Original Article Prognostic and clinicopathological significance of microRNA-21 overexpression in breast cancer: a meta-analysis

Fei Pan^{1*}, Hui Mao^{1*}, Ling Deng^{2*}, Guangchao Li³, Peiliang Geng¹

¹Cancer Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China; ²National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; ³School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, China. ^{*}Equal contributors.

Received June 1, 2014; Accepted July 15, 2014; Epub August 15, 2014; Published September 1, 2014

Abstract: Recent studies have highlighted the role of microRNA-21 (miR-21) as a prognostic biomarker of breast cancer. However, controversy still remains. The present study aimed to summarize available evidences and obtain a more precise estimation of a prognostic role of miR-21 in breast cancer patients. All eligible studies were searched from PubMed and EMBASE through multiple search strategies. Data were extracted from studies comparing survival in breast cancer patients having higher miR-21 expression with those having lower expression. A meta-analysis was performed to clarify prognostic role of miR-21 in patients with breast cancer. Subgroup analysis was also performed according to patients' ethnicity. A total of 6 eligible articles comprising 951 cases were selected for this meta-analysis. The combined hazard ratios (HRs) and 95% confidence intervals (95% *Cls*) for overall survival (OS) were 2.11 (1.09-4.08) and for disease free survival (DFS) was 1.6 (1.30-1.96). Subgroup analysis indicated high miR-21 expression was significantly associated with worse OS in Asian patients (*HR* = 4.39, 95% *Cl*: 2.47-7.80) but not in non-Asian patients (*HR* = 1.18, 95% *Cl*: 0.81-1.70). Sensitivity analysis revealed results of this meta-analysis were robust. Odds ratios (ORs) showed that miR-21 expression was closely associated with estrogen receptor (ER), progesterone receptor (PR), lymph node metastasis, histological grade, Her2/neu. The pooled *ORs* and 95% *Cls* were 0.53 (0.35-0.80), 0.49 (0.32-0.74), 2.32 (1.54-3.50), 2.44 (1.58-3.75), 4.29 (2.34-7.85), respectively. Our results indicated that elevated miR-21 expression could potentially predict poor survival in patients with breast cancer.

Keywords: MicroRNA-21, breast cancer, prognosis, biomarker, meta-analysis

Introduction

Breast cancer is one of the most common malignancies in women, which is a significant health problem ranking as a leading cause of cancer-related deaths among women around the world. The morbidity rate of breast cancer has gradually increased in recent decades [1-3] and 1.38 million individuals worldwide are affected every year [4]. Despite the extensive use of adjuvant systematic therapies such as radiotherapy, chemotherapy, hormone treatment, and biological therapy, the prognosis is still poor. More than 20% of patients with early breast cancer could develop incurable metastatic disease eventually [5, 6]. Therefore, factors to effectively evaluate the patients' survival outcome are needed urgently.

To date, there are a number of independent prognostic factors identified in clinical management of breast cancer, including tumor size, histological grade, nodal status, and patient age [7-9]. However, breast cancer is a heterogeneous disease with multiple factors involved in, and alterations in molecular mechanisms may affect tumor growth and progression, thereby the prognostic value of clinicopathological parameters is potentially limited [10]. Nowadays, a variety of potential prognostic biomarkers are being studied and applied in basic and clinical research, such as HER-2/neu,

Figure 1. Flow diagram of the study selection process.

estrogen receptor (ER), progesterone receptor (PR), cyclin E, p53, bcl-2, vascular endothelial growth factor, urokinase-type plasminogen activator-1. However, no single biomarker was able to predict those patients with the best (or worst) prognosis due to its the discriminant value on the complex , heterogenetic disease [10].

MicroRNAs (miRNAs) are endogenous, small non-coding RNAs molecules with a length of 18-25 nucleotides. They were first reported in 1993 [11]. MicroRNA could identify post transcriptional gene regulators that paired to complementary sequences in the 3'untranslated region (3'UTR) of target mRNAs, and regulate protein-coding genes expression by mRNA degradation or translational repression [12]. These miRNAs may regulate the translation of specific protein-coding genes [13, 14].

Recent studies have revealed that microR-NA-21 (miR-21) is elevated in many kinds of cancer, including breast cancer [15, 16], colorectal cancer [17, 18], lung cancer [19, 20], pancreatic cancer [21, 22], prostate cancer [23], gastric cancer [23], glioblastoma [24], and is recognized a potential oncomicroRNA. Many studies have shown that overexpression of miR-21 could increase cell growth, migration, invasion, survival [25, 26] and inhibit apoptosis

[27]. Studies also demonstrate that miR-21 can modulate several tumor suppressor genes, including phosphatase and tensin homolog (PTEN) [28], tropomyosin 1 (TPM1) [29], programmed cell death 4 (PDCD4) [30], and may play a role in cancer invasion and metastasis.

Prognostic role of microR-NA-21 (miR-21) in breast cancer has been highlighted in some studies. However, controversy still remains. In this study, we aim to perform a meta-analysis to evaluate and predict the overall risk of high miR-21 expression for survival prognosis and clinicopathological features in breast can-

cer patients and discuss the challenges of miR-21 as a possible prognosis biomarker in breast cancer.

Material and methods

This meta-analysis was carried out in accordance with the guidelines of the meta-analysis of the Observational Studies in Epidemiology group (MOOSE) [31].

Search strategy

PubMed and EMBASE were searched for the last time on May 15, 2014. The search strategy included the following keywords: miR-21, microRNA-21, breast Cancer, breast carcinoma, prognostic and prognosis. A manual review of the references of relevant publications was also performed to obtain additional studies.

Study selection

Studies were considered eligible if they met the following criteria: (i) they had to study the patients with breast cancer; (ii) they had to detect the expression of miR-21 in tissue, serum, or other clinical samples; (iii) they had to investigate the survival outcome or the correlation between miR-21 expression and the clinical variables. (iv) the method for detecting miR-

First author	Year	Popu- lation	Study Design	Num- ber	Materials	Stage	Method	Cut-off	Survival analysis	Hazard Ratios	Follow-up, months	Quality score
Yan	2008	China	R	113	Tumor	1-111	qRT-PCR	Mean	OS	Reported	66.2 (10.4-81.0)	7
Qian	2008	Italy	R	301	Tumor	I-IV	qRT-PCR	Median	OS	Reported	86.2 (8.0-108)	6
										Reported	86.2 (8.0-108)	
Lee	2011	Korea	R	109	Tumor	1-111	qRT-PCR	Mean	OS	Reported	median 54	7
									DFS	SC	median 54	
OTA	2011	Japan	R	291	Bone marrow		qRT-PCR	5.84	OS	SC	61 (2-90)	7
									DFS	Reported	61 (2-90)	
Markou	2013	Greece	R	112	Tumor	I-IV	qRT-PCR	Median	OS	Reported	84 (10-149)	7
									DFI	Reported	84 (10-149)	
Walter	2011	the USA	R	25	Tumor	I-IV	qRT-PCR	Median	OS	SC	median 35.5	6

 Table 1. Clinical characteristics of studies included in the meta-analysis

The studies included here are all retrospective cohort studies with different groups of patients. qRT-PCR, quantitative real-time PCR; –, not mentioned; OS, overall survival: DFS. disease-free survival: DFI. disease-free interval: SC, survival curve.

21 must be same. Articles were excluded based on any of the following reasons: (i) review articles, laboratory articles or letters; (ii) They were described the survival outcome of other tumors or other markers; (iii) They lacked key information for calculation with methods developed by Parmar, Williamson , and Tierney [32-34]; (iv) They were not English; (v) the articles from one author and the studies brought into the repeated samples from the same patients when a study already included.

The information such as titles, abstracts, full texts and reference lists of all of the identified reports was carefully identified in duplicate by two investigators (Pan and Mao). These extracted articles were double checked by Geng. Disagreements were resolved by discussion among all authors in this paper. All the data were consensus. The references from the relevant literatures, including all the identified studies, reviews and editorials, were also reviewed manually.

Quality assessment

The quality of all the studies included was systematically evaluated according to a critical review checklist of the Dutch Cochrane Centre proposed by MOOSE [31, 35]. The current checklist included the following key points: (i) clear definition of study population and origin of country; (ii) clear definition of type of carcinoma; (iii) clear definition of study design; (iv) clear definition of outcome assessment; (v) clear definition of measurement of miR-21; (vi) sufficient period of follow-up. Any study without mentioning these points is excluded so as not to compromise the quality of the metaanalysis.

Data extraction

Data were extracted from each study according to the before-mentioned selection criteria. The primary information was collected in a form: first author's name, year of publication, country of origin, ethnicity, total number of cases, follow-up time, multivariate analysis, univariate analysis, kaplan-meier survival analysis, P value, 95% CI, and hazard ratios independently. Other extracted data elements were included as the following: age, gender, TNM stage, lymph status, histological classification, method of detecting miR-21, Estrogen Receptor (ER), Progesterone Receptor (PR), Her2/neu. An HR of > 1 was considered significant association with a poorer outcome. If only survival curves were available, data were extracted from the graphical survival plots and HR was then estimated according to the previously described method [32, 34].

Statistical methods

Statistics were conducted as described previously [36]. Hazard Ratios (*HRs*) and 95% confidence intervals (95% *CIs*) were calculated for each study. But some studies did not list the *HRs* or 95% confidence intervals (95% *CIs*) directly, only giving Kaplan-Meier survival curves instead. The necessary statistics were calculated using software developed by Matthew Sydes and Jayne Tierney (Medical Research Council Clinical Trials Unit, London, UK) [34].

A				Hazard Ratio		Haz	ard Ratio)	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI		IV, Ran	<u>dom, 95</u>	% CI	
Lee 2011	1.671	0.866	9.7%	5.32 [0.97, 29.03]				•	-
Markou 2014	0.391	0.357	20.9%	1.48 [0.73, 2.98]			+		
Ota 2011	1.14	0.47	17.8%	3.13 [1.24, 7.86]					
Qian 2008	0.113	0.227	24.3%	1.12 [0.72, 1.75]			+		
Walter 2011	-0.713	1.008	7.9%	0.49 [0.07, 3.53]			<u> </u>		
Yan 2008	1.7	0.417	19.3%	5.47 [2.42, 12.40]			-	•	
Total (95% CI)			100.0%	2.11 [1.09, 4.08]			•		
Heterogeneity: Tau ² = 0	0.41; Chi² = 16.33, df	= 5 (P =	= 0.006); I	² = 69%		01	1	10	100
Test for overall effect: 2	Z = 2.22 (P = 0.03)			Fa		U. I experiment:	al Favoi	irs cont	rol
_						одрентнени			101
В				Hazard Ratio		Haza	rd Ratio	,	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI		IV, Fix	ed, 95%	CI	
Lee 2011	0.75	0.66	2.5%	2.12 [0.58, 7.72]				_	
Markou 2014	0.566	0.284	13.7%	1.76 [1.01, 3.07]					
Ota 2011	0.489	0.14	56.4%	1.63 [1.24, 2.15]					
Qian 2008	0.351	0.201	27.4%	1.42 [0.96, 2.11]			-		
Total (95% CI)			100.0%	1.60 [1.30, 1.96]			•		
Heterogeneity: Chi ² = (0.66, df = 3 (P = 0.88	3); I² = C	1%	ł	⊢ ∩ ∩1	01	1	10	100
Test for overall effect:	Fav	ours e	xperimenta	l Favou	irs cont	rol			

Figure 2. Forest plot of studies evaluating hazard ratio (HR) for the association of high miR-21 expression with overall survival (OS) (A) and disease-free survival (DFS) (B) in patients with breast cancer patients.

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% C	IV, Fixed, 95% CI
1.1.1 Asian Subgroup)				
Lee 2011	1.671	0.866	11.5%	5.32 [0.97, 29.03]	
Ota 2011	1.14	0.47	39.0%	3.13 [1.24, 7.86]	
Yan 2008	1.7	0.417	49.5%	5.47 [2.42, 12.40]	
Subtotal (95% CI)			100.0%	4.39 [2.47, 7.80]	•
Heterogeneity: Chi ² = (0.85, df = 2 (P = 0.65)	; l² = 09	6		
Test for overall effect: 2	Z = 5.04 (P < 0.0000)	1)			
1.1.2 non Asian					
Markou 2014	0.391	0.357	27.8%	1.48 [0.73, 2.98]	
Qian 2008	0.113	0.227	68.7%	1.12 [0.72, 1.75]	-
Walter 2011	-0.713	1.008	3.5%	0.49 [0.07, 3.53]	
Subtotal (95% CI)			100.0%	1.18 [0.81, 1.70]	•
Heterogeneity: Chi ² = 2	1.21, df = 2 (P = 0.55)	; l ² = 09	6		
Test for overall effect:	Z = 0.86 (P = 0.39)				
				F	avours experimental Eavours control
T (C) (C	01 12 44.07		D 0.000		avours experimental Favours control

Test for subaroup differences: $Chi^2 = 14.27$. df = 1 (P = 0.0002). $I^2 = 93.0\%$

Figure 3. Forest plot of studies evaluating hazard ratio (HR) for the association of high miR-21 expression with overall survival (OS) stratified according to source of ethnicity.

Forest plots were used to estimate the aggregation effect of miR-21 expression on survival outcome (OS and DFS) and the correlation between miR-21 expression and clinical variables. Subgroup analysis of pooled hazard ratios was performed subsequently by ethnicity. For each meta-analysis performed, Cochran's Q test and Higgins I-squared statistic were carried out to assess the between-study heterogeneity, and heterogeneity was consid-

					Heter	ogeneity					
Subgroup	Number of studies	Number of patients	HR (95% CI)	P value	l²(%)	P value					
Patients' ethnicity											
Asian	3	513	4.39 (2.47-7.80)	0.00001	0%	0.65					
non-Asian	3	438	1.18 (0.81-1.70)	0.39	0%	0.55					
Number of patients											
>200	2	592	1.72 (0.64-4.65)	0.28	74%	0.05					
<200	4	359	2.4 (0.89-6.44)	0.08	67%	0.03					

 Table 2. Subgroup analysis of pooled HRs of breast cancer patients with high

 miR-21 expression for OS

Table 3. HRs (95% CI) of sensitivity analysis on OS for the metaanalysis

					Heter	ogeneity
Study omitted	Estimat- ed <i>HR</i>	Low value of 95% <i>Cl</i>	High value of 95% Cl	P value	l² (%)	P value
Yan 2008	1.42	1.01	1.99	0.04	46%	0.12
Qian 2008	2.6	1.26	5.36	0.01	57%	0.05
Lee 2011	1.91	0.96	3.82	0.07	73%	0.006
OTA 2011	1.94	0.9	4.18	0.09	72%	0.006
Walter 2011	2.39	1.2	4.74	0.01	73%	0.005
Markou 2013	2.32	0.97	5.54	0.06	75%	0.003
Combined	2.11	1.09	4.08	0.03	69%	0.006

 Table 4. HRs (95% CI) of sensitivity analysis on DFS for the metaanalysis

					Hete	roge-
					ne	eity
Study omitted	Estimat-	Low value	High value	Dvoluo	12 (0/)	Р
	ed HR	of 95% CI	of 95% CI	F value	1 (70)	value
Qian 2008	1.67	1.31	2.13	0.0001	0%	0.91
Lee 2011	1.59	1.29	1.95	0.0001	0%	0.79
OTA 2011	1.56	1.14	2.13	0.006	0%	0.74
Markou 2013	1.57	1.26	1.96	0.0001	0%	0.77
Combined	1.6	1.3	1.96	0.00001	0%	0.88

ered significant for P < 0.1. A random-effects model with DerSimonian and Laird method were then applied to calculate the poor *HR*, if heterogeneity was observed (P < 0.1), Otherwise, the fixed-effects model was used [37]. Pooled *HR* > 1 indicated poor prognosis for the groups with elevated miR-21 expression and was considered statistically significant if the 95% *CI* did not overlap 1. Sensitivity analysis was applied by excluding each single study. Finally, publication bias was evaluated using the funnel plot, Begg's test [38], Egger's test [39]. P > 0.05 was considered that there was no potential publication bias in the meta-analysis. All analyses were executed using the software Review Manager 5.1 (The Cochrane Collaboration,Oxford,United Kingdom) and Stata 12.0 (http://www.stata.com/; Stata C-College Station

orporation, College Station, Texas, USA).

Results

Characteristics of the studies included in Meta-analysis

As shown in Figure 1, 130 records for miR-21 and breast cancer were identified in Pubmed and EMBASE. After reviewing these abstracts, 112 studies were excluded due to their irrelevance to the current analysis, letters, reviews and duplicate studies. Furthermore, 12 potential studies were excluded, due to laboratory studies or records without sufficient survival data for calculation. Therefore, 6 eligible articles were enrolled in this meta-analysis [40-45].

These eligible studies were published between 2008 and 2013. One studies evaluated patients from China, one eval-

uated patients from Italy, one evaluated patients from Korea, one evaluated patients from Japan, one evaluated patients from Greek, and one evaluated patients from the United States of America. These studies included a total of 951 patients with a mean number of 158.5 patients per study. These six eligible studies were all retrospective cohort studies. The method of miR-21 detection was all quantitative real-time polymerase chain reaction (qRT-PCR). MiR-21 expression levels were measured in tumor tissue or bone marrow. The mean or medium length of follow-up ranged

A	Exporim	ontal	Contr			Odde Patio	Odds Patio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% C	M-H. Fixed, 95% Cl
Lee 2011	14	73	17	36	30.2%	0.27 [0.11, 0.64]	
Ota 2011	24	194	23	97	44.2%	0.45 [0.24, 0.86]	
Walter 2011	2	3	6	13	1.2%	2.33 [0.17, 32.58]	
Yan 2008	30	57	31	56	24.3%	0.90 [0.43, 1.88]	
Total (95% CI)		327		202	100.0%	0.53 [0.35, 0.80]	-
Total events	70	(77	00/			
Test for overall effect:	5.77, at = 3 7 = 3.04 (P	(P = 0.2)	12); 1~ = 4 2)	8%			0.01 0.1 1 10 100
rest for overall effect.	2 - 3.04 (F	- 0.002	-)			Fa	avours experimental Favours control
В							
	Experime	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Lee 2011	14	65	17	44	24.9%	0.44 [0.19, 1.02]	
Walter 2011	3	100	29	120	47.3%		
Yan 2008	33	65	28	48	2.9%	0.74 [0.35, 1.56]	
	00	00	20	10	21.070	0.14 [0.00, 1.00]	
Total (95% CI)		302		222	100.0%	0.49 [0.32, 0.74]	\bullet
Total events	67		79				
Heterogeneity: Chi ² = 2	2.57, df = 3	(P = 0.4	46); I² = 0	%			
Test for overall effect:	Z = 3.37 (P	= 0.000)7)			Fa	avours experimental Favours control
0							
C	Experime	ental	Contro	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Lee 2011	17	47	14	62	26.1%	1.94 [0.84, 4.51]	+
Ota 2011	25	117	22	174	47.1%	1.88 [1.00, 3.52]	
Walter 2011	10	16	1	7	1.8%	10.00 [0.96, 104.49]	
Yan 2008	42	64	19	49	25.0%	3.01 [1.39, 6.52]	
		244		202	100.0%	2 22 14 54 2 501	
Total (95% CI)	04	244	50	292	100.0%	2.32 [1.54, 3.50]	
Heterogeneity: Chi ² = 1	94 254 df - 3	(P - 0 4	00 7)· 12 – 00	0/-			
Test for overall effect:	Z = 4.02 (P)	< 0.000	1)	/0		_	0.01 0.1 1 10 100
		0.000	.,			Fa	vours experimental Favours control
D	E		Questi	-1		Odda Datia	
D Study or Subgroup	Experime	ental	Contr	ol Total	Woight	Odds Ratio	Odds Ratio
D Study or Subgroup	Experime Events	ental <u>Total</u>	Contr Events	ol <u>Total</u> 67	Weight	Odds Ratio <u>M-H, Fixed, 95% C</u>	Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011	Experime Events 18 21	ental <u>Total</u> 42 74	Contr Events 13 26	ol <u>Total</u> 67 215	Weight 22.5% 37.4%	Odds Ratio M-H. Fixed, 95% C 3.12 [1.32, 7.36] 2.88 [1.50, 5.52]	Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011	Experime Events 18 21 9	ental <u>Total</u> 42 74 17	Contr Events 13 26 4	ol <u>Total</u> 67 215 8	Weight 22.5% 37.4% 10.1%	Odds Ratio <u>M-H. Fixed, 95% C</u> 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05]	Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008	Experime Events 18 21 9 49	ental <u>Total</u> 42 74 17 85	Contr Events 13 26 4 12	ol <u>Total</u> 67 215 8 28	Weight 22.5% 37.4% 10.1% 30.0%	Odds Ratio <u>M-H. Fixed, 95% Cl</u> 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30]	Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008	Experime Events 18 21 9 49	ental <u>Total</u> 42 74 17 85	Contr Events 13 26 4 12	ol <u>Total</u> 67 215 8 28	Weight 22.5% 37.4% 10.1% 30.0%	Odds Ratio <u>M-H. Fixed, 95% Cl</u> 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30]	Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% CI)	Experime Events 18 21 9 49	ental <u>Total</u> 42 74 17 85 218	Contr Events 13 26 4 12	ol <u>Total</u> 67 215 8 28 318	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio M-H, Fixed, 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75]	Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% CI) Total events	Experime Events 18 21 9 49 97	ental <u>Total</u> 42 74 17 85 218	Contr Events 13 26 4 12 55	ol <u>Total</u> 67 215 8 28 28 318	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio M-H. Fixed, 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75]	Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% CI) Total events Heterogeneity: Chi ² =	Experime Events 18 21 9 49 49 97 1.83, df = 3	ental <u>Total</u> 42 74 17 85 218 (P = 0.6	Contr Events 13 26 4 12 55 51); I ² = 0	ol <u>Total</u> 215 8 28 318 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio M-H. Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75]	Odds Ratio M-H, Fixed, 95% Cl
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect:	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P	ental <u>Total</u> 42 74 17 85 218 (P = 0.6 < 0.000	Contr Events 13 26 4 12 55 51); I ² = 0 01)	ol <u>Total</u> 67 215 8 28 28 318	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio M-H. Fixed. 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75]	Odds Ratio M-H, Fixed, 95% Cl
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect:	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P	ental <u>Total</u> 42 74 17 85 218 (P = 0.6 < 0.000	Contr Events 13 26 4 12 55 51); I ² = 0 01)	ol <u>Total</u> 67 215 8 28 28 318	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio <u>M-H. Fixed. 95% Cf</u> 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75]	Odds Ratio M-H, Fixed, 95% Cl
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P	ental <u>Total</u> 42 74 17 85 218 (P = 0.6 < 0.000 ental	Contr Events 13 26 4 12 55 61); I ² = 0 11) Contr	ol <u>Total</u> 67 215 8 28 318 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E <u>Study or Subgroup</u>	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events	ental <u>Total</u> 42 74 17 85 218 (P = 0.6 < 0.000 ental <u>Total</u>	Contr Events 13 26 4 12 55 61); I ² = 0 11) Contr Events	ol <u>Total</u> 67 215 8 28 318 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cf	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E <u>Study or Subgroup</u> Lee 2011	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19	ental <u>Total</u> 42 74 17 85 218 (P = 0.6) < 0.000 ental <u>Total</u> 41	Contr Events 13 26 4 12 55 61); I ² = 0 11) Contr Events 12	ol <u>Total</u> 67 215 8 28 318 318 % 0l <u>Total</u> 67	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6%	Odds Ratio <u>M-H, Fixed, 95% Cf</u> 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio <u>M-H, Fixed, 95% Cf</u> 3.96 [1.65, 9.50]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: E <u>Study or Subgroup</u> Lee 2011 Ota 2011	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15	ental <u>Total</u> 42 74 17 85 218 (P = 0.6) < 0.000 ental <u>Total</u> 41 32	Contr Events 13 26 4 12 55 51); I ² = 0 11) Contr Events 12 22	ol <u>Total</u> 215 8 28 318 % ol <u>Total</u> 67 138	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Nours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8	ental Total 42 74 17 85 218 (P = 0.6 < 0.000 ental Total 41 32 16	Contr Events 13 26 4 12 55 51); I ² = 0 11) Contr Events 12 22 0	ol <u>Total</u> 215 8 28 318 % ol <u>Total</u> 67 138 0	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable	Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Tatel (05% CI)	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8	ental Total 42 74 17 85 218 (P = 0.6 < 0.000 ental Total 41 32 16 20	Contr Events 13 26 4 12 55 51); I ² = 0 01) Contr Events 12 22 0	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 225	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4%	Odds Ratio M-H, Fixed, 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cl 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable	Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% CI) Total overation	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8	ental Total 42 74 17 85 218 (P = 0.6 < 0.000 ental Total 41 32 16 89	Contr Events 13 26 4 12 55 51); I ² = 0 01) Contr Events 12 22 0	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4%	Odds Ratio <u>M-H, Fixed, 95% Cl</u> 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio <u>M-H, Fixed, 95% Cl</u> 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85]	Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² =	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07 df = 1	ental Total 42 74 17 85 218 (P = 0.6 < 0.000 ental Total 41 32 16 89 (P = 0.7)	Contr Events 13 26 4 12 55 51); I ² = 0 01) Contr Events 12 22 0 34 79): I ² = 0	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio M-H. Fixed. 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H. Fixed. 95% Cl 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85]	Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect:	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P	ental Total 42 74 17 85 218 (P = 0.6 < 0.000 ental Total 41 32 16 89 (P = 0.7) < 0.000	Contr Events 13 26 4 12 55 51); I ² = 0 01) Contr Events 12 22 0 34 79); I ² = 0	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0%	Odds Ratio M-H. Fixed. 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H. Fixed. 95% Cl 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85]	Odds Ratio M-H. Fixed. 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio M-H. Fixed. 95% Cl 0.01 0.1 1 10 100 0.01 0.1 1 10 100
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect:	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P	ental Total 42 74 17 85 218 (P = 0.6 < 0.000) ental Total 41 32 16 89 (P = 0.7 < 0.000)	Contr Events 13 26 4 12 55 51); $I^2 = 0$ 01) Contr Events 12 22 0 34 79); $I^2 = 0$ 001)	ol Total 67 215 8 28 318 % 0 Total 67 138 0 205 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4%	Odds Ratio M-H, Fixed, 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Godds Ratio M-H, Fixed, 95% Cl 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control
D <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E <u>Study or Subgroup</u> Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: F	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P	ental Total 42 74 17 85 218 (P = 0.6 < 0.000) ental Total 41 32 16 89 (P = 0.7 < 0.000)	Contr Events 13 26 4 12 55 51); $I^2 = 0$ 01) Contr Events 12 22 0 34 79); $I^2 = 0$ 34 79); $I^2 = 0$	ol Total 67 215 8 28 318 % 0 Total 67 138 0 205 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4%	Odds Ratio M-H, Fixed, 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cl 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: F	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime	ental Total 42 74 17 85 218 (P = 0.6 < 0.000) ental Total 41 32 16 89 (P = 0.7) < 0.000 ental Total 16 89 (P = 0.6) < 0.000 ental 16 89 (P = 0.7) < 0.000 ental 17 16 16 16 16 16 16 16 16 16 16	Contr Events 13 26 4 12 55 51); $I^2 = 0$ 01) Contr Events 12 22 0 34 79); $I^2 = 0$ 001) Contr	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4%	Odds Ratio M-H, Fixed, 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cl 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = (Test for overall effect: F Study or Subgroup	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime Events	ental Total 42 74 17 85 218 (P = 0.6 < 0.000) ental Total 41 32 16 89 (P = 0.7 < 0.000) ental (P = 0.7 < 0.000) ental 70 < 0.000) ental 89 (P = 0.7 < 0.000) ental 70 < 0.0000) ental 70 < 0.00000) ental 70 < 0.00000) ental 70 < 0.00000) ental 70 < 0.000000000000000000000000000000000	Contr Events 13 26 4 12 55 51); $I^2 = 0$ 01) Contr Events 12 22 0 34 79); $I^2 = 0$ 001) Contr Events 22 0 34 79); $I^2 = 0$	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol <u>Total</u>	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4% 100.0%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio M-H, Fixed, 95% Cf 1.00 (2.0.2, 0.00)	Odds Ratio M-H, Fixed, 95% CI M-H, Fixed, 95% CI 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio M-H, Fixed, 95% CI 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio M-H, Fixed, 95% CI
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total events Heterogeneity: Chi ² = (Test for overall effect: F Study or Subgroup Lee 2011 Uta 2011 Chi ² = (Study or Subgroup) Lee 2011 Chi ² = (Study or Subgroup) Lee 2011 Verter 2011	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime Events 11 7	ental Total 42 74 17 85 218 $(P = 0.6)^2 < 0.000^2$ ental 41 32 16 89 $(P = 0.7)^2 < 0.000^2$ ental Total 32 16 89 $(P = 0.7)^2 < 0.000^2$ ental 32 37 17 17 17 17 17 17 17 17 17 1	Contr Events 13 26 4 12 55 51); $I^2 = 0$ 11) Contr Events 12 22 0 11) 79); $I^2 = 0$ 001) Contr Events 22 00 01) 22 00 24 79); $I^2 = 0$	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol <u>Total</u> 72 2	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4% 100.0% Weight 45.7%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio M-H, Fixed, 95% Cf 1.10 [0.46, 2.63] 1.31 [0.47, 40.25]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl Odds Ratio M-H, Fixed, 95% Cl Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total events Heterogeneity: Chi ² = 1 Test for overall effect: F Study or Subgroup Lee 2011 Valter 2011 Walter 2011 Valter 2011 Yan 2008	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime Events 11 7 36	ental Total 42 74 17 85 218 $(P = 0.6)^2 < 0.000^2$ ental 41 32 16 89 $(P = 0.7)^2 < 0.000^2$ ental 37 15 58	Contr Events 13 26 4 12 55 51); $ ^2 = 0$ 11) Contr Events 12 22 0 79); $ ^2 = 0$ 34 79); $ ^2 = 0$ 001) Contr Events 22 0 001)	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol <u>Total</u> 72 55	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4% 100.0% Weight 45.7% 7.7% 46.6%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Cdds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio M-H, Fixed, 95% Cf 1.10 [0.46, 2.63] 1.31 [0.17, 10.26] 1.96 [0.93, 4.15]	Odds Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 wours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 0.01 0.1 1 0 100 0.01 0.1 1 0 100 0.01 0.1 1 0 00 0.01 0.1 0 00 0.01 0 00 0.00 00 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 00
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total events Heterogeneity: Chi ² = 1 Test for overall effect: F Study or Subgroup Lee 2011 Total events Heterogeneity: Chi ² = 1 Test for overall effect: F	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime Events 11 7 36	ental Total 42 74 17 85 218 (P = 0.6) < 0.000 ental 16 89 (P = 0.7) < 0.000 ental 32 16 89 (P = 0.7) < 0.000 ental 37 15 58	Contr Events 13 26 4 12 55 51); $ ^2 = 0$ 11) Contr Events 12 22 0 79); $ ^2 = 0$ 001) Contr Events 22 22 00 22 25	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol <u>Total</u> 72 55	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4% 100.0% Weight 45.7% 7.7% 46.6%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Cdds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio M-H, Fixed, 95% Cf 1.10 [0.46, 2.63] 1.31 [0.17, 10.26] 1.96 [0.93, 4.16]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 wours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl Odds Ratio M-H, Fixed, 95% Cl Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: F Study or Subgroup Lee 2011 Valter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: F Study or Subgroup Lee 2011 Walter 2011 Yan 2008 Total (95% Cl)	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime Events 11 7 36	ental Total 42 74 17 85 218 (P = 0.6) < 0.000 ental 16 89 (P = 0.7) < 0.000 ental 16 89 < 0.000 ental 16 89 < 0.000 ental 17 15 58 110	Contr Events 13 26 4 12 55 51); $ ^2 = 0$ 11) Contr Events 12 22 0 79); $ ^2 = 0$ 001) Contr Events 20 2 25	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol <u>Total</u> 72 55 55 132	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4% 100.0% Weight 45.7% 7.7% 46.6%	Odds Ratio M-H, Fixed, 95% Cl 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cl 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio M-H, Fixed, 95% Cl 1.10 [0.46, 2.63] 1.31 [0.17, 10.26] 1.96 [0.93, 4.16] 1.52 [0.88, 2.62]	Odds Ratio M-H, Fixed, 95% Cl M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 M-H, Fixed, 95% Cl Odds Ratio M-H, Fixed, 95% Cl Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: F Study or Subgroup Lee 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: F Study or Subgroup Lee 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime Events 11 7 36 54	ental Total 42 74 17 85 218 (P = 0.6 < 0.000 ental 10 (P = 0.7) < 0.000 ental (P = 0.7) < 0.000 ental 32 16 89 (P = 0.7) < 0.000 ental 10 10 10 15 58 110	Contr Events 13 26 4 12 55 51); I ² = 0 11) Contr Events 12 22 0 34 79); I ² = 0 001) Contr Events 20 2 25 47	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol <u>Total</u> 72 55 132	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4% 100.0% Weight 52.6% 47.4% 100.0% Weight 46.6% 100.0%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio M-H, Fixed, 95% Cf 1.10 [0.46, 2.63] 1.31 [0.17, 10.26] 1.96 [0.93, 4.16] 1.52 [0.88, 2.62]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl Odds Ratio M-H, Fixed, 95% Cl Odds Ratio
D Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: E Study or Subgroup Lee 2011 Ota 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: F Study or Subgroup Lee 2011 Walter 2011 Total (95% Cl) Total events Heterogeneity: Chi ² = 1 Valter 2011 Yan 2008 Total (95% Cl) Total events Heterogeneity: Chi ² = 4	Experime Events 18 21 9 49 97 1.83, df = 3 Z = 4.06 (P Experime Events 19 15 8 42 0.07, df = 1 Z = 4.72 (P Experime Events 11 7 36 54 0.99, df = 2	ental Total 42 74 17 85 218 (P = 0.6 < 0.000 ental 10 (P = 0.7) < 0.000 ental 10 (P = 0.7) < 0.000 ental 10 (P = 0.7) < 0.000 ental 10 (P = 0.7) < 0.000 (P = 0.6) (P = 0.6)	Contr Events 13 26 4 12 55 51); $ ^2 = 0$ 11) Contr Events 12 22 0 34 79); $ ^2 = 0$ 001) Contr Events 20 21 20 001; $ ^2 = 0$ 001) Contr Events 22 0 34 79; $ ^2 = 0$ 12 23 47 57 57 57 57 57 57 57 57 57 5	ol <u>Total</u> 67 215 8 28 318 % ol <u>Total</u> 67 138 0 205 % ol <u>Total</u> 72 55 132 %	Weight 22.5% 37.4% 10.1% 30.0% 100.0% Weight 52.6% 47.4% 100.0% Weight 45.7% 7.7% 46.6%	Odds Ratio M-H, Fixed, 95% Cf 3.12 [1.32, 7.36] 2.88 [1.50, 5.52] 1.13 [0.21, 6.05] 1.81 [0.77, 4.30] 2.44 [1.58, 3.75] Fa Odds Ratio M-H, Fixed, 95% Cf 3.96 [1.65, 9.50] 4.65 [2.03, 10.68] Not estimable 4.29 [2.34, 7.85] Fa Odds Ratio M-H, Fixed, 95% Cf 1.10 [0.46, 2.63] 1.31 [0.17, 10.26] 1.96 [0.93, 4.16] 1.52 [0.88, 2.62]	Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio M-H, Fixed, 95% Cl 0.01 0.1 1 10 100 Avours experimental Favours control Odds Ratio

MicroRNA-21 and breast cancer

Figure 4. Forrest plot of odds ratios (ORs) for the association of miR-21 expression with clinicopathological features in breast cancer. A. ORs with corresponding 95% Cls of miR-21 expression with Estrogen Receptor (ER). B. ORs with corresponding 95% Cls of miR-21 expression with Progesterone Receptor (PR). C. ORs with corresponding 95% Cls of miR-21 expression with lymphnode metastasis. D. ORs with corresponding 95% Cls of miR-21 expression with Histologic grade. E. ORs with corresponding 95% Cls of miR-21 expression with age.

						Heter	ogeneity
Clinicopathological features	Number of studies	Number of patients	Model	Pooled <i>OR</i> (95% <i>Cl</i>)	P value	l² (%)	P value
ER (postive vs. negative)*	4	529	Fixed	0.53 (0.35-0.80)	0.002	48%	0.12
PR (postive vs. negative)*	4	524	Fixed	0.49 (0.32-0.74)	0.0007	0%	0.46
Lymph node metastasis (postive vs. negative)	4	536	Fixed	2.32 (1.54-3.50)	0.0001	0%	0.47
Histologic grade (G3 vs. G1, 2)	4	536	Fixed	2.44 (1.58-3.75)	0.0001	0%	0.61
HER2/neu (postive vs. negative)	3	294	Fixed	4.29 (2.34-7.85)	0.00001	0%	0.79
Age (> median vs. < median)	3	242	Fixed	1.52 (0.88-2.62)	0.13	0%	0.61

Table 5. Meta-analysis of miR-21 expression classified by clinical features

*ER: Estrogen Receptor; PR: Progesterone Receptor.

from 35.5 to 86.2 months. Characteristics of the eligible studies are summarized in **Table 1**.

Methodological quality of the studies

The qualities of 6 eligible studies included in our meta-analysis were assessed according to the Newcastle-Ottawascale (NOS). The NOS contained eight items of methodology, which were categorized into the three dimensions of selection, comparability, and outcome. It was used to assess the quality of non-randomized studies in meta-analysis. For quality, scores ranged from 0 (lowest) to 9 (highest), and studies with scores of more than 5 were identified as high quality. All these 6 eligible studies gained more than 5 scores in methodological assessment, indicating that they were of high quality relatively (**Table 1**).

Correlation between miR-21 expression and survival outcome (OS and DFS)

The meta-analysis was performed on 6 studies [40-45] assessing the association of miR-21 expression with OS and DFS. As shown in **Figure 2**, the pooled *HR* for OS was 2.11 (95% *Cl*: 1.09-4.08; *Z* = 2.22; *P* = 0.03) with heterogeneity (l^2 = 69.0%, *P* = 0.006). In the case of heterogeneity, a random-effects model was used. The pooled *HR* of four studies [41-43, 45] for DFS was 1.60 (95% *Cl*: 1.30-1.96; *Z* = 4.46; *P* < 0.00001) with no heterogeneity (l^2 = 0%, *P* = 0.88), and the fixed efforts model was used. It suggested that high miR-21 expression was

statistically significant with the worse prognosis of breast cancer and high miR-21 expression was a valuable prognostic factor in breast cancer.

Subgroup analysis

Moreover, we carried out subgroup analysis by the patients' ethnicity. The results showed that there was significant relation between high miR-21 expression and OS, especially in Asian countries (**Figure 3**) (**Table 2**). The combined HR of Asian studies [40, 42, 43] for OS was 4.39 (95% Cl: 2.47-7.80; Z = 5.04; P < 0.00001), while the combined *HR* of the other yielded non-Asian studies [41, 44, 45] was 1.18 (95% *Cl*: 0.81-1.70; *Z* = 0.86; *P* = 0.39). As a result of this subgroup analysis, the heterogeneity was both eliminated. We also tried to use the other grouping term to examine the prognostic role of miR-21, such as number of patients (**Table 2**). No results could give clinical significance.

Sensitivity analysis

The conclusions remained similar when a single study involved in the meta-analysis was removed each time to reflect the influence of the rest data-set on the pooled *HRs*. The summary *HR* for OS ranged from 1.42 (95% *Cl*: 1.01-1.99) after excluding the study of Yan [40] to 2.60 (95% *Cl*: 1.26-5.36) after excluding the study of Qian [41] (**Table 3**). The summary *HR* for DFS ranged from 1.56 (95% *Cl*: 1.14-2.13) after excluding the study of OTA to 1.67 (95%

Figure 5. A: Funnel Plots of elevated miR-21 expression and OS in patients with breast cancer. B: Funnel Plots of elevated miR-21 expression and DFS in patients with breast cancer.

Cl: 1.31-2.13) after excluding the study of Qian (**Table 4**).

Correlation between miR-21 expression and clinical characteristics

The studies which referred the association between miR-21 expression and some clinical characteristics (ER, PR, lymph node metastasis, histological grade, Her2/neu, and age) have been combined to calculate the Odds ratios (ORs). Four studies [40, 42-44] evaluated the correlation between miR-21 expression and ER and PR. The pooled ORs were 0.53 (95% Cl: 0.35-0.80, P = 0.002) with no heterogeneity (I^2 = 48%, P = 0.12) and 0.49 (95% Cl: 0.32-0.74, P = 0.0007) with no heterogeneity ($I^2 = 0\%$, P =0.46) respectively, indicating that miR-21 expression was negatively related to ER and PR (Figure 4A and 4B) (Table 5). We also assessed the correlation between miR-21 expression and lymphnode node metastasis and Histologic grade. The pooled ORs were 2.32 (95% Cl: 1.54-3.50, P = 0.0001) and 2.44 (95% Cl: 1.58-3.75, P = 0.0001) respectively (Figure 4C and **4D**) (**Table 5**), which suggested that high miR-21 expression was associated with metastasis and histologic grade of breast cancer. Moreover, the association between miR-21 expression and Her2/neu was identified, with the pooled OR 4.29 (95% CI: 2.34-7.85, P = 0.00001), suggesting that high miR-21 expression was related to Her2/neu. Meanwhile, there was no significant association between high miR-21 expression and age (Figure 4E). All these results could be reviewed in Table 5.

Assessment of publication bias

In the funnel plot analysis, the shape of the funnel plot seemed symmetrical for both OS and DFS. Egger's test and Begg's test were used to examine publication bias. There were no significant publication biases in the meta-analysis of miR-21 prediction value for OS (Egger's test, P= 0.429; Begg's test, P = 0.999) and DFS (Egger's test, P = 0.521; Begg's test, P = 0.308) respectively (**Figure 5**).

Discussion

Alteration of biological markers in tumor tissues plays an important role in predicting the prognostic value of the breast cancer patients [10]. Breast cancer is a malignant disease and is known to be quite complex and heterogeneous in development, progress and response to treatment. As a result, biomarkers available such as ER, PR, HER2, could not reflect the whole prognostic significance for breast cancer patients. Therefore, besides ER, PR, and HER2, it is important to find out new prognostic biomarkers for patients with breast cancer.

Recently, numbers of studies are emerging that microRNA could be considered as revolutionary sources of biomarkers for cancer prognosis [46]. MiR-21, known as a potential oncogenic role, is one of the most commonly observed aberrant miRNAs in a variety of cancers [15-24]. And it could be measured stably and easily in tumor tissues, formalin-fixed paraffin-embedded tissues and blood circulation [14, 47]. In breast cancer, some studies found that miR-21

was significantly associated with patients' survival [40, 43]. However, insignificant results of miR-21 were also observed in other studies [41]. Meta-analysis is a systematical approach applied widely to the evaluation of prognostic indicators in different studies. There is no consensus on the association between high miR-21 expression and poor survival prognosis in patients with breast cancer currently, nevertheless the prognostic role of miR-21 has been discussed in head and neck squamous cell carcinoma (HNSCC), non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC) [36, 48, 49]. Thus, a quantitative meta-analysis was performed to determine the association between miR-21 expression and the survival prognosis and clinicopathological features in breast cancer patients.

This meta-analysis revealed that elevated miR-21 expression did predict poor survival in patients of breast cancer. The pooled HR for OS was 2.11 (95% Cl: 1.09-4.08, P = 0.03) with heterogeneity ($I^2 = 69.0\%$, P = 0.006). The differences of HRs were found to be statistically significant, but significant heterogeneity was also observed among the studies. Then we used random effects model to analyze the data, however, heterogeneity was still a potential problem to affect meta-analysis results. Moreover, the result remained similar in a sensitivity analysis when a single study was removed each time. After subgroup analysis by the patients' ethnicity, the heterogeneity was eliminated both in Asian studies and non-Asian studies. The HR for Asian countries was 4.39 (95% Cl: 2.47-7.80, P < 0.00001). It suggested that the miR-21 expression played significant prognostic role on breast cancer in Asian group. Meanwhile, the combined HR for non-Asian group was 1.18 (95% CI: 0.81-1.70, P = 0.39), which suggested that the miR-21 had no significant effect to predict survival outcome in non-Asian group. As a result, the heterogeneity in this meta-analysis might be explained by the patients' ethnicity and miR-21 expression could be racial different as a prognostic factor. The pooled HR for DFS was 1.60 (95% C/: 1.30-1.96, P < 00001) with no heterogeneity ($I^2 =$ 0%, P = 0.88). The difference was statistically significant, though the HR was not so strong. As referred in Hayes [50], a prognostic factor with HR > 2 is considered strongly predictive. Combining the results for OS and DFS, it may suggest that miR-21 expression in breast cancer patients could predict their prognosis practically, especially in the Asian population.

Furthermore, the correlation between miR-21 expression and clinical characteristics was calculated. There was no significant association between high miR-21 expression and age, while ORs for ER, PR, lymph node metastasis, histological grade, Her2/neu, were significant. Thus, elevated miR-21 expression was closely associated with worse clinical characteristics.

Still some limitations existed in this meta-analysis. First, there are only six studies included in this meta-analysis and the pooled HR was calculated on the basis of these 6 studies with a small sample size of 951 patients. Second, the cut-off values of miR-21 were different in the selected studies. Median and mean values were often chosen as the cut-off values. However, there was no final conclusion to confirm how high was considered high. Third, miR-21 was detected in tumor tissue and bone marrow but few in serum or plasma in the selected studies. Circulating prognostic markers were more likely to be accepted than tissue markers and it could be detected before surgery and be monitored throughout the lives of the cancer patients. Fourth, this meta-analysis did not evaluate the prognostic value of a combination of miR-21 and other miRNA markers for breast cancer cases. Fifth, some studies didn't provide HRs, and the data were extracted from survival curves, which might be of less credibility than direct analysis on HRs.

Publication bias is a major concern for metaanalysis. In our research, neither Egger's test nor Begger's test showed evidence of publication bias; however, bias might still have occurred. It should be noted that positive results tend to be accepted by journals, while negative results are often rejected or not even submitted.

In conclusion, our meta-analysis showed that elevated miR-21 expression was significantly associated with poor survival in breast cancer patients and might potentially predict the poor survival in patients with breast cancer. More multi-center clinical investigations with larger sample size should be conducted to further confirm these results.

Acknowledgements

We would like to thank Cancer Center, Division of Internal Medicine, Chinese PLA General Hospital and Chinese PLA Medical School.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Peiliang Geng, Cancer Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China. E-mail: gengpeiliang@hotmail.com

References

- [1] Berger U, Bettelheim R, Mansi JL, Easton D, Coombes RC and Neville AM. The relationship between micrometastases in the bone marrow, histopathologic features of the primary tumor in breast cancer and prognosis. Am J Clin Pathol 1988; 90: 1-6.
- [2] Morimoto T, Sasa M, Yamaguchi T, Kondo H, Akaiwa H and Sagara Y. Breast cancer screening by mammography in women aged under 50 years in Japan. Anticancer Res 2000; 20: 3689-3694.
- Westlake S and Cooper N. Cancer incidence and mortality: trends in the United Kingdom and constituent countries, 1993 to 2004. Health Stat Q 2008; 38: 33-46.
- [4] Lee BL, Liedke PE, Barrios CH, Simon SD, Finkelstein DM and Goss PE. Breast cancer in Brazil: present status and future goals. Lancet Oncol 2012; 13: e95-e102.
- [5] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687-1717.
- [6] Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, Yakovlev AY, Habbema JD and Feuer EJ. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 2005; 353: 1784-1792.
- [7] Duraker N and Caynak ZC. Prognostic value of the 2002 TNM classification for breast carcinoma with regard to the number of metastatic axillary lymph nodes. Cancer 2005; 104: 700-707.
- [8] Ferguson NL, Bell J, Heidel R, Lee S, Vanmeter S, Duncan L, Munsey B, Panella T and Orucevic A. Prognostic value of breast cancer subtypes, Ki-67 proliferation index, age, and pathologic tumor characteristics on breast cancer surviv-

al in Caucasian women. Breast J 2013; 19: 22-30.

- [9] Gebauer G, Fehm T, Lang N and Jager W. Tumor size, axillary lymph node status and steroid receptor expression in breast cancer: prognostic relevance 5 years after surgery. Breast Cancer Res Treat 2002; 75: 167-173.
- [10] Coradini D and Daidone MG. Biomolecular prognostic factors in breast cancer. Curr Opin Obstet Gynecol 2004; 16: 49-55.
- [11] Lee RC, Feinbaum RL and Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854.
- [12] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
- [13] Yang W, Lee DY and Ben-David Y. The roles of microRNAs in tumorigenesis and angiogenesis. Int J Physiol Pathophysiol Pharmacol 2011; 3: 140-155.
- [14] Ng EK, Wong CL, Ma ES and Kwong A. MicroR-NAs as New Players for Diagnosis, Prognosis, and Therapeutic Targets in Breast Cancer. J Oncol 2009; 2009: 305420.
- [15] Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M and Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065-7070.
- [16] Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S and Cole CN. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2007; 67: 11612-11620.
- [17] Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R and Vyzula R. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007; 72: 397-402.
- [18] Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM and Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299: 425-436.
- [19] Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM and Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189-198.
- [20] Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V and Lianidou ES. Prog-

nostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008; 54: 1696-1704.

- [21] Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A and Croce CM. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006; 24: 4677-4684.
- [22] Dillhoff M, Liu J, Frankel W, Croce C and Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 2008; 12: 2171-2176.
- [23] Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC and Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103: 2257-2261.
- [24] Chan JA, Krichevsky AM and Kosik KS. MicroR-NA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029-6033.
- [25] Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH and Li Y. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27: 4373-4379.
- [26] Yang CH, Yue J, Pfeffer SR, Handorf CR and Pfeffer LM. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem 2011; 286: 39172-39178.
- [27] Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY. miR-21-mediated tumor growth. Oncogene 2007; 26: 2799-2803.
- [28] Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST and Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647-658.
- [29] Zhu S, Si ML, Wu H and Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007; 282: 14328-14336.
- [30] Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S and Allgayer H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128-2136.
- [31] Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA and Thacker SB. Meta-analysis of ob-

servational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-2012.

- [32] Parmar MK, Torri V and Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998; 17: 2815-2834.
- [33] Williamson PR, Smith CT, Hutton JL and Marson AG. Aggregate data meta-analysis with time-to-event outcomes. Stat Med 2002; 21: 3337-3351.
- [34] Tierney JF, Stewart LA, Ghersi D, Burdett S and Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8: 16.
- [35] Hong L, Han Y, Yang J, Zhang H, Jin Y, Brain L, Li M and Zhao Q. Prognostic value of epidermal growth factor receptor in patients with gastric cancer: a meta-analysis. Gene 2013; 529: 69-72.
- [36] Ma XL, Liu L, Liu XX, Li Y, Deng L, Xiao ZL, Liu YT, Shi HS and Wei YQ. Prognostic role of microRNA-21 in non-small cell lung cancer: a meta-analysis. Asian Pac J Cancer Prev 2012; 13: 2329-2334.
- [37] Higgins JP, Thompson SG, Deeks JJ and Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560.
- [38] Begg CB and Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1101.
- [39] Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- [40] Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX and Shao JY. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008; 14: 2348-2360.
- [41] Qian B, Katsaros D, Lu L, Preti M, Durando A, Arisio R, Mu L and Yu H. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 2009; 117: 131-140.
- [42] Lee JA, Lee HY, Lee ES, Kim I and Bae JW. Prognostic Implications of MicroRNA-21 Overexpression in Invasive Ductal Carcinomas of the Breast. J Breast Cancer 2011; 14: 269-275.
- [43] Ota D, Mimori K, Yokobori T, Iwatsuki M, Kataoka A, Masuda N, Ishii H, Ohno S and Mori M. Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients. Int J Oncol 2011; 38: 955-962.
- [44] Walter BA, Gomez-Macias G, Valera VA, Sobel M and Merino MJ. miR-21 Expression in Preg-

nancy-Associated Breast Cancer: A Possible Marker of Poor Prognosis. J Cancer 2011; 2: 67-75.

- [45] Markou A, Yousef GM, Stathopoulos E, Georgoulias V and Lianidou E. Prognostic Significance of Metastasis-Related microRNAs in Early Breast Cancer Patients with a Long Follow-up. Clin Chem 2014; 60: 197-205.
- [46] Ferracin M, Veronese A and Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn 2010; 10: 297-308.
- [47] Chen J and Wang X. MicroRNA-21 in breast cancer: diagnostic and prognostic potential. Clin Transl Oncol 2014; 16: 225-33.

- [48] Fu X, Han Y, Wu Y, Zhu X, Lu X, Mao F, Wang X, He X and Zhao Y. Prognostic role of microR-NA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest 2011; 41: 1245-1253.
- [49] Xia X, Yang B, Zhai X, Liu X, Shen K, Wu Z and Cai J. Prognostic Role of microRNA-21 in Colorectal Cancer: a Meta-Analysis. PLoS One 2013; 8: e80426.
- [50] Hayes DF, Isaacs C and Stearns V. Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia 2001; 6: 375-392.