrity, hem-
orrhage, neuronal damage, edema at the termi-
nal stage, focal demyelination, astrocyte 
response (redistribution, astrogliosis, activa-
tion), microglia and perivascular macrophage 
response. Electron and light microscopic stud-
ies have shown that both infected groups are 
characterized by widespread cerebral endothe-
lial activation, such as swelling, pseudopodia 
and vacuolization, together with lesions rang-
ing from isolated damage to necrosis.

The role of cerebral edema in the pathogenesis 
of CM has been debated for decades, and sev-
eral techniques has been used, including Evans 
blue dye leakage, MRI (water diffusion coeffi-
cient, imaging, perfusion, angiography, spec-
troscopy), CT scan, fine morphological studies 
(perivascular vacuolization, astrocytic swell-
ing), immunohistopathological studies (macro-
phage associated with perivascular edema; 
CD68, tight junction associated proteins; occlu-
din, claudin, JAM, ZO-1, ZO-2, ZO-3, reactive 
gliosis and GFAP) [4, 12, 20, 25-31]. This study 
determines of perivascular spaces and astro-
glial dilatation and their correlation with the 
severity of brain edema. The results show that 
brain edema was significantly greater in CM 
than in non-CM mice. The distribution of brain 
edema was observed throughout the brain, 

Table 3. Presence of multivesicular bodies in 4 different parts 
comparing CM and non-CM groups

Brain area CM:
% (+ve/vessel counted)

Non-CM:
% (+ve/vessel counted) P value

Cerebrum 25.5 (24/94) 17.2 (11/64) 0.246 
Cerebellum 21.0 (13/62) 18.8 (13/69) 0.828 
Brain stem 8.6 (3/35) 22.1 (15/68) 0.106 
Remaining 4.1 (2/49) 60.4 (29/48) 0.000 
Total 17.5 (42/240) 27.3 (68/249) 0.006

Table 4. Presence of lamellar bodies in 4 different parts compar-
ing CM and non-CM groups

Brain area
CM:

% (+ve/vessel counted)
Non-CM:

% (+ve/vessel counted) P value

Cerebrum 23.4 (22/94) 7.8 (5/64) 0.010 
Cerebellum 27.4 (17/62) 4.3 (3/69) 0.000 
Brain stem 8.6 (3/35) 7.4 (5/68) 1.000 
Remaining 6.1 (3/49) 22.9 (11/48) 0.022 
Total 18.8 (45/240) 9.6 (24/249) 0.003

20.35% and 11.68%, respective-
ly. PRBCs are devoid of knobs on 
their surfaces (Figure 4). The dis-
tribution of PRBCs in all parts of 
the brain showed a higher trend 
among all mice of non-CM group.

White blood cell accumulation in 
the cerebral microvessels (Figure 
5) was quantified by electron 
microscopy, it was found that, 
the presence of WBC per vessel 
was no identical in both CM and 
non-CM mice, without any inter-
action to other cells.

Discussion

All pathologic descriptions of 
murine CM previously conducted 
[1, 2, 16, 21-24] show conges-
tion of the microvessels with 
occluded blood components 
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particularly the cerebrum, brain stem, and dien-
cephalon, in both infected groups. Fine mor-
phological analysis of brain edema regarding 
the perivascular space and astroglial dilatation 
confirmed the presence of vasogenic and cyto-
genic edema. This study also found a positive 
correlation between the presence of perivascu-
lar edema and astroglial dilatation to CM. These 
data supports the claim that both cytogenic 
and vasogenic edema are crucial features in 
experimental CM.

Cytotoxic edema involves an influx of extracel-
lular water into the intracellular compartment 
leading to cell swelling and irreversible cell 
damage. It results from anoxic depolarization 
subsequent to the failure of Na+/K+ ATPases to 
maintain membrane potential after ATP loss 
[32-34]. It is not considered responsible for 
brain swelling, because it does not lead to a 
change in total water content. It is character-
ized by reduced apparent diffusion coefficient 
(ADC) value because of con-strained diffusive 
motion in the extracellular compartment and by 

impaired energetic metabolism and reduced 
pH [35]. Vasogenic edema is characterized by 
expansion of the extracellular compartment 
after BBB breakdown and relocation of intra-
vascular water into the extravascular compart-
ment. Inflammation is one of the possible 
mechanisms at the origin of BBB disruption. 
The result of Penet et al. demonstrate that BBB 
lesions, brain swelling, and ventricular enlarge-
ment play key roles in the development of the 
cerebral syndrome and confirm the existence of 
a vasogenic edema [4].

An important role of astrocytes in the normal 
central nervous system (CNS) is to induce and 
maintain BBB properties in the vascular endo-
thelium [36]. Astrocytes also make close con-
tact with neuronal synapses and are thought to 
be intimately involved in maintaining acid-base, 
electrolyte and neurotransmitter balance [37, 
38]. Reactive astrogliosis, which includes an 
increase in astrocyte size, is actually a hyper-
trophy of the cells involving increased synthesis 
of glial filaments and other intracellular constit-

Figure 4. Parasitized red blood cells 
(PRBCs) in a cerebral microvessel. A: 
Fine morphological structure of PRBCs 
occluded in the cerebral microvesssel. 
B: The PRBCs are devoid of knob on 
their surface. (EC = endothelial cell, R 
= erythrocyte, PRBC = parasitized red 
blood cell).



Brain edema in experimental cerebral malaria

2064	 Int J Clin Exp Pathol 2014;7(5):2056-2067

uents associated with increase in size and is 
usually seen as a delayed response (1-5 days) 
to injury [14]. This study demonstrates that CM 
mice had higher GFAP expression in the peri-
vascular area and more large astrocyte clus-
ters than in non-CM mice. Moreover, the corre-
lation between perivascular GFAP expression 
and the presence of large astrogliosis clusters 
to CM was positive. These may be an adaptive 
response of the astrocytes in pathogenesis of 
CM.

Astroglial swelling during experimental isch-
emia and trauma in animals has been studied 
in considerable detail, and is recognized by a 
pale and watery cytoplasm under electron 
microscopic analysis [12]. These correspond to 

the fine morphological features of astroglial 
dilatation, multivesicular bodies, and lamellar 
bodies in the astrocyte, which demonstrated 
that the degenerative level of astrocytes was 
significantly higher in CM than non-CM mice.

The accumulation of P. berghei-infected red 
blood cells in the brain is crucial for the devel-
opment of CM in C57BL/6 mice, susceptible 
strain for CM [39]. PRBCs also accumulate in 
the brains of PbA-infected CBA/CaH mice, 
although this is less marked than in other 
murine models [2]. Therefore PRBCs them-
selves are an important factor for the cascade 
of pathological processes in CM.

In addition to PRBC and leukocyte accumula-
tion in the brain microvasculature, platelets 

Figure 5. Fine morphological structure of white blood cells (WBCs) accumulation in cerebral microvessel. A: The 
microvascular occluded with WBCs, exhibiting the area of endothelial damaged (arrow) and surrounded with hem-
orrhagic area, B: WBCs deposited in perivascular area, C, D: The microvessel accumulated with WBCs, RBCs, and 
PRBCs. (WBC = white blood cell, R = erythrocyte, PRBC = parasitized red blood cell).
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also seem to contribute to neurovascular 
lesions in murine CM. Wassmer et al. reviewed 
four lines of evidence supporting platelet 
involvement in murine CM [40]. (i) electron 
microscopic analysis when of CM disclosed 
platelets in the lumen of brain venules, between 
sequestered monocytes and PRBCs (ii) plate-
lets sequestered in the brain during CM but not 
in non-CM mice (iii) in vivo treatment with a 
monoclonal antibody to leukocyte function-
associated antigen-1 (which is expressed on 
platelets) selectively abrogates the cerebral 
sequestration of platelets, and this correlates 
with prevention of CM, (iv) malaria-infected ani-
mals rendered thrombocytopenic are signifi-
cantly protected against CM. In this study, 
although fine morphological analysis showed 
that the accumulation of platelets in the brain 
microvessels is significantly more important in 
CM than in non-CM mice, interestingly the 
occurrence of platelets in the brain microves-
sels was quite rare, at 16/240 and 4/249 (+ve/
vessels) in CM and non-CM mice, respectively. 
A positive correlation between the presence of 
platelets and CM was found. This supports the 
idea that platelets play an important role in 
experimental CM, by acting as effectors of neu-
rovascular lesions as previously described [40, 
41].

In conclusion, transmission electron microsco-
py and immunohistochemistry analysis of the 
rodent malaria model revealed a pathological 
alteration particularly brain edema. Brain ede- 
ma and GFAP expression correlate closely with 
rodent cerebral malaria model. Perivascular 
space and astroglial dilatation are evidence 
confirming of vasogenic edema and cytogenic 
edema respectively. The presences of lamellar 
bodies in the astrocyte demonstrate the degen-
erative level of astrocytes. All morphological 
studies further support the prominent role for 
CM pathogenesis giving a better understanding 
of the relationship between brain edema, astro-
cytic activity, and CM.
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