
Int J Clin Exp Pathol 2014;7(5):1997-2005
www.ijcep.com /ISSN:1936-2625/IJCEP1401045

Original Article 
Spatiotemporal expression of Wnt5a during the  
development of the striated muscle complex  
in rats with anorectal malformations 

Jie Mi1, Dong Chen1, Xiantan Ren1, Huimin Jia1, Hong Gao2, Weilin Wang1

1Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Liaoning, China; 2Key Labo-
ratory of Congenital Malformations, Ministry of Public Health, Shengjing Hospital of China Medical University, 
Shenyang, Liaoning, China

Received January 14, 2014; Accepted March 28, 2014; Epub April 15, 2014; Published May 1, 2014 

Abstract: Fecal incontinence and constipation after procedures for anorectal malformations (ARMs) are closely 
related to the maldevelopment of the striated muscle complex (SMC). Previous studies have demonstrated that 
myogenic regulatory factors (MRFs) play a significant role in muscle development. Wnt signal pathway is extremely 
important for MRFs regulation. This study was designed to investigate the spatiotemporal expression pattern of 
Wnt5a in SMC in ARMs rat embryos. Materials and Methods: Anorectal malformation embryos were induced by eth-
ylene thiourea on embryonic day 10 (E10). Expression levels of protein and mRNA of Wnt5a were confirmed by im-
munohistochemistry staining, western blot and quantitative real-time PCR (qRT-PCR) between normal rat embryos 
and embryos with ARMs. Results: Immunostaining revealed that, on embryonic day 17 (E17), the Wnt5a protein was 
initially expressed in the SMC in normal embryos. With the growth of pregnancy, the positive staining cells gradually 
increased. The same time-dependent changes of Wnt5a protein were detected in ARMs embryos. Besides, immu-
nostaining showed that Wnt5a had a significant increase in normal embryos compared with ARMs embryos. Simi-
larly, in Western blot and qRT-PCR, the higher expression of Wnt5a protein and mRNA were remarkable in normal 
embryos during the SMC development, relatively. Conclusion: Our study demonstrated that the downregulation of 
Wnt5a at the time of SMC development might partly be related to the dysplasia of SMC in ARMs.
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Introduction 

Anorectal malformations comprise a variety of 
congenital disorders in which the anus fails to 
open onto the perineum, occurring in approxi-
mately 1 per 5000 live births [1]. In spite of 
numerous technical advances in the surgical 
treatment of ARMs, some patients with inter-
mediate-type and high-type ARMs continue to 
have postoperative anal dysfunctions [2-6]. 
Poor postoperative anorectal function is sub-
ject to many factors, such as the abnormality of 
innervation of pelvic floor musculature (PMF), 
maldeveloped PMF, enteric nervous system 
developmental disorders and spinal cord 
anomalies [7-12].

Previous studies have indicated that various 
changes in striated muscle complex (SMC) 
which also influences defecation function are 

observed in intermediate-type and high-type 
ARMs [13-15]. And the morphological changes 
of SMC take place after the occurrence of 
abnormal anorectum in rats with ARMs [16]. 
Developmental studies have given insight into 
the origins of skeletal muscle, however, the 
molecular characterization of muscle formation 
remains poorly determined. Previous studies 
have demonstrated that the muscle regulatory 
factors (MRFs) including MyoD, Myf5, Mrf4, and 
myogenin play a significant role in muscle regu-
lation [17]. Wnt signal pathway is extremely 
important for MRFs regulation. And the regula-
tion function has developed from initial single 
linear regulation to the current network-like 
modulation [18-20].

Wnt5a, a significant member of Wnt family, has 
been implicated in the regulation of develop-
ment, proliferation, and cell differentiation [21-
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26]. Besides, it was revealed that Wnt5a played 
an important role in human hindgut and the 
down regulation of Wnt5a might partly be relat-
ed to the maldevelopment of terminal hindgut 
in ARMs [27, 28]. However, the pattern of 
expression of Wnt5a has not been described in 
SMC development in ARMs ever before. To 
determine the pattern of expression of Wnt5a 
and the possible role of Wnt5a in SMC develop-
ment, in the current study, we analyzed the dis-
tribution of Wnt5a protein and mRNA in the rat 
SMC at different developmental stages.

Materials and methods

Animal model and tissue collection

Ethical approval was obtained from the China 
Medical University Animal Ethics Committee 
prior to the start of the study. Eighty time-mat-
ed pregnant Wistar rats were gavage fed a sin-
gle dose of either 125 mg/kg of 1% ethylene 
thiourea (ETU; 2-imidazolidinethione, Aldrich Che- 
mical Co., Germany) or an equal dose of saline 
on E10 (E0-sperm in vaginal smear after over-
night mating). Then embryos can be divided 
into normal and ARMs group. The embryos 
were harvested via cesarean delivery on E16, 
E17, E19 and E21, because the SMC on E16 is 
invisible under the dissection microscope, 
embryos only after E17 were used in Western 
blot and qRT-PCR analysis. For hematoxylin and 
eosin staining and immunohistochemical stud-
ies, the embryos were fixed overnight in 4% 
paraformaldehyde/0.1 mol/L phosphate buff-
ered saline at 4°C, then embedded in paraffin 
in a routine manner. Embryos were sectioned 
sagittally at 4 μm thickness. For Western blot 
and qRT-PCR analysis, the SMC were dissected 
under magnification and immediately frozen 
and stored at -80°C until use. The SMC are 
thinner in female fetal rats; therefore, only male 
fetuses were selected in this study. We deter-
mined the sex of rats by observing the gonad 
under the light microscope. In detail, the testis 
that has a characteristic “striped” appearance 
is different from the ovary that has a character-
istic “spotty” appearance under the light mic- 
roscope. 

Immunohistochemical staining

Immunohistochemical stainings were perfor- 
med as described previously [29]. For antigen 
retrieval, slides were incubated in boiling 0.01 

mol/L citrate buffer (pH 6.0) for 10 minutes, 
cooled at room temperature, blocking endoge-
nous peroxidase activity with 3% H2O2, and 
then 10% normal goat serum was applied to 
prevent nonspecific binding sites. The sections 
were incubated overnight at 4°C with the pri-
mary antibody at dilutions of 1:100 for Wnt5a 
(Rabbit polyclonal, Abcam Co. code ab72583). 
After the primary antibody was washed off, the 
sections were incubated with biotinylated goat 
antirabbit IgG (1:200 dilution; Santa Cruz 
Biotechnology, Santa Cruz, Calif) for 15 min-
utes at room temperature. Immunoreactivity 
was visualized by 3’,3-diaminobezidine (Sigma 
Chemical Co., St. Louis, MO, USA) reaction and 
then the sections were counterstained with 
hematoxylin. The specimens were mounted 
and photographed using a digitized microscope 
camera (Nikon E800, Japan). Negative controls 
were performed by either omitting the primary 
or secondary antibodies or incubating with 
equivalent concentrations of nonimmune goat 
antiserum.

Protein preparation and western blot

SMC samples collected from normal and ARMs 
rat embryos were sonicated in ddH2O contain-
ing protease inhibitors. Protein extracts (50 μg) 
were heated at 90°C for 10 min and size frac-
tionated on Bis-Tris sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS–
PAGE) gels (Invitrogen, Carlsbad, CA, USA). 
Protein samples were denatured, separated by 
SDS/PAGE, and transferred to polyvinylidene 
fluoride membranes (Millipore, Billerica, MA, 
USA), blocked with 5% fat-free milk in Tris-
buffered saline (1 h, RT) and incubated over-
night at 4°C in primary antibody against Wnt5a 
(diluted 1:500). The membrane was incubated 
with secondary antibody (diluted 1:2,000), and 
immunostained bands were detected with a 
Proto Blot II AP System with a stabilized sub-
strate (Promega). Protein levels in each lane 
were normalized to those of β-actin as an inter-
nal standard.

RNA extraction, reverse transcription and 
quantitative real-time PCR (qRT-PCR)

Approximate 100 mg tissues from normal and 
ARMs specimens were used for total RNA 
extraction using RNA extraction reagent TRIZOL 
(Invitrogen Life Technologies), according to 
manufacturer’s instructions. The harvested 
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RNA was diluted to a concentration of 1 μg/μl, 
aliquoted and stored at -80 temperature. Single 
strand cDNA was prepared with SYBR Prime 
Script RT-PCR Kit (Takara, Dalian, China) per 
manufacturers’ instructions. The housekeeping 
gene β-actin (Takara, code D3783) was used 
as an endogenous control. The primers of 
Wnt5a used for qRT-PCR were as follows: sense 
5’AGT TTC ACT GGT GCT GCT A-3’, and anti-
sense 5’-ATA TGT GGG TCC TGG GAG-3’. The 
qRT-PCR was performed with a 12.5 μl reaction 
system in triplicate for each specimen in the 
presence of SYBR green PCR Master mix 
(Takara Biotechnology Co.) in a Lightcycler 
(Roche Molecular Biochemicals, Co.). The reac-
tion program was: 5 min pre-denaturation at 
95°C and 45 cycles of 5 s of denaturation at 
95°C, 30 s of annealing at 55°C. After the ter-
mination of qRT-PCR, the production was ana-
lyzed by the Lightcyclersystem automatically. 
The amplification process was followed by a 
melting curve analysis and CT value was record-
ed. The average CT value was the extreme CT 
value of the sample. The expression difference 
of the gene was calculated by the 2-∆∆ct method 
[30].

Statistical analysis

The Statistical Program for Social Sciences, 
version 13.0 (SPSS, Chicago, IL), was used for 
statistical analysis. A t test was used to com-
pare the Wnt5a levels between the normal and 
ARM group. All results were expressed as 
means ± standard deviation (S.D.), where P val-
ues less than 0.05 were considered statistical-
ly significant.

Results

General observation

In this study, malformations were not observed 
in the 168 male normal embryos. A total of 212 
ARMs embryos were obtained from 416 ETU-
treated male rat embryos. Among the ETU-
treated embryos, none of the embryos died in 
utero. In all ETU-treated embryos, the tail was 
short or absent, and externally visible spinal 
bifida and/or meningocele could be observed 
in 14.6% (31/212) embryos. In this study, all 
specimens with anorectal malformations were 
determined by means of observing the fistula 

Figure 1. The rectourethral fistula on E17 
(A), E19 (B), E21 (C) in ARMs rats (H&E 
staining, original magnification×40). R in-
dicates rectum; U, urethra; P, pubis; S, sa-
crum. The black arrow indicated fistula.
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between the rectum and the urethra in sagittal 
planes on different embryonic days under the 
light microscope, respectively (Figure 1). The 
incidence of ARMs in embryos of the ETU-
treated group on E16 to E21 was 62.8%. Both 
ARMs and neurologic defect could be detected 
in 4.2% (9/212) embryos. Because denerva-
tion might affect the development of SMC, 
specimens with neurologic defects were exclud-
ed [31].

Immunohistochemical results

Before immunohistochemical to Wnt5a, we 
selected slides with SMC using H&E (Figure 2). 
In normal embryos, on E16, no evidence of 
Wnt5a-positive staining was detected in SMC. 
The Wnt5a protein was initially expressed in the 
SMC on E17 (Figure 3A(a)). The number of posi-
tive staining cells increased on E19 and E21. 
Sporadic positive staining cells were mainly 

Figure 2. Embryogenesis of SMC in sagittal sections. (A-C) Indicate the normal group; (a-c) Indicate the ARMs group. 
On E17 (A and a), H&E staining, original magnification×40. On E19 (B and b), H&E staining, original magnifica-
tion×40. On E21 (C and c), H&E staining, original magnification×40. The black arrows indicate SMC, the blue arrows 
indicate the bulb of penis, and black five-pointed star indicates the bulbocavernosus muscle. R indicates rectum; 
U, urethra; P, pubis; S, sacrum.

Figure 3. Immunohistochemical staining of Wnt5a on E17. (B and b) Indicate ARMs group; no positive cells could be 
detected in SMC on E17. (A and a) Indicate the normal group; the Wnt5a protein was initially expressed in the SMC 
on E17. (A and B) Original magnification×400; (a and b) Original magnification×40. The black arrows indicate posi-
tive cells. P, pubis; S, sacrum. The region marked with a square in (a and b) is magnified in (A and B).
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localized in SMC on E19 (Figure 4A(a)). More 
and more immunoreactivity specific to Wnt5a 
was detected in SMC and bulbocavernosus 
muscle on E21 (Figure 5A(a)). Nevertheless, in 
ARMs embryos, no positive cells could be 
detected in SMC on E17 (Figure 3B(b)). Little 
Wnt5a-labeled cells were observed from E19 to 
E21 (Figures 4B(b) and 5B(b)). However, Wnt5a 
had an obvious decrease in ARMs embryos 
compared with normal ones.

Western blot analysis

The expressions of Wnt5a protein were evalu-
ated by western blotting with specific antibod-

ies in normal and ARMs SMC. Wnt5a was 
detected as an approximately 40 kDa band on 
Western blots of protein extracted from both 
the normal and ARMs specimen analyzed. Each 
protein band was normalized by a correspond-
ing β-actin band. In the normal group, the 
expression of Wnt5a gradually increased on 
E17, 19 and 21. while in ARMs group, Wnt5a 
protein expression was faint. Significant de- 
crease expression of Wnt5a protein was detect-
ed in ARMs SMC compared with the normal 
SMC in each time point (0.24 ± 0.01 versus 
0.56 ± 0.03; 0.38 ± 0.04 versus 0.82 ± 0.02; 
0.51 ± 0.03 versus 1.16 ± 0.05; respectively; 
P<0.05; Figure 6).

Figure 4. Immunohistochemical staining of Wnt5a on E19. (B and b) Indicate ARMs group; little Wnt5a-labeled cells 
were observed. (A and a) Indicate the normal group; sporadic positive staining cells were mainly localized in SMC. 
(A and B) Original magnification×400; (a and b) Original magnification×40. The black arrows indicate positive cells. 
R, rectum; U, urethra; P, pubis; S, sacrum. The region marked with a square in (a and b) is magnified in (A and B).

Figure 5. Immunohistochemical staining of Wnt5a on E21. (B and b) Indicate ARMs group; little Wnt5a-labeled 
cells were observed. (A and a) Indicate the normal group; more and more immunoreactivity specific to Wnt5a was 
detected in SMC and bulbocavernosus muscle. (A and B) Original magnification×400; (a and b) Original magnifica-
tion×40. The black arrows indicate positive cells. R, rectum; P, pubis; S, sacrum. The region marked with a square 
in (a and b) is magnified in (A and B).
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qRT-PCR analysis

The OD value of total RNA calculated by A260/
A280 was from 1.8 to 2.0. The expression level 
of Wnt5a was normalized to the mRNA level of 
β-actin from the same specimen. Consistent 
with the results of western blot analysis, signifi-
cant increase expression pattern of Wnt5a was 
detected in normal group compared to ARMs 
group in each time point. It was showed that 
the mRNA levels of Wnt5a were 1.97 fold, 2.41 
fold and 3.14 fold higher in normal group than 
those in ARMs group on E17, E19 and E21 
(P<0.05), respectively (Tables 1-3).

Discussion

SMC is one of the most important factors that 
influence postoperative defecation. Our previ-
ous study documented that in ARMs rat embry-
os, SMC shifted obviously cephalad, ventrally, 
and medianward from E18, and considerable 
connective tissue was observed among inter-
muscular bundles under high-power view [16]. 
Chen QJ et al found that dysregulation of apop-
tosis was implicated as one of the fundamental 
factors in the pathogenesis of SMC maldevel-
opment in ARMs rats [32]. However, the mecha-
nism of SMC development in ARMs still remains 
poorly understood. Previous results provided 
evidence that Wnt5a was related to develop-
ment of anorectal malformation [27, 28, 33]. 

cavernosus muscle on E21. Nevertheless, in 
ARMs embryos, only little Wnt5a staining was 
noted in these areas from E19 to E21, and the 
intensity of the immunohistochemistry of 
Wnt5a expression in the SMC is lower than in 
normal embryos. Therefore, there was relative 
spatiotemporal imbalance between the normal 
and ARMs embryos during the embryogenesis 
of the SMC. Our previous studies have demon-
strated that the critical period of SMC morpho-
genesis was from E17 to E19, and original skel-
etal muscle fibers gradually fused into mature 
skeletal muscle fibers after E19. In normal 
embryos, from E17 to E21, the expression of 
Wnt5a increased, indicating that Wnt5a was 
extremely important for the development of 
SMC. In contrast, the down expression of 
Wnt5a in ARMs embryos may affect the confor-
mation of original skeletal muscle fibers, result-
ing in the maldevelopment of SMC.

Furthermore, based on the results of Western 
blot analysis and qRT-PCR analysis, in normal 
embryos, Wnt5a expression increased greatly 
at the determinant time of SMC development 
(E17-E21), further suggesting that Wnt5a may 
plays a significant role in the development of 
the SMC. However, at the same stage, the 
expression level of Wnt5a increased slowly 
from E17 to E21 and was reduced in ARMs 
embryos compared with the normal embryos of 
the same gestational age. The results implied 

Figure 6. The expressions of Wnt5a protein were evaluated by western 
blotting in normal and ARMs SMC. Each protein band was normalized 
by a corresponding β-actin band. Significant decrease expression of 
Wnt5a protein was detected in ARMs SMC compared with the normal 
SMC in each age group. N, normal group, A, ARMs group. Results are 
presented as mean ± SD, significant differences are marked with as-
terisks (P<0.05). 

However, the functions of Wnt5a 
during SMC development when the 
ARM presented or not have not yet 
been elucidated. In this study, to 
determine the possible role of 
Wnt5a in SMC development, we 
explored the expression pattern of 
Wnt5a in the rat SMC at different 
developmental stages.

In the current study, we investigat-
ed the spatiotemporal expression 
pattern of Wnt5a during SMC de- 
velopment by immunohistochemis-
try staining, Western blot and qRT-
PCR analysis. Time and space 
dependent changes could be sh- 
own from the results of immunohis-
tochemistry. In normal group, from 
E17 to E19, sporadic positive stain-
ing cells were only localized in 
SMC. More and more positive cells 
were detected in SMC and bulbo-
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that this special down regulation of Wnt5a 
expression may affect SMC development dur-
ing the essential stage of SMC development.

The genetics of ARMs is an extremely complex 
event. Many genes may be involved in this pro-
cess including Shh, Hox and BMP4 [34-38]. Up 
to now, there are no reports concerning the sig-
nal pathways that mediate the development of 
SMC. Important signal pathways that initiate 
the expression of MRFs in regulating the devel-
opment of skeletal muscle such as Wnt, Shh 
and BMPs [39-41] may be involved in the medi-
ation of SMC development. However, the rela-
tionship between these signals and formation 
of SMC still remains to be elucidated.

The current study demonstrated that spatio-
temporal expression of Wnt5a was imbalanced 
during the development of SMC in ARMs embry-
os, suggesting that this imbalanced expression 
may contribute to the poor development of 
SMC. Combined with previous studies, we con-
clude that Wnt5a is extremely important for the 
development of terminal hindgut and SMC in 
ARMs embryos. However, this study was unable 
to substantiate whether Wnt5a was the initial 
event that lead to SMC malformation, and 
numerous signaling molecules have recently 
been shown to be involved in the different 
phases of the development of SMC. Further 
studies are required to confirm the signal path-
ways regulating SMC formation during embry-
onic development and to clarify the underlying 
molecular mechanisms mediating the malde-
velopment of SMC. Understanding these mech-
anisms may help us to establish potential ther-

apeutic interventions that could reduce skeletal 
muscle wasting and preserve physiologic fun- 
ction.
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