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Abstract: The present study was designed to evaluate the role of growth differentiation factor-5 (GDF-5) and bone 
morphogenetic protein type II receptor (BMPR-II) in the development of lumbar intervertebral disc degeneration 
(IDD). A total of 24 patients with lumbar IDD (experiment group) and 6 patients with lumbar vertebral fracture 
(control group) were enrolled in the study. Tissue samples of IVD from the experiment group and control group were 
obtained during lumbar fusion operation, respectively. Fixation and decalcification of IVD tissue were performed, 
and then HE staining was carried out to observe the morphological changes of the lumbar IVD tissues. The expres-
sion of GDF-5 and BMPRII in human lumbar IVD was detected by immunohistochemical staining. HE staining results 
showed that non- and minimal degeneration was found in 11 cases (score range, 0-3), moderate degeneration in 
12 cases (score range, 4-8), and severe degeneration in 7 cases (score range, 9-12). According to the immunohis-
tochemical results, the positive expression rates of GDF-5 and BMPRII in NP were higher than those in AF of the 
non- and minimal degeneration group, moderate degeneration group and severe degeneration group (all P < 0.05). 
However, no significant difference in GDF-5 or BMPRII positive expression was observed among the normal, non- 
and minimal, moderate and severe degeneration groups in neither NP area nor AF area (all P > 0.05). In conclusion, 
our results showed that GDF-5 and BMPRII expressed both in normal and degenerated IVD tissues, and GDF-5 
might have an inhibition effect on degenerated lumbar IVD, suggesting that gene therapy may be a useful approach 
in producing physiological effects during early- and late-phase of lumbar IDD.
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Introduction

Degenerative disc disease (DDD), a kind of 
chronic low back pain syndrome caused by 
intervertebral disc degeneration (IDD), had sev-
eral categories, including discogenic low back 
pain, lumbar instability, lumbar spinal stenosis 
and lumbar disc herniation (LDH) [1-3]. As the 
commonest DDD, LDH had an incidence rate of 
7.62% every year in the world, and people aged 
between 25 and 55 are associated with higher 
risk of LDH, resulting in great social, healthcare 
and economic burden [4, 5]. Meanwhile, DDD, 
as one of the major causes of chronic lower 
back pain, is characterized by a number of 
pathophysiological features, including lumba-
go, sciatica, cauda equina symptoms, as well 

as the senescence, apoptosis and endplate cal-
cification of nucleus and endplate cartilage 
cells, and the decline of the extracellular matrix 
(ECM) like type II collagen and proteoglycan, 
which may play important roles in maintaining 
disc functions [6-8]. Certainly, there are various 
risk factors of DDD, such as lumbar disc degen-
eration, injury, the anatomical factors on inter-
vertebral disc’s own weakness, genetic factors, 
lumbosacral congenital anomalies [9, 10]. 
Additionally, previous studies have shown that a 
variety of cytokines play an important role in 
the inhibition of DDD process, such as GDF-5, 
TGF-β, EGF, BMPs, IGF, FGF, etc. [11, 12].

Growth differentiation factor 5 (GDF-5), a mem-
ber of the bone morphogenetic protein (BMP) 
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family, is also referred to cartilage-derived mor-
phogenetic protein-1 or BMP-14 [13, 14]. GDF-5 
is a preproprotein synthesis composed of 501 
amino acids in human, and plays a regulatory 
role in promoting proliferations of osteoblast, 
periosteum cells, and connective tissue fibro-
blasts [15, 16]. Furthermore, GDF-5 has been 
extensively reported to enhance endochondral 
bone growth, normal development of limb skel-
etons and joints, and odontogenesis [17, 18]. It 
has also been confirmed previously that GDF-5 
enables regeneration and suppresses degen-
eration by intensify production of viable cells 
and matrix synthesis [19]. The underlying 
mechanisms may lie in that GDF-5 can stimu-
late proteoglycans (PG) and type II collagen pro-
duction in intervertebral disc (IVD) cells, and 
enhance cell proliferation and matrix synthesis 
in annulus fibrosus (AF) and nucleus pulposus 
(NP) cells, so as to inhibit IDD correspondingly 
[16, 20]. GDF-5 also binds to BMP type II recep-
tor (BMPR-II) and thought to play an important 
role in bone morphogenesis [13]. Bone mor-
phogenetic protein-2 (BMP-2) is known to be 
glycosylated polypeptide with 396 amino acids, 
and has greater osteoinductive activity than 
other BMPs [15]. Previous studies have showed 
that BMP-2 may be associated with orthotopic 
or ectopic bone formation and the osteogenic 
differentiation of mesenchymal stem cells [17, 
21]. Regenerative activity of BMP-2 has been 
unraveled by sufficient studies in animal mod-
els, including such aspects as bone formation, 
connective tissue attachment and cementum 
formation [18, 22, 23]. In addition, absence of 
BMP-2 has been demonstrated in blood ves-
sels of IVD, but BMP-2 has been found in NP 
cells of degenerated IVD, indicating that BMP-2 
may be not involved in degeneration but in 
regeneration of IVD [24, 25]. It has also been 
suggested that BMP-2 can promote PG synthe-
sis and ECM production in the articular chon-
drocytes and IVD [26]. In the current study, we 
intended to investigate the expression of GDF-5 
and BMP-2 in degenerated IVD, and to analyze 
the mutual correlation of GDF-5 and BMP-2 
expressions with the degree of IDD, providing 
optimize treatment strategies and propose new 
gene therapies for DDD.

Materials and methods

Ethics statement

The study was performed after the Institutional 
Review Board of Tongren Hospital Affiliated to 

Jiaotong University School of Medicine gave 
written permission. The informed written con-
sent was obtained from each eligible partici-
pant and all procedures were conducted 
according to the Declaration of Helsinki.

Study subjects

From March 2012 to May 2013, a total of 24 
patients with lumbar IDD (experiment group) 
were randomly recruited from the Department 
of Orthopedic Surgery, Tongren Hospital 
Affiliated to Jiaotong University School of 
Medicine; the enrolled patients should meet all 
the following criteria: (1) the diagnosis of lum-
bar IDD were confirmed by imaging examination; 
(2) had failed conservative treatment for lum-
bar IDD; (3) patients were in grades II~V accord-
ing to the Pfirrmann Grading System for Lumbar 
Disc Degeneration [27]. Among the 24 included 
patients, there were 7 patients with lumbar 
disc protrusion, 7 patients with lumbar spinal 
stenosis and 10 patients with lumbar instability 
and lumbar spondylolisthesis. In addition, 6 
young patients with lumbar vertebral fracture 
(Pfirrmann grade I) were enrolled as the control 
group if they showed evidence of proper surgi-
cal indications for lumbar fusion operation. 
Subjects with hypertension, diabetes mellitus 
and related microvascular diseases were 
excluded.

Fixation and decalcification of IVD tissue

Tissue samples of IVD from the experiment 
group and control group were obtained during 
lumbar fusion operation, respectively. Tissue 
samples were fixed in 10% neutral formalin for 
24~48 hr, placed in ampoule containing with 
10% EDTA, blocked with cap, and then 
immersed in a water bath; decalcification of tis-
sues was conducted with the assistance of 
microwave oven at 37~42°C for 2 h, and the 
original solution was replaced by 15% EDTA; 
further incubation were carried out in a thermo-
static water bath at 37°C overnight; 15% EDTA 
were changed again on the following day, and 
further decalcification was performed using 
microwave oven; decalcification of IVD tissue 
was completed after 15~20 day, and for end-
plate  cartilage tissue, decalcification was fin-
ished after 20~35 day.

HE staining

After fixation and decalcification, paraffin-
embedded lumbar IVD tissues were cut into 4 
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μm slices; the sections were deparaffinized in 
xylene solution, stained by using hematoxylin 
and eosin (HE) and sealed with neutral gum. 
Coronal slices of each IVD tissue were observed 
under the microscope. Coronal slices were 

stained with nuclear blue and cytoplasm light 
red. The slices were scored for the degree of 
degeneration on the basis of histological 
appearances, the scoring system was: no/mini-
mal degeneration (score 0~3); moderate 

Figure 1. H&E staining and histological grade of lumbar IVD tissue.

Figure 2. Immunohistochemical staining for GDF-5 and BMPRII in human lumbar IVD; brown indicates a positive 
reaction; GDF-5 (row A), BMPRII (row B).
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degeneration (score 0~8); severe degeneration 
(score 9~12) [28].

Immunohistochemistry

After being placed in baking box at 60°C for 10 
min, the tissue sections were daparaffinized in 
xylene and washed three times with PBS. Slices 
were immersed in the citrate antigen retrieval 
solution and placed in a microwave oven for 13 
min at 500 W for antigen retrieval. After rinsed 
three times with PBS, slices were supplement-
ed with H2O2 solution for eliminating the endog-
enous peroxidase activity, and then incubated 
in 50 μL endogenous antagonist (solution A) for 
15 min. After the removal of solution A, further 
incubation was carried out in 50 μL lowlenthal 
serum (solution B) for 10 min and then serum 
was discharged. Each slice was supplemented 
with 50 μL mouse anti-human GDF5/BMPR2 
(20 μg/ml, Pepro Tech) as first antibody, and 
incubated at 37°C for 60 min in a water bath. 
Then, 50 μL biotin-labeled second antibody 
was added and incubated at room temperature 
for 10 min. After removing the PBS solution, 50 
μL streptavidin-perosidase solution was added 
into the mixture and a forth incubation was per-
formed at room temperature for 10 min. 
Subsequently, diaminobenzidine (DAB) color 
liquid was added. After 3~10 min, the slices 
were counterstained using hematoxylin. First 
antibody was replaced by PBS as the negative 
control. Protein expression of GDF-5 and BMPR 
II was observed under a light microscope. 
Slices of lumbar IVD tissues were divided in NP 
and AF. For NP and AF analysis, total 200 cells 
were collected from the highest density area of 
positive cells (dark brown granules in nucleus 
and cytoplasm), respectively. The percentage 
of staining positive cells in congener counted 
cells was calculated as the result of cells 
staining.

Statistical analysis

Statistical analysis was conducted by using the 
SPSS 18.0 software. Continuous variables with 

normal distribution were expressed as mean ± 
standard deviation (SD). Enumeration data was 
expressed by positive rate and comparisons 
between groups (no/minimal degeneration, 
moderate degeneration and severe degenera-
tion; NP and AF) were applied one-way ANOVA. 
Results were considered statistically significant 
with P < 0.05. 

Results

HE staining results

In order to observe the morphological changes 
of the lumbar IVD tissue, the HE staining was 
performed. Figure 1 showed the results of HE 
staining. According to the histological perfor-
mance, non- and minimal degeneration was 
found in 11 cases (score range, 0-3; average, 
2), moderate degeneration in 12 cases (score 
range, 4-8; average, 6.83), and severe degen-
eration in 7 cases (score range, 9-12; average, 
10.14). To be more specific, a clear boundary 
could be seen between NP and AF, no cracks or 
fissures existed in NP, and no cell cluster forma-
tion was found in the non- and minimal degen-
eration group. As for the 12 cases of moderate 
degeneration, the boundary between NP and 
AF became fuzzy, cracks extended to NP over-
lapping with AF, and 25-75% of the cells formed 
small clusters. In severe degeneration cases, 
the boundary between NP and AF disappeared, 
cracks extended to the lateral AF, and more 
than 75% cells formed clusters.

Expression of GDF-5 and BMPRII in lumbar IVD 
tissue

The positive expression signals of GDF-5 and 
BMPRII in lumbar IVD tissue were localized in 
the cytoplasm of cartilage cells, while there 
was no positive signal in the extracellular matrix 
(Figure 2). The positive expression rates of 
GDF-5 and BMPRII in NP were higher than those 
in AF in the non- and minimal degeneration 
group (GDF-5: 62.09 ± 10.04% vs. 33.27 ± 

Table 1. Positive rate of GDF-5 and BMPRII expression in lumbar IVD tissue
Non- and minimal degeneration Moderate degeneration Severe degeneration

GDF-5 (NP) 62.09 ± 10.04**,## 55.0 ± 9.16## 56.71 ± 2.43
GDF-5 (AF) 33.27 ± 7.36*,**,## 30.08 ± 6.16*,## 28.14 ± 5.87*

BMPRII (NP) 34.64 ± 5.95**,## 38.75 ± 7.02## 36.43 ± 3.37
BMPRII (AF) 26.18 ± 8.36#,**,##, 29.67 ± 6.41#,## 21.57 ± 4.24#

NP, nucleus pulposus; AF, annulus fibrosus; *, compared with GDF-5 (NP); P < 0.05; **, compared with moderate degeneration 
group; P > 0.05; #, compared with BMPRII (NP); P < 0.05; ##, compared with severe degeneration group; P > 0.05.
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7.36%; BMPRII, 34.64 ± 5.95% vs. 26.18 ± 
8.36%, respectively), moderate degeneration 
group (GDF-5: 55.0 ± 9.16% vs. 30.08 ± 6.16%; 
BMPRII, 38.75 ± 7.02% vs. 29.67 ± 6.41%, 
respectively) and severe degeneration group 
(GDF-5: 56.71 ± 2.43% vs. 28.14 ± 5.87%; 
BMPRII, 36.43 ± 3.37% vs. 21.57 ± 4.24%, 
respectively) (all P < 0.05). However, no signifi-
cant difference in GDF-5 or BMPRII positive 
expression was observed among the normal, 
non- and minimal, moderate and severe degen-
eration groups in neither NP area nor AF area 
(all P > 0.05) (Table 1).

Discussion

In this study, we observed the expressions of 
both GDF-5 and BMPRII in IVD tissues and ana-
lyzed the correlation between these expres-
sions and lumbar IDD, reporting that GDF-5 
might have an inhibition effect on lumbar IDD. 
GDF-5 has been verified to be a suitable candi-
date having an impact on human IDD, and play-
ing momentous control roles in chondrogenesis 
and joint formation [29-31]. Shen et al demon-
strated the regulation and promotion ability of 
GDF-5 in both osteogenic and osteoblastic 
properties and thereby enhancing osteogenic 
differentiation [32]. In addition, according to 
the report of Zeng et al, GDF-5 could also 
increase the expression of vascular endothelial 
growth factor in vitro, consequently promoting 
the angiogenic activity in stroma cells [33]. A 
study indicated that increased rhGDF-5 was of 
the capability of repairing IVD, with the presum-
ably mechanism of its up-regulation effect on 
ECM production in vitro [34]. Also, GDF-5 was 
manifested with the ability of up-regulating col-
lagen type II as well as aggrecan and down-
regulating MMP-3, which were parameters for 
IVD cell metabolism, to ultimately promote the 
proliferation of IVD cells and enhance the accu-
mulation of ECM [35]. Therefore, we considered 
that GDF-5 could be regarded as a suitable 
actor for the gene therapy of lumbar IDD.

Our results indicated an apparent higher 
expression of GDF-5 and its receptor BMPRII in 
the central NP than those in edge AF. The calci-
fication increase of cartilaginous endplate 
(CEP) results in reduced nutrient supply, which 
has been considered to be essential in the 
occurrence of IDD [36]. CEP, a thin hyaline car-
tilage layer between vertebral endplate and NP, 
has been illustrated to be a gateway to trans-

port nutrient from adjacent blood vessels into 
the discs [37]. The permeability of endplate 
could be increased with the loss of cartilage, 
contributing to endplate inflammation and sub-
sequent disc infection [38]. The first stage of 
IDD is PG depletion, and the aggrecan loss 
from NP is capable of lowering resistance to 
compression, inducing decreased disc height 
and changed mechanical properties of IVD 
[39]. GDF-5 may only up-regulate the expres-
sion of type II collagen and aggrecan, also 
evoke the expansion of inner AF fibrochondro-
cyte populations into NP [40, 41]. That is, 
GDF-5 is able to stimulate the expression of PG 
and maintain the transport route of nutrients 
between endplates and IVD, thereby preventing 
the degeneration of endplates and IVD.

Results in our study also suggested that GDF-5 
has been expressed both in normal and degen-
erated IDD tissues, yet the expression has 
nothing to do with the degree of degeneration. 
Based on the precedent evidence, GDF-5 clon-
ing might be facilitative to our studies on the 
signaling pathways of GDF-5 in mouse IVD cells 
and might be helpful to explain the mechanism 
by which GDF-5 defect will lead to degenerative 
changes in the disc, besides, in light of reverse 
transcription PCR, we recognized that the rele-
vant receptors like BMPR1A, BMPR1B, and 
BMPR2 were expressed in native human IVD 
tissue and in cultured IVD cells [16, 35, 42]. 
Although GDF-5 in normal, moderate and 
severe degeneration of IVD are expressed, the 
differences among different groups were not 
significant, which indicates that GDF-5 may 
play an crucial role in stabilizing the endoge-
nous matrix in human IVD, and IDD was not 
caused by the reduction of intervertebral disc 
endogenous GDF-5 [34, 43, 44]. Furthermore, 
even though GDF-5 was widely presented in 
normal and degenerated human lumbar IVD, it 
was still unknown whether it has certain repair-
ing effects or was possible to reverse IDD in the 
various periods of IDD in vivo on complex physi-
ological and chemical conditions or not, hence, 
we could speculate that GDF-5 may be 
expressed both in normal and degenerated IVD 
in IDD patients, but the GDF-5 expression may 
not be relevant to the degree of degeneration 
[29, 41, 45].

In addition, as a receptor of GDF-5, expression 
of BMP-2 was found both in normal IVDs and 
degenerated IVDs, indicating that its expres-
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sion level was uncorrelated with degeneration 
degrees. Collected data of our study reported 
that BMP-2, as a receptor of BMP family, pre-
sented significant higher expression in NP 
regions than AF regions, manifesting that BMPs 
and GDF-5 may influence human IVDs through 
NP cells [25, 46]. Nevertheless, the expression 
of BMP-2 in IVDs was not associated with 
degree of IDD under certain conditions, which 
suggested that all the growth factors in the 
BMP family, including GDF-5, were likely to 
exert physiological effects to NP cells in IVDs, 
either in the early stage of degeneration or the 
advanced stage. Specifically, BMP-2 enables 
favorable improvements in degenerated IVDs 
at the early stages and fails to improve the 
degeneration conditions at the advanced stage. 
H&E staining and immunohistochemistry find-
ings showed that BMP-2 caused cartilage for-
mation in some degenerated IVDs, whereas 
later findings didn’t show improvement in IVDs 
[24, 40, 47, 48].

In conclusion, our results showed that GDF-5 
might have an inhibition effect on degenerated 
human lumbar IVD, GDF-5 and BMPRII 
expressed both in normal and degenerated IVD 
tissues, suggesting that gene therapy may be a 
useful approach in producing physiological 
effects during early- and late-phase of lumbar 
IDD. However, further in vivo and in vitro stud-
ies are necessary for the identification of the 
potential roles of GDF-5 on lumbar IDD. And to 
further explore the molecular mechanisms of 
GDF-5 do contribute a lot to the deeper inter-
pretation of the incidence and targeted treat-
ment of lumbar IDD.
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