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Original Article 
Epigallocatechin-3-gallate protects against cisplatin 
nephrotoxicity by inhibiting the apoptosis in mouse
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Abstract: Cisplatin (CP) is a commonly used anticancer drug, but its notable side effect of nephrotoxicity limits its 
use in clinic. Epigallocatechin-3-gallate (EGCG), an anti-oxidant, anti-inflammatory, and anti-tumorigenic green tea 
polyphenol, has been available on the market for its beneficial effects. The aim of this study was to investigate 
whether EGCG can prevent the nephrotoxic effect of CP and the involved mechanisms. Male C57/BL6 mice were 
randomly divided into four groups: control group, EGCG group, CP group, and CP+EGCG group. On day 5, mice were 
sacrificed. Our results showed that EGCG treatment significantly ameliorated the histopathological changes and the 
increased serum creatinine and blood urea nitrogen (BUN) induced by CP. TUNEL-positive cells significantly reduced 
in the CP+EGCG group compared with CP group. EGCG also inhibited the expression of the ligand of death recep-
tor Fas (Fas-L), apoptosis regulator BAX (Bax) and tumor-suppressor protein p53, and increased the expression of 
B-cell lymphoma 2 (Bcl-2). These findings suggest that EGCG can ameliorate CP-induced apoptosis in the kidney by 
regulating death receptor Fas conducted extrinsic pathway, and the expression of Bax and Bcl-2.
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Introduction

Cisplatin or cis-diamine-dichloroplatinum (II) 
(CDDP) is a platinum-containing anti-cancer 
drug widely used against multiple solid tumors. 
Many side effects such as ototoxicity, gastro-
toxicity, myelosuppression, and allergic reac-
tions [1, 2], especially the nephrotoxicity [3, 4], 
limits its use in cancer therapy. The mecha-
nisms underlying nephrotoxicity induced by CP 
are not clearly established. Recently many 
studies have identified that apoptosis plays a 
pivotal role in renal tubulointerstitial fibrosis [5, 
6], and the apoptosis of tubular epithelial cells 
is a major cause [7]. Several cellular signaling 
pathways include the intrinsic mitochondrial 
pathway, the extrinsic death-receptor pathway 
such as TNF-α/TNFR1 and Fas/Fas-L pathway, 
and endoplasmic reticulum stress related 
mechanisms have been reported to be involved 
in regulation of apoptosis in tubular epithelial 
cells [8-11]. It has been shown that CP-induced 
nephrotoxicity associated with increased pro-

apoptotic protein Bax and decreased anti-apop-
totic protein Bcl-2 [11]. Fas is expressed on 
renal tubular cells (RTCs), and its upregulation 
during acute and chronic renal failure has been 
documented by many reports [12, 13]. However, 
whether apoptosis of RTC depends on the Fas/
FasL pathway remains controversial [14].

Numerous compounds, such as tomato lyco-
pene complex, grape seed proanthocyanidin 
extract, extract of Ginkgo biloba, Rosmarinus 
acid, and cilastatin, can ameliorate cisplatin-
induced nephrotoxicity [15-19]. EGCG, the most 
abundant catechin in tea, has anti-oxidant, anti-
inflammatory, and anti-tumorigenic properties. 
Many studies have showed its effects to blood 
diseases, cardiovascular diseases, respiratory 
diseases, eye diseases, and cancers [20-24]. 
Some studies also demonstrated the renal pro-
tect effect EGCG [25-27], leading us to study 
whether EGCG can ameliorate the acute kidney 
injury induced by CP. The nephrotoxicity of CP 
involves Nrf2/HO-1 signaling pathway [28], 
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renal proinflammatory (TNF-α) and oxidant 
stress signals [29]. The protect mechanism of 
EGCG on CP-induced nephrotoxicity is still 
uncertain. So, in this study, we treated mouse 
model of CP-induced nephropathy with EGCG, 
and study of whether it has the protect effects 
to cisplatin nephrotoxicity and the mechani- 
sms.

Materials and methods

Reagents and materials

Cisplatin and Epigallocatechin-3-gallate (EGCG) 
were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Primary antibodies were provided as 
follows: Fas-L, Bax, Bcl-2, p53 and β-actin anti-
body (Santa Cruz Biotechnology, Inc., Santa 
Cruz, CA, USA). Antimouse and antirabbit sec-
ondary antibodies were obtained from Jackson 
ImmunoResearch Laboratories Inc. (West 
Grove, PA, USA). TUNEL staining kit (the In Situ 
Cell Death Detection kit) was purchased from 
Roche Diagnostics (Indianapolis, IN, USA).

Animals

Twenty-eight 6-8 week-old adult male C57/BL6 
mice (20-25 g) were obtained from the Beijing 
Vital River Laboratory Animal Technology Co., 
Ltd. (Beijing, China). Mice were housed sepa-
rately in metal cages. The cages were placed in 
a room with controlled temperature (22 ± 
0.5°C), humidity (60 ± 10%), and a 12-h light-
dark cycle. Food and water were available ad 
libitum. The animal experiments conformed to 
the Animal Management Rules of the Chinese 
Ministry of Health (document No. 55, 2001) 
and were approved by the Animal Care Commi- 
ttee of Shandong University.

Experimental design

A total of 28 mice were divided randomly in the 
following five groups: (1) control group (NC; n = 
7), only received intraperitoneal (i.p.) injection 

= 7), which successively received i.p. injection 
of 100 mg/kg EGCG at 30 min before i.p. injec-
tion of CP, and i.p. administration of 100 mg/kg 
EGCG after i.p. injection of CP 48 h.

Five days after i.p. injection of CP, all mice were 
sacrificed by cervical dislocation, and all of 
them were weighed and blood was collected 
from the endocanthion before the sacrifice. 
Blood samples were centrifuged at 1,500 g at 
4°C for 15 min, and sera were collected. Blood 
urea nitrogen (BUN) and serum creatinine (Scr) 
levels were measured in a Cobas® 8000 mod-
ular analyser (Roche Diagnostics) in Qilu 
Hospital, Shandong University. Both kidneys 
were immediately excised, and then cut in half 
by coronal position after weighed. Half of each 
excised kidney was stored at -80°C, and the 
remaining sections were fixed in 4% buffered 
paraformaldehyde at 4°C and embedded in 
paraffin.

Histopathologic observation

Histopathological changes in the kidney were 
examined by periodic acid-Schiff (PAS) staining. 
Kidneys embedded in paraffin were cut into 
4-μm thick sections. Deparaffinized sections 
were stained with PAS reagent. Tubular damage 
was assessed by an index of renal tubular 
necrosis in 10 different fields: 0 = no damage, 
1 = less than 25% damage, 2 = 25-50% dam-
age, 3 = 50-75% damage, and 4 = more than 
75% damage.

Immunohistochemical study

For immunohistochemical analysis, deparaf-
finized tissue slices underwent antigen retrieval 
by microwaved for 10-15 min in 0.01% sodium 
citrate buffer (pH 6.0). 3% hydrogen peroxide 
was used to immerse the tissue slices for 10 
min in dark to block endogenous peroxidase. 
The tissue slices were incubated with the pri-
mary antibody (anti-Fas-L 1:100, anti-Bax 

Table 1. The changes in relative kidney weight and the levels of 
Creatinine and BUN

Relative kidney weight Creatinine (μmol/L) BUN (mmol/L)
Control 8.32 ± 0.71 30.57 ± 6.95 9.99 ± 0.97
EGCG 8.46 ± 0.85 32.00 ± 4.43 10.16 ± 1.84
CP 8.85 ± 0.45a 178.86 ± 19.58a 82.76 ± 7.57a

CP+EGCG 8.42 ± 1.08b 63.71 ± 6.65b 29.29 ± 3.84b

Data are presented as means ± SD. Relative kidney weight is expressed as: 
left kidney weight/body weight * 1000. ap<0.05 versus control group; bp<0.05 
versus CP group.

of vehicle solution (0.9% saline; 
10 ml/kg); (2) EGCG group 
(EGCG; n = 7), received a single 
i.p. injection of 100 mg/kg EGCG 
(dissolved in 0.9% saline to 
reach 20 mg/ml); (3) CP group 
(CP; n = 7), only received an i.p. 
injection of 20.0 mg/kg CP (dis-
solved in 0.9% saline to reach a 
concentration of 2.0 mg/ml); 
and (4) CP+EGCG 100 mg/kg 
group (CP+EGCG 100 mg/kg; n 



EGCG protects against cisplatin nephrotoxicity

4609 Int J Clin Exp Pathol 2014;7(8):4607-4616

1:100 and anti-Bcl-2 1:100) at 4°C overnight, 
while negative controls were incubated with 
PBS. After washing three times, slices were 
incubated with secondary antibodies for 60 
min at 37°C, and then stained with 3, 3’-diami-
nobenzidine (DAB) and hematoxylin. Stained 
slides were analyzed by light microscopy. Brown 
areas were identified as positive. Semi-
quantitative analysis was performed on the col-
ored sections using Image-Pro Plus 5.0.

TUNEL assay

The terminal deoxynucleotidyltransferase-me- 
diated nick end labeling (TUNEL) method was 
performed to evaluate the in situ apoptosis in 
kidney tubular cells. The TUNEL staining was 
conducted following the manufacturer’s instruc-
tions. A DAPI filter was used to detect DAPI 
staining (blue color), and an FITC filter was used 
to detect TUNEL staining (red color). TUNEL-
positive cells were counted in 10 high-power 
(×400) fields per section in the cortex.

Western blot analysis

Concentration of the protein extraction of the 
mouse kidney tissue samples was determined 
according to the procedure described by the 
Pierce BCA Protein Assay kit (Thermo Fisher 
Scientific Inc., Rockford, IL, USA). Equal 
amounts of protein (30 μg) were electropho-
resed and subsequently transferred to cellu-
lose acetate membranes. The membranes 

were blocked in TBS buffer containing nonfat 
milk for 1 h and then incubated with primary 
antibodies (anti-Fas-L 1:200, anti-Bax 1:200, 
antiBcl-2 1:200, anti-p53 1:500 and antiβ-
actin 1:2,500) at 4°C overnight. The mem-
branes were then washed and incubated with 
secondary antibodies for 1 h. Finally the mem-
branes were developed with enhanced chemi-
luminescence (ECL) reagent (Thermo Fisher 
Scientific Inc., Rockford, IL, USA) and exposed 
to an X-ray film. Band intensity was measured 
using Quantity One software (Bio-Rad, Hercules, 
CA, USA). Fas-L, Bax, Bcl-2 and p53 relative 
quantities were expressed as a ratio of lumi-
nosity of the respective sample to that of the 
normal control group.

Statistical analysis

Data are given as means ± standard deviation 
(S.D.). The intergroup variation between groups 
was evaluated using one-way analysis variance 
(ANOVA) followed by Dunnett’s multiple com-
parison test, and the comparisons between 
two groups were conducted by unpaired 
Student’s t-test. P<0.05 was considered statis-
tically significant.

Results

EGCG protects against CP-induced renal injury 
in mouse

In mice, treatment with CP induced significant 
increase both in the relative kidney weight and 

Figure 1. EGCG attenuated the kidney histological abnormalities induced by CP in mice. Mice were treated with 
vehicle (A), EGCG (B), CP (C), and CP+EGCG (D), separately. In CP group, renal tubular atrophy and dilation, necrosis 
and desquamation of renal tubular epithelial cells, and intratubular cast formation in the proximal tubules of kidney 
were obvious. Tubular damage was greatly improved in CP+EGCG group. Tubular injury score (E). Data are presented 
as means ± SD. *p<0.05 versus control group; #p<0.05 versus CP group. Original magnification, ×400.
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in the levels of serum creatinine and BUN 
(Table 1, compare CP group with control). 
Co-treatment of EGCG together with CP sup-
pressed the increased relative kidney weight 
and creatinine and BUN levels caused by CP 
treatment alone (Table 1, compare CP+EGCG 
group with CP group), while treatment with 
EGCG alone had no effect on these para- 
meters.

The PAS staining of kidney tissues was con-
ducted to evaluate whether EGCG can amelio-
rate CP-induced renal tubular damage. Normal 
tubular morphology was presented in control 
group (Figure 1A) and EGCG group (Figure 1B). 
Renal tubular atrophy and dilation, necrosis 
and desquamation of renal tubular epithelial 
cells, and intratubular cast formation in the 
proximal tubules of kidney were observed in CP 

group (Figure 1C), while the tubular damage 
was greatly improved by EGCG (Figure 1D). 
EGCG dramatically reduced the tubular injury 
scores after CP treatment, and the reduction 
was statistically significant (P<0.05). These 
data indicated EGCG suppressed renal injury 
caused by CP.

EGCG blocks apoptosis of tubular epithelial 
cells caused by CP

In order to assess whether EGCG can protect 
against CP-induced renal tubular epithelial cell 
apoptosis, TUNEL assay was conducted. A large 
number of TUNEL-positive renal tubular epithe-
lial cells were detected in CP group (Figure 2C), 
whereas co-treatment with EGCG strongly 
reduced the percentage of TUNEL-positive cells 
(Figure 2D). Limited apoptosis was detected in 

Figure 2. EGCG inhibits the apoptosis of renal tubular epithelial cells induced by CP. Mice were treated with vehicle 
(A), EGCG (B), CP (C), and CP+EGCG (D), separately. Red staining represents TUNEL-positive cells. Original magni-
fication, ×400. The percentage of TUNEL-positive cells in different groups (E). Data are presented as means ± SD. 
*p<0.05 versus control group; #p<0.05 versus CP group.
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control group (Figure 2A) and the EGCG group 
(Figure 2B). Thus, EGCG abrogated CP-induced 
apoptosis.

The mechanism of the protective effect of 
EGCG to the nephrotoxicity induced by CP in 
mouse

Death receptor Fas has been implicated in 
CP-induced renal epithelial cell death. Marker 
proteins in this pathway such as Fas-L, Bax, 
and Bcl-2 have been examined by immunohis-
tochemistry and western blotting. As shown in 
Figures 3-5, both two approaches exhibited 
that Fas-L and Bax were highly expressed in CP 
group while the expression of Bcl-2 was limited. 
The antiapoptotic activity of EGCG was evident 
by elevated Bcl-2, coincided with decreased 
expression of Fas-L and Bax. In the control and 
EGCG groups, Fas-L and Bax showed limited 
expression, and Bcl-2 showed high expression.

p53 was reported to be involved in Fas/Fas-L-
induced apoptosis, and a possible transcrip-

tional regulator of Fas and Bax. Our results 
showed that the expression of p53 was high in 
CP group, and inhibited in CP+EGCG group 
(Figure 6).

Discussion

CP is a simple platinum-containing inorganic 
molecule. It is one of the most remarkable suc-
cesses in cancer therapy and has been widely 
used for chemotherapy since the accidental 
discovery over four decades ago [3, 30, 31]. 
Nephrotoxicity, now recognized as the most 
prevalent side effect, represents a dose and 
time-related toxicity, occurring in about one-
third of patient undergoing CP treatment [3, 
32]. The most severe and common outcome of 
nephrotoxicity of CP is acute kidney injury (AKI) 
[32]. It develops primarily in the proximal tubule 
[33]. CP-induced AKI involves enhanced oxida-
tive stress, inflammatory reactions, and tubular 
cell apoptosis. Renal tubular apoptosis has 
been considered as a key mechanism [34, 35]. 
EGCG is the most abundant catechin in green 

Figure 3. Immunohistochemical of Fas-L in the kidney of mouse. Mice were treated with vehicle (A), EGCG (B), CP 
(C), and CP+EGCG (D), separately. The brown granules represent positively stained cells. Original magnification, 
×400. Measurement of the intensity of Fas-L immunostaining (E). Western blot analysis of Fas-L (F), and quantifica-
tion of corresponding protein level (G). Data are presented as means ± SD. *p<0.05 versus control group; #p<0.05 
versus CP group.
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tea, and it has been shown to reduce and inhib-
it the growth of various tumors [24]. Based on 
the antioxidant, anti-inflammatory and anti-
apoptotic properties of EGCG, the present 
study was undertaken to examine the protec-

tive effects of EGCG against CP-induced neph-
rotoxicity. Results in this study showed that 
EGCG effectively ameliorate acute kidney injure 
in CP-treated mice by suppressing the Fas/
Fas-L pathway and regulating expressions of 

Figure 4. Immunohistochemical detection of Bax and Bcl-2: Mice were treated with vehicle (A, E), EGCG (B, F), CP (C, 
G), and CP+EGCG (D, H), separately. The brown granules represent positively stained cells. Original magnification, 
×400. Measurement of the intensity of Bax (I) and Bcl-2 (J) immunostaining. Data are presented as means ± SD. 
*p<0.05 versus control group; #p<0.05 versus CP group.

Figure 5. Western blot analysis of Bax and Bcl-2 (A), and quantification of the protein levels (B, C). Mice treated with 
vehicle, EGCG, CP, and CP+EGCG. Data are expressed as mean ± SD. *p<0.05 versus control group; #p<0.05 versus 
CP group.
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Bcl-2 family members of renal tubular cells. In 
this study, CP resulted in a severe nephropathy. 
In CP group, the relative kidney weight, the lev-
els of serum creatinine and BUN, were signifi-
cantly increased. Apoptosis of renal tubular epi-
thelial cells was also significantly increased. 
Both the functional defects and apoptosis were 
markedly ameliorated by EGCG treatment, indi-
cating the renal protective effect of EGCG on 
CP-induced nephrotoxicity.

Tubulointerstitial inflammation and tubular epi-
thelial cell apoptosis have been demonstrated 
as the key leading to AKI in CP chemotherapy 
[14]. Several apoptotic pathways include the 
extrinsic pathway activated through death 
receptors, such as TNF receptors or Fas, the 

the pro-apoptotic protein Bax, and then follow-
ing the apoptosis in the end.

The intrinsic mitochondrial pathway by which 
CP activates remains unknown [10]. CP gener-
ates reactive oxygen species, which activate 
the pro-apoptotic Bcl-2 family member Bax, 
then the activation of Bax induces mitochon-
drial permeability transition, leading to release 
of cytochrome c, finally activates caspase-3 
and induces the apoptosis [10]. The anti-apop-
totic Bcl-2 family members such as Bcl-2, plays 
a pivotal protective role in preserving mitochon-
drial structure and function, preventing onset 
of mitochondrial permeability transition, and 
finally inhibiting the apoptosis [37, 38]. Over-
expression of Bcl-2 obviously ameliorated 

Figure 6. Western blot analysis of p53 (A) and quantification of the protein level (B). Mice treated with vehicle, EGCG, 
CP, and CP+EGCG. Data are expressed as mean ± SD. *p<0.05 versus control group; #p<0.05 versus CP group.

Figure 7. The possible mechanism of the protect effect of EGCG to the nephrotox-
icity induced by CP in mouse.

intrinsic mitochondrial pa- 
thway and the endoplas-
mic reticulum stress rela- 
ted mechanisms, have 
been implicated in CP- 
induced renal tubular epi- 
thelial cell death [32]. In 
the murine kidneys in- 
jured by CP administra-
tion, Fas expression mar- 
kedly induced in cultured 
proximal tubular epitheli-
al cells, while absence of 
Fas protected them from 
undergoing apoptosis 
[11]. Recently studies 
reported that CP-induced 
nephropathy is mediated 
through upregulation of 
Fas/Fas-L system [12, 
36]. During the intracel-
lular cascade of caspase 
activation, activation of 
caspase-8 can activate 
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CP-induced apoptosis of renal tubular epithelial 
cells [39]. The integration of diverse pro- and 
anti-apoptotic signals occurring at the mito-
chondria may decide cell fate [40]. Several 
studies have demonstrated that CP can directly 
activate Bax, thus down-regulate the expres-
sion of Bcl-2 [8, 10, 41].

Tumor suppressor p53 is activated by CP and 
pharmacological or genetic inhibition of p53 
suppresses CP-induced apoptosis in RTC in 
vitro and nephrotoxicity in vivo [42-44]. Several 
studies have emphasized the involvement of 
p53 in Fas/Fas-L-induced apoptosis [45, 46]. In 
addition, oxidant stress can activate p53 [47], 
and then p53 can directly activate Bax [48]. 
p53 may be a transcriptional regulator of Fas 
and Bax [14, 48].

Consistently with previous findings, in this 
study, the expression of Fas-L, Bax and p53 
increased, and the expression of Bcl-2 dec- 
reased in the kidneys of CP group. Administration 
of EGCG before CP treated significantly reduced 
the overexpression of Fas-L, Bax and p53 and 
rescued the downregulation of Bcl-2, suggest-
ing the inhibition of tubular apoptosis (Figure 
7).

In conclusion, the results of this study showed 
EGCG can effectively ameliorate CP-induced 
tubular apoptosis, and the inhibition on CP- 
induced apoptosis in tubular epithelial cells by 
EGCG may be through the blockage of the Fas/
Fas-L pathway, and regulation of the expres-
sion of Bcl-2 family members. The suppression 
of apoptosis in renal tubular epithelial cells by 
EGCG could be an effective strategy for the 
treatment of CP-induced nephropathy. EGCG 
may have potential value in clinical CP chemo-
therapy while the therapeutic activity of it still 
needs to be further confirmed.
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