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Original Article 
Omega-conotoxin MVIIC attenuates neuronal apoptosis 
in vitro and improves significant recovery after spinal 
cord injury in vivo in rats 
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Abstract: Excessive accumulation of intracellular calcium is the most critical step after spinal cord injury (SCI). 
Reducing the calcium influx should result in a better recovery from SCI. Calcium channel blockers have been shown 
a great potential in reducing brain and spinal cord injury. In this study, we first tested the neuroprotective effect of 
MVIIC on slices of spinal cord subjected to ischemia evaluating cell death and caspase-3 activation. Thereafter, we 
evaluated the efficacy of MVIIC in ameliorating damage following SCI in rats, for the first time in vivo. The spinal 
cord slices subjected a pretreatment with MVIIC showed a cell protection with a reduction of dead cells in 24.34% 
and of caspase-3-specific protease activation. In the in vivo experiment, Wistar rats were subjected to extradural 
compression of the spinal cord at the T12 vertebral level using a weigh of 70 g/cm, following intralesional treatment 
with either placebo or MVIIC in different doses (15, 30 and 60 pmol) five minutes after injury. Behavioral testing 
of hindlimb function was done using the Basso Beattie Bresnahan locomotor rating scale, and revealed significant 
recovery with 15 pmol (G15) compared to other trauma groups. Also, histological bladder structural revealed sig-
nificant outcome in G15, with no morphological alterations, and anti-NeuN and TUNEL staining showed that G15 
provided neuron preservation and indicated that this group had fewer neuron cell death, similar to sham. These 
results showed the neuroprotective effects of MVIIC in in vitro and in vivo model of SCI with neuronal integrity, blad-
der and behavioral improvements.
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Introduction 

Spinal cord injury (SCI) is a leading cause of 
permanent disability in young adults. It is esti-
mated that the worldwide annual incidence of 
SCI is 15-40 cases per million of population 
[1-3].

At the time of trauma, the primary lesion leads 
to the disruption of axons, neurons, and neuro-
glia cell bodies, resulting in the interruption of 
nerve impulses. Further, start the secondary 
neurodegenerative events, which worsen the 
initial injury. Excessive accumulation of intra-
cellular calcium is a common phenomenon 

after SCI and is the most critical step in ionic 
dysregulation that generate axonal injury and 
eventual apoptosis or necrosis via an increase 
in the activation of cellular enzymes, mitochon-
drial damage, acidosis, and production of free 
radicals [4-8]. 

The neurological deficits from the SCI result in 
direct interruption of neuronal pathways imme-
diately after the mechanical event. The loss of 
motor and sensory function distal to the point 
of SCI leads to multiple health problems such 
as rashes, urinary retention, urinary tract infec-
tion, pressure sores, and respiratory and cardi-
ac dysfunction, reducing quality of life and life 
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expectancy [2, 9-13]. Bladder dysfunction has 
consistently been ranked as one of the top con-
cerns among paraplegics and quadriplegics, 
usually of higher importance than the loss of 
locomotion [14-17].

The success of SCI treatment depends on how 
efficiently the secondary injury mechanisms 
can be altered [7]. Calcium channel blockers 
(CCB) have been shown to have great potential 
in reducing brain and spinal cord injury, by pre-
venting the intense influx of this ion and, conse-
quently, the secondary injury progression [18-
22]. A wide variety of natural CCB have been 
identified with neuroactive or neuroprotective 
peptides derived from different venomous spe-
cies such as toxins from cone snail of the genus 
Conus, also called conotoxins [23-27].

Omega-conotoxin MVIIC (MVIIC) is a member of 
the CCB toxin family, constituted by 26 amino-
acids [28]. It inhibits, selectively, types N 
(Cav2.1) and P/Q (Cav2.2) voltage-dependent 
calcium channels (VDCC) that are essential in 
the release of neurotransmitters related to the 
development of secondary injury [29-32]. In 
recent years, it has been shown that the calci-
um influx and glutamate release [33, 34] can 
be significantly reduced through blockade of 
VDCC in several in vitro models of brain isch-
emia [30, 35-37] and spinal injury [38-40]. 
Thus, these data suggest a potential role of 
MVIIC in preventing secondary injury. The aim 
of this study was to determine the neuroprocte-
tive effect of MVIIC following SCI through evalu-
ation of neuronal and bladder preservation, 
neuronal cell death, and clinical recovery.

Materials and methods

In vitro experiment

Rat spinal cord preparation

The experiment was performed in fifteen male 
Wistar rats, weighting 200 to 250 g, in accor-
dance with the guidelines of Federal University 
of Minas Gerais Animal Care and Use 
Committee. Spinal cords were carefully dissect-
ed out after guillotine decapitation by hydrauli-
cally extrusion as previously described [41]. 
Briefly, the tip of a 20 ml syringe with 10 ml of 
cold (4°C) artificial cerebrospinal fluid (ACSF) 
(NaCl 127 mmol/L; KCl 2.0 mmol/L; NaHCO3 
26.0 mmol/L; MgSO4 2.0 mmol/L; CaCl2 2.0 
mmol/L; KH2PO4 1.2 mmol/L; HEPES: 13.0 
mmol/L; pH 7.4) and glucose (10 mM) (ACSF-

10) was attached to the caudal opening of the 
vertebral canal. The spinal cord was extruded 
from the end of the vertebral canal by applying 
pressure on the syringe. The isolated spinal 
cord was then incubated in a standard ACSF at 
4°C and the piamater and nerve roots were 
removed. The lumbosacral spinal cord was 
quickly cut approximately to 400 µm thick 
transverse slices by cutter tissues (McIlwain 
Tissue Chopper, Brinkman Instruments, UK), 
and reported to the chamber perfusion (Brandel 
Suprafusion System SF-12, Gaithersburg, MD, 
USA) for subsequent procedures. 

Perfusion chamber procedures and treatment

The slices were placed into wheels containing 
ACSF completely submerged and superfused at 
a rate of 0.5 ml/min with ACSF, that was satu-
rated with 95% O2 and 5% CO2 for 90 minutes to 
recovery of mechanical dissection trauma. 
After preincubation in ACSF, spinal cord slices 
were subject to the following conditions: SHAM 
group: perfusion in ACSF-10 and 95% O2 e 5% 
CO2 throughout the experiment; ISCHEMIA 
group: the ischemia was induced by ACSF with 
oxygen/glucose (4 mM) deprivation (ASCF-4) 
and continuously gassed with 95% N2 and 5% 
CO2 for 45 minutes; MVIIC group:  the pretreat-
ment was done with ACSF-10 and 95% O2 e 5% 
CO2 and MVIIC (1 µM) for 30 minutes followed 
by ACSF with oxygen/glucose deprivation and 
continuously gassed with 95% N2 and 5% CO2 
for 45 minutes. Consecutively, the in vitro reox-
ygenation was induced by the incubation of spi-
nal cord slices in the ACSF containing glucose 
and continuously saturated with 95% O2 and 
5% CO2 for 4 hours.

Quantification of dead cells

Using Apotome microscope, dead cell counting 
was performed based on the membrane-imper-
meant viability indicator ethidium homodimer-1 
(EthH). This high-affinity nucleic-acid stain 
binds DNA of dead cells and emits red 
fluorescence. Spinal cord slices were incubated 
for 30 min at room temperature in 2 mM EthH-1 
and ACSF (3 µL EthH : 1 ml ACSF). After wash-
ing the slices in ACSF solution for 15 minutes, it 
was examined under a fluorescent microscope, 
evaluating the spinal cord ventral horn, and 
cells were counted using the counting tool of 
Image J (Image Processing and analysis in JAVA, 
USA). Data were expressed as dead cells per 
field ± SEM (n = 5).
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Real time quantitative PCR (qRT-PCR)

The relative quantification of the capase-3 
gene expression in the spinal cord slices were 
determined as mean ± SEM for each experi-
mental group (n = 3). The spinal cord slices 
were flash-frozen in liquid nitrogen, and the 
total mRNA was extracted by adding the Trizol 
reagent (Gibco) according to the manufactur-
er’s instructions. One microgram of RNA was 
subjected to cDNA synthesis by using a 
SuperScript III Platinum Two-Step qPCR kit with 
SYBR Green (Invitrogen). The qRT-PCR reac-
tions were conducted in a Smart Cycler II ther-
mocycler (Cepheid Inc.). The one step qRT-PCR 
amplification started with reverse transcription 
for 120 s at 50°C, followed by PCR with the fol-
lowing parameters: 45 cycles of 15 s at 95°C 
for denaturation, 60 s at 60°C for annealing, 
60 s at 75°C for extension and 10 minutes at 
75°C to the end of the reaction. At the end of 
each run, fluorescence data were analyzed to 
obtain cycle threshold (CT) values. Gene expres-
sion was calculated using the 2-ΔΔCt method, 
where the values from the samples were aver-
aged and calibrated in relation to β-actin CT 
values. The primer for the rat genes was as fol-
low: sense 5’-TGGAGGAGGCTGACCGGCAA-3’, 
antisense 5’-CTCTGTACCTCGGCAGGCCTGAAT- 
3’ for caspase-3; and sense 5’-GCGTCCACCCG 
CGAGTACAA-3’, antisense 5’-ACATGCCGGAGCC 
GTTGTCG-3’for β-actin.

In vivo experiment

Housing and surgery

Thirty-six adult, male Wistar rats weighting 400 
to 450 g were randomly distributed into six 
groups. Rats were housed in a controlled envi-
ronment and provided with commercial rodent 
food and water ad libitum. This study was car-
ried out in strict accordance with the recom-
mendations in the Guide for the Care and Use 
of Laboratory Animals of the National Institute 
of Health. The protocol was approved by the 
Committee on the Ethics of Animal Experiments 
of the Federal University of Minas Gerais 
(CETEA/UFMG, protocol no 075/10). All surgery 
was performed under isoflurane anesthesia, 
and all efforts were made to minimize 
suffering.

Animals were premedicated with tramadol chlo-
ride (4 mg/kg, subcutaneously), and anesthe-
sia was induced and maintained with isoflurane 

in a non-rebreathing circuit, through a face-
mask. The animals were positioned in a stereo-
tactic apparatus, received prophylactic antibi-
otic with cephalotin (60 mg/kg, subcutaneous-
ly) and then, prepared for asseptic surgery. An 
incision was made in the dorsal midline skin 
and subcutaneous tissue extending from T8 to 
L1, and the muscle and tissue overlying the spi-
nal column was blunt dissected away revealing 
the laminae. Using the spiny process of T13 as 
a landmark, laminectomy of T12 was performed 
with a pneumatic drill and the lamina was care-
fully removed to expose the spinal cord. 
Extradural compression of the spinal cord at 
the vertebral level of T12 was achieved as pre-
viously described [16, 21, 42] for five minutes, 
using a weigh of 70 g/cm. Five minutes later, an 
intralesional injection was performed accord-
ing to the experimental group. The incision was 
closed in two layers and the animals were 
allowed to recover from anesthesia in a warmed 
(37°C) box. 

Post-operative care procedures involved manu-
al expression of the bladder, three times a day, 
tramadol chloride (2 mg/kg, orally, every 8 
hours) for three days, and cephalexin (30 mg/
kg, orally, twice daily) for five days.

Pharmacological treatment of animals

Five minutes after injury, an intralesional appli-
cation of 2 µL of treatment was delivered into 
the injury center using a Hamilton microsyringe, 
as previously described [43]. The animals were 
randomly distributed into six groups, with six 
rats each, according to the treatment protocol: 
sham-operated (sham), placebo treatment with 
water for injection (PLA), 15 pmol MVIIC (G15), 
30 pmol MVIIC (G30), and 60 pmol MVIIC (G60). 
For eight days, experiments focused on behav-
ioral recovery. All animals were euthanized at 
Day 8 following SCI. Behavioral and histopatho-
logical evaluations were carried out by investi-
gators who were blind to the experimental 
conditions. 

Open field evaluation

Beginning three days prior to SCI, animals were 
allowed to adapt to the open field arena for 
behavioral testing. Rats were exposed to the 
open field prior to the surgery and every day for 
seven days after trauma. The hindlimb function 
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was assessed using the Basso Beattie 
Bresnahan (BBB) locomotor rating scale [44]. 
Test sessions were four minutes in duration 
and rats were tested once a day.

Histological analysis of tissue injury

On Day 8 after surgery, the rats were deeply 
anesthetized with an overdose of sodium thio-
pental (100 mg/kg), intraperitoneally. The ani-
mals were perfused with 300 ml 0.9% sodium 
chloride saline followed by 300 ml of 10% phos-
phate-buffered formalin (pH 7.4). Following per-
fusion, the spinal segment between T3 and L3 
and the bladder were removed, placed over-
night in 10% phosphate-buffered formalin (pH 
7.4) and embedded in paraffin. Spinal cord 
transverse sections (4 µm) were obtained ros-
tral to the lesion epicenter, in a total of three 
blade spacing 100 µm between them. 

Hematoxylin and eosin-bladder evaluation: 
Histological analysis was also carried out on 
paraffin-embedded bladder samples. Briefly, 4 
µm thick longitudinal sections were stained 
with hematoxylin and eosin. Lesion areas from 
sections were classified in nine grades, 
according to the histological pattern of intensity 
(mild, moderate, and severe) and extension 
(focal, multifocal, and diffuse) of the lesion 
(Table 1).

Anti-NeuN staining and positive neurons 
counting: Immunohistochemistry using the 
monoclonal antibody anti-NeuN (Chemicon, 
cat# MAB377. Temecula, CA, USA) was 
performed to evaluate neuronal viability. Biotin-
streptavidin peroxidase (Laboratory Vision 
Corp., Fremont, CA, USA) and antigenic recovery 
techniques with a retrieval solution (sodium 

citrate 0.5% pH 6.0) were employed. Histologi- 
cal sections were incubated overnight in a 
humid chamber with primary antibodies (diluted 
1:1000) and followed by 30 min during the 
steps of blocking endogenous peroxidase, 
blocking serum (DAKO), and streptavidin-biotin-
peroxidase. Incubation with the secondary 
antibody was performed for 45 min. The 
chromogen utilized was diaminobenzidine (DAB 

Table 1. Bladder scores according to the le-
sion histological pattern

Scores
Histological pattern

Intensity Extension
1 Mild Focal
2 Mild Multifocal
3 Mild Diffuse
4 Moderate Focal
5 Moderate Multifocal
6 Moderate Diffuse
7 Severe Focal
8 Severe Multifocal
9 Severe Diffuse

Figure 1. Fluorescence photomicrographs of lum-
bosacral spinal cord ventral horns. The photomicro-
graphs shows fluorescent dead cells in ischemic (A), 
control (B) and MVIIC pretreatment + ischemia group 
(C).
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substrate system) for 27 seconds. Slides were 
counterstained with Harris haematoxylin. A 
negative control was obtained by replacing the 
primary antibodies with PBS.

The mean number of NeuN-positive neurons 
was determined in 10 fields within the grey 
matter with the aid of a 121-point graticule 
attached to the microscope 40 x objective.

Terminal deoxynucleotidyl transferase dUTP 
Nick-End Labeling (TUNEL) assay: DNA 
fragmentation in the grey and white matter was 
evaluated by TUNEL assay (TdT mediated dUTP 
nick endlabeling), using an in situ apoptosis 
detection kit (TdT-FragEL® DNA Fragmentation 
Detection Kit; Calbiochem, San Diego, CA, 
USA). Antigenic recovery was performed with 
proteinase K (20 g ⁄ml PBS) for 15 min at room 
temperature. The slides were encubated in a 
humid chamber at 37°C with TdT (TdT 
Equilibration Buffer and TdT Labeling Reaction 

Mixture) for 1 h at room temperature for the 
steps of blocking endogenous peroxidase and 
streptavidin. Endogenous peroxidase activity 
was blocked with 3% H2O2 methanol PBS at 
room temperature for 5 min. Sections were 
incubated in TdT buffer solution for 10 min, and 
then incubated with a mixture containing TdT 
(TdT Equilibration Buffer and TdT Labeling 
Reaction Mixture) at 37°C for 1 h. The chro- 
mogen DAB was utilized and incubated for 3-6 

Figure 2. Neuroprotective effect of MVIIC in ischemic 
slices of rat spinal cord. The results express the 
mean ± SEM of cells stained with ethidium homodi-
mer per field in spinal cord slice of negative control 
(SHAM), ischemic group, and pretreatment with MVI-
IC + ischemia. Lowercase letters express statistically 
differences among groups after seven days of spinal 
cord injury (SNK test; P < 0.01). 

Figure 3. Reduced apoptosis activation by MVIIC fol-
lowing ischemic spinal cord injury. Mean number of 
caspase-3 expression in spinal cord slice of ischemic 
group, and pretreatment with MVIIC + ischemia. 
Lowercase letters express statistically differences 
among groups after seven days of spinal cord injury 
(Student t test; P < 0.05).

Figure 4. MVIIC improves behavioral scores following 
SCI. Locomotor evaluation results using Basso Beat-
tie Bresnahan scores during the seven-day evalua-
tion period in rats subjected to compressive spinal 
cord injury and treated with placebo (PLA, positive 
control) or ω-conotoxin MVIIC (G15, 15 pmol MVIIC; 
G30, 30 pmol MVIIC; G60, 60 pmol MVIIC). Lower-
case letters express statistically differences among 
groups, after seven days of spinal cord injury (Mann-
Whitney test; P < 0.05).

Figure 5. Bladder protection by MVIIC following spi-
nal cord injury. Median ± SEM scores for bladder 
bleeding in rats submitted to sham surgery (SHAM) 
or compressive spinal cord injury and treatment with 
placebo (PLA, positive control) or ω-conotoxin MVIIC 
(G15, 15 pmol MVIIC; G30, 30 pmol MVIIC; G60, 60 
pmol MVIIC). Lowercase letters express statistically 
differences among groups, after seven days of spinal 
cord injury (Kruskal-Wallis test and Dunn’s post hoc 
test; P < 0.05).
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min. Sections were counterstained with methyl 
green. The negative control was obtained by 
replacing TdT with Tris-buffered saline (TBS). 

The mean number of TUNEL positive cells (TPC) 
was determined in 15 fields within the grey 
matter with the aid of a 121-point graticule 
attached to the microscope 40 x objective.

Statistical analysis

All data collected were analyzed using Prism 5 
for Windows (GraphPad Software. La Jolla, CA, 

USA). Data from BBB locomotor rating scale 
between groups were evaluated using Mann-
Whitney test and between days by Friedman 
test. The bladder lesion was compared by 
Kruskal-Wallis test and Dunn’s post hoc test. 
Data from number of NeuN-positive neurons 
did not follow a normal distribution and were 
evaluated by Kruskal-Wallis test. Others data 
were submitted to analyses of variance, and 
means were compared using Student-Newman-
Keuls test. For all analyses, p value < 0.05 was 
considered statistically significant.

Figure 6. Light microscopy sections of urinary bladder of Wistar rats stained with hematoxylin-eosin. (A) Normal 
urinary bladder of an animal from SHAM (non-injured) - 101.4x, (B) Multifocal areas of hemorrhage (h) in a injured 
group placebo-treated animal - 140x, (C) Uroepithelium consisting of only one or two cells layers (arrow) and bladder 
muscularis overdistension (asterisk) in a placebo-treated animal - 48.6x, (D) Urinary bladder in an injured animal 
MVIIC-treated (15 pmol MVIIC) showing less hemorrhage and distension - 97.1x.
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Results

In vitro experiment

MVIIC confers cell preservation following isch-
emic insult

The neuroprotective effect of MVIIC on slices of 
spinal cord subjected to ischemia was tested 
against cell death. The spinal cord slices sub-
jected a pretreatment with MVIIC showed a cell 
protection with a reduction of dead cells in 
24.34%. The number of dead cell was signifi-
cantly lower in MVIIC (median ± SD: 93.03 ± 
8.12) than ischemic group (122.97 ± 16.4) (P < 
0.01) (Figures 1 and 2). 

MVIIC reduces apoptosis activation following 
ischemic insult

To determine whether the reduction of neuro-
nal cells death is accompanied by less activa-
tion of apoptosis-specific proteases, we mea-
sured the caspase-3 expression. These data 
demonstrate that caspase-3-specific protease 
is less activated in MVIIC (mean ± SD: 0.083 ± 
0.058) presence than ischemia (0.347 ± 0.171) 
group (P < 0.05) (Figure 3).

In vivo experiment

The model of experimental acute spinal cord 
injury allowed the reproduction of a moderate 

to severe trauma, easy, inexpensive and stan-
dardized. The weight of 70 g directly on the spi-
nal dura in the region of T12 for five minutes 
caused severe paraplegia of hindlimbs in all 
animals and urinary retention. Intralesional 
administration of MVIIC was chosen in the pres-
ent study due to the reduced risk of systemic 
side effects and enhanced spinal effect.

MVIIC improves behavioral scores following SCI

Repeated measures analysis of hindlimbs loco-
motor function revealed significant recovery of 
hindlimb function with 15 pmol MVIIC com-
pared to 30 and 60 pmol MVIIC at Day 4 (P = 
0.026) and placebo group at Day 5 (P = 0.0432) 
(Figure 4). Comparing the days of evaluation, 
G15 recovered faster than G30 and G60, with 
significant different beginning on Day 6. G15 
achieved a final average score of 8.5 (indicative 
of smooth movements, weight support, and 
occasionally plantar stepping) at Day 7 post-
injury compared to 3, 1, and 2 (indicative of 
slight movements of joints) for PLA, G30, and 
G60, respectively.

MVIIC confers bladder protection following SCI

Histological evaluation of the bladders revealed 
hemorrhagic foci in those subjected to trauma 
and treated with placebo, 30, and 60 pmol 
MVIIC, but no morphological alterations were 
observed in the bladders of sham and G15 
groups (Figure 5). The categorization of these 
foci in the bladder showed that animals  
receiving placebo had significantly more bleed-
ing compared to sham and G15 groups (P < 
0.05) (Figure 6).

MVIIC confers neuroprotection in SCI

Anti-NeuN staining and positive neurons 
counting: Positive neurons invariably had 
preserved morphological characteristics. The 
number of NeuN-positive cells (NPC) was sig-
nificantly higher in G15 (38.8 ± 3.90) when 
compared to PLA (26.58 ± 6.71), G30 (31.07 ± 
2), and G60 (28.58 ± 4.83) (P < 0.05) (Figures 
7 and 8), although statistically lower than sham 
group (43.87 ± 3.52).

TUNEL assay: The number of TPC in white and 
grey matter cranially the lesion epicenter tend-
ed to be lower in G15 (1.07 ± 0.76) than trauma 
groups and became similar to sham group 

Figure 7. Neuroprotective effect of MVIIC after spinal 
cord injury in rats. Mean number of NeuN positive 
neuronal cells per field in the cranial spinal cord seg-
ment of rats submitted to sham surgery (SHAM) or 
compressive spinal cord injury and treatment with 
placebo (PLA, positive control) or ω-conotoxin MVIIC 
(G15, 15 pmol MVIIC; G30, 30 pmol MVIIC; G60, 60 
pmol MVIIC). Lowercase letters express statistically 
differences among groups after seven days of spinal 
cord injury (Kruskal-Wallis test; P < 0.05).
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Neuroprotective strategies aimed at preventing 
damage arising from secondary injury process-
es provide some hope for tissue sparing and 
improved functional outcome. It is speculated 
that blocking VDCC protects the structural 
integrity of oligodendrocytes and astrocytes 
due to the presence of N-type channels in their 
membranes [23-26, 45, 53]. And can thus, in 
long term evaluation, be beneficial to neurologi-
cal improvement after SCI [17-19, 54].

It has been demonstrated in models of cerebral 
ischemia that ω-conotoxins exert neuroprotec-
tive effects by antagonizing VDCC and thereby 
inhibiting excessive release of neurotransmit-
ters [23, 24, 31, 32, 55]. Specifically, MVIIC 
selectively inhibits VDCC type N, P, and Q that 
are essential for the release of neurotransmit-
ters associated with the development of sec-
ondary injury [29-31, 34]. Therefore, our in vitro 
results showed the effects of MVIIC on cas-
pase-3 expression and cell death reduction 
that can be explained because the blockade of 
calcium channel diminishes the calcium influx 

Figure 8. Light microscopy of spinal cord sections of Wistar rats stained with anti-NeuN. (A) Nuclei staining of intact 
neuronal cell bodies (NeuN-positive) in the gray matter in sham-non injured animal - 22.63x, (B) Mild staining of 
NeuN-positive cells in placebo-injured animal - 36.57x, (C) Detail of NeuN-positive cell neurons - 118.57x, (D) Mod-
erate staining of NeuN-positive cells in G15 (15 pmol MVIIC) animal - 35.71x.

(0.16 ± 0.11) (P > 0.05), but did not differ from 
PLA (1.61 ± 0.53), G30 (1.93 ± 0.58), and G60 
(1.88 ± 1.42) (Figure 9). 

Discussion

Activation of VDCC is one of the most important 
routes of calcium entrance and represents a 
key step in the regulation of cellular processes 
[30] and excitability, participating actively in 
the acute neurodegenerative process [22, 45, 
46]. The secondary lesions initiate minutes 
after mechanical trauma. These events result 
from excessive release and inadequate reup-
take of glutamate [40, 47, 48], leading to a pro-
longed excitatory synaptic transmission [9, 49] 
with excessive Na+ and Ca2+ influx by activation 
of ionotropic, metabotropic and VDCC recep-
tors, during membrane depolarization [22, 
50-52].

The fact that damage continues to develop over 
time during the days and weeks following acute 
SCI provides an opportunity to intervene. 
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Figure 9. Quantification of apoptotic cells after spi-
nal cord injury. Mean number of TUNEL positive cells 
in the cranial spinal cord segment of rats submitted 
to sham surgery (SHAM) or compressive spinal cord 
injury and treatment with placebo (PLA, positive con-
trol) or ω-conotoxin MVIIC (G15, 15 pmol MVIIC; G30, 
30 pmol MVIIC; G60, 60 pmol MVIIC). Lowercase let-
ters express statistically differences among groups 
after seven days of spinal cord injury (Student-New-
man-Keuls test; P < 0.05).

and their deleterious effects [6, 51, 56, 57]. 
Calcium overload can trigger a range of calci-
um-dependent processes that will lethally alter 
the metabolism of remaining cells [58, 59] as 
activation of caspases that induces cell apop-
tosis [7, 8, 60, 61]. Thereby, MVIIC provides pro-
tection of spinal cord slices subjected to 
ischemia.

Given these characteristics, it was postulated 
that MVIIC administered immediately after SCI, 
can exert neuroprotective effects, leading to 
neurological improvement. This is the first study 
that evaluates the neuroprotective effects of 
ω-conotoxin MVIIC in vivo in rats subjected to 
SCI. In this experiment, MVIIC doses were cho-
sen based on [62] who showed that 100 pmol 
had deleterious effects when applied intracere-
broventricularly in vivo. 

In this experiment, we found that 15 pmol 
MVIIC promoted significant recovery of rats 
from SCI. Until three days following SCI all trau-
matized rats exhibited severe deficits in 
hindlimb function and locomoted using fore-
limbs and dragging hindlimbs. The only 
observed hindlimb movements consisted of 
slight-extensive movements of the hindlimb 
joints, usually hip and knee, with no evidence of 
weight support. While 15 pmol MVIIC group 
showed some improvement throughout the 
duration of the study, recovery in the other trau-
ma groups (PLA, G30 and G60) was limited. In 

contrast, 15 pmol MVIIC treated rats showed 
continual and significant improvements over 
the seven-day recovery period. Seven days 
post-injury, the median score for BBB test was 
8.5 in G15, with the majority of rats exhibiting 
scores > 8. In these animals, consistent weight 
supported plantar stepping was observed, and 
some showed evidence of forelimb-hindlimb 
coordination.

Since the functional recovery of 15 pmol MVIIC 
group differed from other doses of MVIIC and 
placebo from the earliest time point studied, 
respectively, four and five days, the mechanism 
of 15 pmol of MVIIC is likely to be through neu-
roprotection. As the other doses were higher 
than 15 pmol, it is possible that they blocked 
excessively the calcium channels, and could be 
deleterious to the cell as calcium regulates 
many important cellular neural processes, 
including neurotransmitter release, gene tran-
scription, and cell proliferation [23, 34, 63]. 
Intracellular calcium concentration is con-
trolled by the balance of signals that determine 
their entry [51, 64, 65]. 

In this study, 15 pmol MVIIC provided neuron 
preservation, identified by immunostaining of 
the neuronal marker NeuN. High doses of MVIIC 
did not improve clinical recovery and neuron 
protection possibly due to excessive blockade 
of calcium channels, and consequently, nega-
tive side effects, since calcium is essential in 
various cellular processes [51, 63, 65]. NeuN 
immunoreactivity may decrease in several 
pathological conditions that affect neuronal 
viability, such as ischemia, hypoxia, and trauma 
[66-68]. It can be argued that the neuronal 
preservation inferred from the NPC data con-
tributed to the improved hindlimb function seen 
in the G15. 

The TUNEL technique allowed the detection of 
DNA fragmentation of neurons and glial cells 
[60, 69]. Our findings indicated that neuronal 
cell death could be detected eight days follow-
ing traumatic SCI, and interestingly that ani-
mals treated with 15 pmol MVIIC had fewer 
TPC, similar to sham, although not different 
from the other trauma groups. In addition, the 
number of anti-NeuN immunoreactive neurons 
was inversely proportional to the number of 
TUNEL positive cells in G15, indicating the neu-
roprotective effect of 15 pmol MVIIC.
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Moreover, the results of the current study show 
that MVIIC has also protective effects on spinal 
cord compression-induced urinary bladder inju-
ry. It is known that SCI results in severe func-
tional disturbances of the lower urinary tract 
[16, 17, 70, 71]. At necropsy, the bladder was 
distended in most animals subjected to trau-
ma. According to [72], loss of bladder voluntary 
control, distension, increased bladder pres-
sure, and hemorrhagic cystitis are expected in 
patients with injuries cranial to the lumbar 
region. Furthermore, it was observed in all 
injured animals, epithelial desquamation, as 
evidenced by the reduced number of layers, 
representing cell death due to distension and 
vascular occlusion [70-73]. Categorization of 
hemorrhagic foci in the bladder showed that 
animals receiving placebo had significantly 
more bleeding when compared to sham and 
G15 (p < 0.05). The results showed that the 15 
pmol MVIIC was able to reduce drastically the 
hemorrhagic process, resulting in lower inten-
sity of bladder lesions, therefore, suggest a pro-
tective action of the drug on that tissue. It is 
worth noting that, to rule out the possibility that 
pressure from the manual urine expression 
was the source of hematuria, in this study sham 
animals also experienced bladder expression, 
as performed by [21] and [73].

Thereby, clinical recovery, bladder protection, 
cell death decrease, and neuron preservation 
confirm, for the first time in vivo, the potential 
neuroprotective role of 15 pmol MVIIC after SCI 
in rats. There is evidence that MVIIC has a 
broad spectrum for blocking N, P, and Q types 
calcium channels [28, 35, 36, 74, 75] and that 
N-type channel blockade is potent, but of short 
duration and readily reversible, while P and Q 
are potent and slowly reversible. Studies in 
cerebral [30, 35, 36, 57] and spinal cord [38, 
39] ischemia demonstrated in vitro that the 
MVIIC significantly reduced calcium influx 
through types N, P, and Q VDCC, significantly 
attenuating the release of glutamate [33, 34]. 
It is tempting to speculate that 15 pmol MVIIC 
decreases calcium influx and excessive gluta-
mate release and inhibits secondary mecha-
nisms of injury. MVIIC was only used as a 
research tool claiming to be lethal to mamma-
lian according [76]. Although deleterious 
effects are frequently reported, including gen-
eralized tremors, walking in a circle, muscle 
weakness or death [62], these did not observe 

in the present study, even with higher doses. 
The effects of MVIIC on locomotor deficits (flac-
cid paralysis of the hindlimbs or decreased 
withdrawal tail response) were not evaluated, 
since theses signals are similar to the ones 
caused by thoracolumbar spinal cord injury. 
Besides that, the clinical, hematological, bio-
chemical, and histopathological evaluation 
revealed no significant abnormalities in all 
groups, in a previous experiment, except for 
degenerative changes in kidneys at a dose of 
120 pmol [77].

In summary, we demonstrate, for the first time 
in vivo, that MVIIC in a rat model of SCI signifi-
cantly preserves neuronal integrity, prevents 
bladder bleeding and leads to behavioral 
improvements. The results confirmed our 
hypothesis that MVIIC has neuroprotective 
effects, and that could be possible to use after 
spinal cord injury. 
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