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Abstract: The aim of this study was to identify differently expressed proteins in the presence and absence of EPHX2 
gene in mouse hypothalamus using proteomics profiling and bioinformatics analysis. This study was performed on 
3 wild type (WT) and 3 EPHX2 gene global knockout (KO) mice (EPHX2-/-). Using the nano- electrospray ionization 
(ESI)-LC-MS/MS detector, we identified 31 over-expressed proteins in WT mouse hypothalamus compared to the KO 
counterparts. Gene Ontology (GO) annotation in terms of the protein-protein interaction network indicated that cellu-
lar metabolic process, protein metabolic process, signaling transduction and protein post-translation biological pro-
cesses involved in EPHX2-/- regulatory network. In addition, signaling pathway enrichment analysis also highlighted 
chronic neurodegenerative diseases and some other signaling pathways, such as TGF-beta signaling pathway, T cell 
receptor signaling pathway, ErbB signaling pathway, Neurotrophin signaling pathway and MAPK signaling pathway, 
were strongly coupled with EPHX2 gene knockout. Further studies into the molecular functions of EPHX2 gene in 
hypothalamus will help to provide new perspective in neurogenesis.
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Introduction

Soluble epoxide hydrolase (sEH), a ubiquitously 
expressed predominantly cytosolic enzyme 
that encoded by EPHX2 gene, was found to be 
over expressed in liver, kidney, heart and ovary 
tissues [1]. Meanwhile, the epoxyeicosatrienoic 
acids or EETs have been reported to be impor-
tant endogenous substrates for sEH which pro-
duced by cytochrome P-450 epoxygenases [2]. 
As a ubiquitously hydrolytic enzyme, sEH can 
catalyze EETs into dihydroxyeicosatrienoic 
acids (DHETs), which are biologically less active 
[3]. By far, a growing body of evidence indicates 
that EETs play a series of benignant roles in 
ischemia/reperfusion [4], inflammatory respon- 
se [5], fibrinolysis [6], tube formation [7] etc. 

In brain, EETs have been identified to promote 
vasodilatation, resulting in a protective effect 
against ischemia-induced tissue damage 
[8-10]. Besides, the stabilized EETs were also 

found to antagonize inflammation via negative 
regulation of nuclear factor-κB (NF-κB) [5]. 
Given the salutary effects of sEH deficiency, it 
global expression of proteins in tissues and flu-
ids [11]. The proteins or peptides that are pref-
erentially expressed and identified pathological 
state are well suited for diagnostic assays and 
medical treatment. In addition, with the rapid 
development of computational biology, rapid 
advances in network biology indicate that cel-
lular is an attractive therapeutic target for sev-
eral disorders [12-14]. Thus, insights into the 
physiological functions of sEH have emerged 
from studies in mice with global EPHX2 gene 
deficiency or pharmacological inhibition of sEH, 
which in turn intrigues curiosities of 
neuroscientists.

Recent advances in analytic technique present 
a new opportunity to examine the networks are 
governed by universal laws and offer a new con-
ceptual framework that could potentially revolu-
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tionize our view of biology and disease patholo-
gies in the twenty-first century [15]. Systematic 
mapping of protein-protein interactions net-
works was initiated in model organisms, start-
ing with defined biological processes to pro-
teome [16]. However, detailed network per-
spective associated with sEH in hypothalamic 
neurogenesis is still unclear. Given the role of 
sEH deficiency in neural systems and the lack 
of proteomics based network biological studies 
related to sEH, the aim of our present study is 
to extract the significantly expressed proteins 
with or without EPHX2 gene knockout in mouse 
and explored the potential signaling pathways 
involved in EPHX2 gene. Detailed elucidations 
are as follows.

Materials and methods

Ethics statement

This experiment was conducted according to 
the Guide for the Care and Use of Laboratory 
Animals of the US National Institutes of Health 
(NIH Publication, 8th Edition, 2011) and 
approved by the Peking University Committee 
on Animal Care and Use. All surgeries were per-
formed under sodium pentobarbital anesthe-
sia, and all efforts were made to ameliorate 
animal suffering and euthanasia.

Animal models

Male C57BL/6 background mice (8-10 weeks 
old, 20 ± 4 g body weight) with and without tar-
geted disruption of EPHX2 gene (EPHX2-/-) were 
provided by Professor Yi Zhu at the department 
of physiology and pathophysiology in Peking 
University [17]. Mice were housed individually 
in air-conditioned facilities at room tempera-
ture with 55 ± 5% humidity under 12:12 h light/
dark artificial cycle conditions, and supplied 
with food and water ad libitum.

Protein sample processing

Mouse hypothalamic tissues were washed with 
chilled phosphate buffered saline (PBS) and 
homogenized using a motor-driven glass-teflon 
homogenizer. After centrifuging and boiling at 
100°C for 5 min, proteins from hypothalamus 
were extracted. The concentration of whole 
proteins was determined at 570 nm using the 
bicinchoninic acid (BCA, Pierce, Rockford, IL, 
USA) assay kit. Proteins from three tubes of 
EPHX2-/- and the control groups were pooled to 

minimize individual variation. Protein samples 
(200 µg) from each group were processed per 
the manufacturer’s protocol for FASP (Filter 
Assisted Sample Preparation, Mann). Briefly, to 
Vivacon 500 filtrate tube (Cat No. VNO1HO2, 
Sartorius Stedim Biotech) containing protein 
concentrates, 100 µL of 8 M urea in 0.1 M Tris/
HCL, pH 8.5 (UA) was added and samples were 
centrifuged at 14,000 g for 15 min at room 
temperature. Then 10 µL of 0.05 M TCEP in 
water was added to the filters and incubated at 
37°C for 1 h. 10 µL of 0.1 M IAA in UA was 
added to the filters, and the samples were incu-
bated for 30 min in darkness. Filters were 
washed twice with 200 µL of 50 mM NH4HCO3. 
Finally, 4 µg trypsin (Promega, Madison, WI) 
was added in 100 µL of 50 mM NH4HCO3 to 
each filter. The protein to enzyme ratio was 
50:1. Samples were incubated over night at 
37°C and released peptides were collected by 
centrifugation.

Protein separation

The digested peptide mixture was reconstitut-
ed with 600 µL buffer A (20 mM ammonium 
formate in water, pH = 10) and loaded onto a 
2.1 × 150 mm Waters XBridge BEH130 C18 col-
umn containing 3.5 µm particles (Waters, 
Milford, MA). The peptides were eluted at a flow 
rate of 230 µL/min with a gradient of 5% buffer 
B (20 mM ammonium formate in 80% acetoni-
trile, pH = 10) for 5 min, 1-15% buffer B for 15 
min, 15-25% buffer B for 10 min, 25-55% buf-
fer B for 10 min, and finally 55-95% buffer B for 
5 min. The system was then maintained in 95% 
buffer B for 5 min before equilibrating with 1% 
buffer B for 8 min prior to the next injection. 
Elution was monitored by measuring absor-
bance at 214 nm, and fractions were collected 
every 2 min. The eluted peptides were pooled 
as 15 fractions and vacuum-dried. Then sam-
ples were ready for nano-ESI-LC-MS/MS 
analysis.

Liquid chromatography tandem mass spec-
trometry (LC-MS/MS) analysis

The MS analysis experiments were performed 
on a nano-flow HPLC system (Easy-nLC II, 
Thermo Fisher Scientific, USA) connected to a 
LTQ-OrbitrapVelos Pro (Linear quadrupole ion 
trap-Orbitrap mass analyzer) mass spectrome-
ter (Thermo Fisher Scientific, Waltham, MA, 
USA), equipped with a Nanospray Flex Ion 
Source (Thermo Fisher Scientific, USA). The 
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peptide mixtures were injected (5 μL) at a flow 
rate of 5 μL/min onto a pre-column (Easy-
column C18-A1, 100 μm I.D. × 20 mm, 5 μm, 
Thermo Fisher Scientific). The chromatographic 
separation was performed on a reversed phase 
C18 column (Easy-column C18-A2, 75 μm I.D. × 
100 mm, 3 μm, Thermo Fisher Scientific) at a 
flow rate of 300 nL/min with a 60 min gradient 
of 2% to 40% acetonitrile in 0.1% formic acid. 
The electrospray voltage was maintained at 2.2 
kV, and the capillary temperature was set at 
250°C. The LTQ-Orbitrap was operated in the 
data dependent mode to simultaneously mea-
sure full scan MS spectra (m/z 350-2000) in 
the Orbitrap with a mass resolution of 60,000 
at m/z 400. After the completion of the full-
scan survey, the 15 most abundant ions detect-
ed in the full-MS scan were measured in the 
LTQ part by collision induced dissociation (CID), 
respectively.

Protein identification and quantization

As to the protein identification, data analysis 
was performed using MaxQuant software  
(version 1.4.1.2, http://www.maxquant.org/). 
Briefly, the raw MS/MS data were submitted to 
the Uniprot human protein database (http://
www.uniprot.org/, release 3.43, 72,340 
sequences) using the Andromeda search 
engine with the following settings: trypsin cleav-
age; fixed modification of carbamidomethyl-
ation of cysteine; variable modifications of oxi-
dation of methionine; a maximum of two missed 
cleavages; the false discovery rate was calcu-
lated by decoy data base searching. Label-free 
quantization was also performed in MaxQuant. 
The Min. ratio count for LFQ was set 2, and the 
match-between-runs option was enabled. 
Other parameters were set as default.

Raw data analytical procedures

All spectra were exported as plain-text files and 
the *.txt files were read using Perseus software 
(version 1.5.0.3, http://www.perseus-frame-
work.org/). Perseus, an architecture based on 
Windows. NET framework, was designed for the 
statistical analysis of omics data, such as 
mRNA microarray [18]. Briefly, raw data were 
firstly processed to remove random noises, 
subtract the low-frequency baseline, and detect 
and quantify individual sample peaks using the 
filter function button. Log 2 based normalized 
expression data was performed before differ-
ently expressed proteins identification.

Differentially expressed proteins identification

The differentially expressed proteins between 
the 3 couples of EPHX2-/- mice and the match- 
ed normal ones were assessed using two-sam-
ple t test method as previously described [18]. 
The parameter p-value was adjusted for multi-
ple testing corrections with p value cutoff of 
0.0001. No further false discovery rate was 
used for multiple testing correction in this 
experiment.

K-means clustering and principal component 
analysis

A nonsupervised analysis of global gene expres-
sion was performed using k-mean hierarchical 
clustering. Hierarchical clustering, also known 
as hierarchical cluster analysis or HCA, is a 
cluster analysis method which focuses on 
building a hierarchy of clusters using 
Agglomerative and Divisive strategies , such as 
Cluster 3.0 [19], NCSS statistical software, 
SPSS etc. In this study, cluster proteins with 
aberrant expression were agglomerated using 
k-mean average linkage hierarchical clustering 
rule and delineated based on the Z score 
method. 

Besides, an orthogonal transformation to the 
linearly uncorrelated variables of differently 
expressed proteins was also visualized using 
principal component analysis (PCA). PCA, a vari-
ance-focused approach seeking to reproduce 
the total variable variance, creates variables 
that are linear combinations of the original vari-
ables and reflect both common and unique 
variance of the variable using correspondence 
analysis. To better merit the heterogeneity of 
protein candidate between EPHX2 gene knock 
and the normal group, we performed a PCA 
analysis using SPSS for Windows (SPSS 18.0; 
SPSS, Chicago, IL, USA).

Protein-protein interaction network construc-
tion

The protein to protein interaction network asso-
ciated with EPHX2 was constructed as previ-
ously described [20]. To infer a reliable network 
from sEH to the possible proteins identified in 
our proteomics analysis, proteins found in pro-
teomic analysis were used as seed to fish out 
other partners with direct interactions. Nodes 
relations were retrieved from Database of 
Interaction Proteins (DIP, http://dip.doe-mbi.
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Figure 1. Histogram results of the raw abundance of proteins before and after logarithm transformation.
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ucla.edu/dip/Main.cgi) [21], BIOGRID (Biolo- 
gical General Repository for Interaction Da- 

tasets, http://thebiogrid.org/) [22], HPRD (Hu- 
man Protein Reference Database, http://www.

Figure 2. K-means clustering (A) and principal component analysis (B) of the 31 proteins with different expression 
in EPHX2-/- (n = 3) compared with the vehicle groups (n = 3). Color key in the hierarchical clustering represents the 
different expression levels. Red represents up-regulation, while green represents down-regulated proteins.
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hprd.org/) [23], BOND (Bimolecular Object Net- 
work Database, http://bind.ca), MINT (Mole- 
cular Interaction database, http://mint.bio.uni-
roma2.it/mint/Welcome.do) [24] and IntAct 
(http://www.ebi.ac.uk/intact/) [25]. The opti-
mized network based on Steiner minimal tree 
algorithm was visualized in the Cytoscape envi-
ronment [26]. Besides, nodes without connec-
tions were removed from the integrated net-
work and only the largest component was 
regarded as the protein-protein interaction net-
work associated with sEH.

Gene ontology and pathway enrichment analy-
sis

The BiNGO plugin [27] in Cytoscape environ-
ment and DAVID web-server [28] (http://david.

abcc.ncifcrf.gov/) were used to retrieve the 
Gene Ontology Consortium (GOC, http://
geneontology.org/) [29] and Kyoto Encyclope- 
dia of Genes and Genomes (KEGG) [30] anno-
tations for the protein to protein interaction 
network as previously described [31].

Results

31 proteins were found to be differently ex-
pressed in mouse hypothalamic tissue with or 
without EPHX2 gene deletion

As a result, a total of 6,158 proteins were iden-
tified using shotgun method. A logarithm trans-
formation (base 2) of the raw abundance of 
proteins was pre-performed before differently 
expressed proteins identification (Figure 1). As 

Table 1. Identification of proteins associated in EPHX2(+/+) and EPHX2(-/-) mouse hypothalamus using 
ESI-LC-MS/MS

Protein ID Protein names Official gene 
symbol

-Log t-test 
p value

t-test  
Difference

D3YW87 Filamin C, gamma Flnc 5.09635 1.91472
E9PWE8 Dihydropyrimidinase-related protein 3 Dpysl3 4.61218 -1.14479
E9Q4P1 WD repeat and FYVE domain containing 1 Wdfy1 4.89347 -1.80857
E9Q557 desmoplakin Dsp 5.72609 -1.37034
E9QN99 Abhd14b abhydrolase domain containing 14b Abhd14b 4.75775 0.5864
E9QPD7 pyruvate carboxylase Pcx 4.2864 0.408389
Q9Z0J4 nitric oxide synthase 1, neuronal Nos1 4.51849 0.471614
G5E895 aldo-keto reductase family 1, member B10 (aldose reductase) Akr1b10 4.43471 0.750383
H3BJR6 sodium channel, voltage-gated, type III, beta Scn3b 4.11826 0.797281
Q3TMU8 dihydropyrimidinase-like 4 Dpysl4 4.79247 -0.763332
P03995 glial fibrillary acidic protein Gfap 4.4619 -1.61872
P10518 aminolevulinate, delta-, dehydratase Alad 4.28579 -0.703655
P10649 glutathione S-transferase, mu 1 Gstm1 4.17015 0.840785
P15949 kallikrein 1-related peptidase b9 Klk1b9 4.80132 -5.13527
P16460 argininosuccinate synthetase 1 Ass1 4.56585 0.339808
P17047 lysosomal-associated membrane protein 2 Lamp2 4.01747 2.33493
P36369 kallikrein 1-related petidase b26 Klk1b26 4.05746 -4.61297
P47738 aldehyde dehydrogenase 2, mitochondrial Aldh2 4.10676 0.884048
P48678 lamin A Lmna 4.01616 1.05971
P51667 myosin, light polypeptide 2, regulatory, cardiac, slow Myl2 4.48729 3.80926
Q3UHB1 5’-nucleotidase domain containing 3 Nt5dc3 4.49016 1.8812
Q3UI43 BRISC and BRCA1 A complex member 1 Babam1 4.1279 1.24296
Q61704 inter-alpha trypsin inhibitor, heavy chain 3 Itih3 4.22979 0.659157
Q64387 prepronociceptin Pnoc 4.184 -1.47249
Q6R0H7 GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus Gnas 4.16739 0.81181
Q7TQA1 immunoglobulin superfamily, member 1 Igsf1 5.0341 -0.607182
Q80T62 G protein-coupled receptor 101 Gpr101 4.27175 2.75136
Q8BWU8 ethanolamine phosphate phospholyase Agxt2l1 4.35029 0.943425
Q91Z83 myosin, heavy polypeptide 7, cardiac muscle, beta Myh7 5.75811 3.22376
Q9CQJ8 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9 Ndufb9 4.62392 0.991632
Q9D7B6 acyl-Coenzyme A dehydrogenase family, member 8 Acad8 4.66179 0.494231
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shown in Figure 2A and Table 1, we found a 
total of 31 differently expressed proteins. 2D 
and 3D PCA (Figure 2B) also indicated that 
those 31 proteins had an excellent ability to dis-
criminate mouse models with or without EPHX2 
gene deletion and could be used as phenotypic 
discriminators.

Protein-protein interaction regulatory network 
construction

To infer a protein-protein interaction network 
associated with sEH, we matched the 31 differ-
ently expressed genes with 6 public available 

warehouses to link the known regulatory data 
between transcriptional factors and the target 
genes. Totally, we obtained a cohort of 685 
nodes and 768 relationships, and the integrat-
ed regulatory network was visualized using 
Cytoscape 2.8.3 (Figure 3).

Enrichment of the biological processes

To further extend our knowledge about the reg-
ulatory network associated with sEH, we 
enriched the large list of proteins for functional 
annotation using BiNGO plugin. As demonstrat-
ed in the Figure 4, the biological processes in 

Figure 3. Protein-protein interaction network in terms 
of EPHX2 gene was constructed using DIP, BIOGRID, 
HPRD, BOND, MINT and IntAct databases. In this 
network, the size of each node is proportionate to its 
closeness centrality.
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term of Gene Ontology suggested that EPHX2 
gene was highly correlated with cellular meta-
bolic process, protein metabolic process,  
signaling transduction and protein post- 
translation. 

Signaling pathways enrichment analysis

To analyze the whole lists of proteins and better 
understand the functional annotation involved 
in EPHX2, differently expressed proteins were 
submitted to the DAVID Bioinformatics 

Resources 6.7 for signaling pathway enrich-
ment analysis in terms of KEGG. In this study, 
we chose the p-value less than 0.001 as the 
cut-off criterion for canonical pathways. As a 
result, TGF-beta signaling pathway, T cell recep-
tor signaling pathway, ErbB signaling pathway, 
Neurotrophin signaling pathway, MAPK signal-
ing pathway, Parkinson’s disease and 
Alzheimer’s disease seem to be aberrant in 
EPHX2-/- mouse. All the detailed pathways were 
listed in Table 2.

Figure 4. Gene Ontology (GO) 
terms associated with EPHX2 
gene. The color gradient shows 
the proportion associated with 
the biological processes. 
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Discussion

High throughput proteomics, in terms of vast 
amount of proteins, offers highly information 
towards biology [32]. However, owing to the 
complexity of biological system, it is difficult to 
identify and understand the entire proteins 
well. With the development of sophisticated 
separation techniques, mass spectrometry 
(MS)-based high throughput proteomics 
becomes a core instrumentation for proteins 
characterization due to its high sensitivity [33]. 
In the present study, shotgun proteomics meth-
od was introduced for protein analysis in a high-
throughput way [34]. Interactome network bas-
ing on high throughput data, as well as its inte-
gration with disease phenotype, has been 
reported to be a conventional technology for 
the identification of disease-specific biomark-
ers, such as cancer [35]. Recently, Diederick et 
al. [36] discovered FASN, XPO1, ENO1 and 
PDCD61P were novel biomarkers for prostate 
cancer progression using a nanoLC and LTQ-
Orbitrap-MS/MS mode. Similarly, Shen and col-
leagues [37] also revealed SSP411 was a band-
new biomarker for cholangiocarcinoma, sug-
gesting the high throughput proteomics profil-
ing was a valuable tool for cancer biomarkers 
identification and diagnosis. Besides, pro-
teomics analysis was also considered to be a 
powerful for neurodegeneration diagnosis [38]. 
In 2014, Liguori et al. detected the cerebrospi-
nal fluid proteomic profiles in Multiple Sclerosis 
(MS) patients basing on the Matrix Assisted 
Laser Desorption Ionization Time of Flight 
(MALDI-TOP) mass spectrometer. They conclud-
ed Secretograin II and Protein 7B2 were highly 
expressed in clinically definite MS patients 
compared to the progressive ones. In addition, 
Tymosin β4 was also found to be aberrant in 
clinically isolated syndrome and relapsing 
remitting (RR) MS patients, suggesting the pro-
teomic profiling technique in combination with 

the mass spectrometry evaluation provided 
useful and important information to improve 
our understanding of the complex pathogene-
sis of MS.

Previous animal studies have indicated that 
EPHX2 gene deletion or treatment with sEH 
inhibitors results in increased levels of EETs 
and protection against stroke-induced brain 
damage [39]. Oxidative stress is hypothesized 
to play a major role in Alzheimer’s disease. 
Epoxides are potentially reactive intermediates 
formed that contribute to cytotoxic damage 
mediated by oxidative stress [40]. In chronic 
neurodegenerative diseases, epoxide hydro-
lase were found to be significantly elevated in 
the hippocampus and associated cortex in 
Alzheimer’s disease patients [41]. In agree-
ment with the results of previous studies, KEGG 
based pathway enrichment analysis also con-
firmed that Neurotrophin signaling pathway, 
Parkinson’s disease and Alzheimer’s disease 
highly are strongly coupled with sEH. As an 
indispensable section of the brain, hypothala-
mus governed hormone production and regu-
lated homeostasis. Hypothalamic hormones 
include thyrotropin-releasing, gonadotropin-
releasing, growth hormone-releasing, cortico-
trophin-releasing, somatostatin, and dopamine 
hormones, which are released into the blood 
and link the nervous system to the endocrine 
system via hypophysis.

A number of documents proved that sEH inhibi-
tors possessed protective effects in ischemic 
or cardiovascular disease. In 2010, Simpkins 
and colleagues discovered 12-(3-adamantan-
1-yl-ure-ido)-dodecanoic acid, an inhibitor of 
sEH, could significantly improve the increment 
of inward remodeling. In addition, mice with 
EPHX2 deletion enhanced inward vascular 
remodeling induced by carotid ligation [42]. 
Besides, using sEH-knockout mice, Xiaocui et 

Table 2. The enriched KEGG signaling pathways in DAVID Bioinformatics Resource (P ≤ 0.001)
KEGG ID Term Count % P Value Pop Hits Fold Enrichment
hsa04350 TGF-beta signaling pathway 17 0.199157 3.73E-05 87 3.301065
hsa04660 T cell receptor signaling pathway 19 0.222587 4.88E-05 108 2.972038
hsa04012 ErbB signaling pathway 16 0.187441 1.41E-04 87 3.106885
hsa04722 Neurotrophin signaling pathway 19 0.222587 3.03E-04 124 2.588549
hsa04010 MAPK signaling pathway 31 0.363168 4.07E-04 267 1.961439
hsa05012 Parkinson’s disease 19 0.222587 4.51E-04 128 2.507657
hsa05010 Alzheimer’s disease 22 0.257732 5.20E-04 163 2.28013
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al. also discovered sEH deficiency and inhibi-
tion could decrease 1-methyl-4-phenyl-1,2,3,6-
tetrahydro pyridine (MPTP)-treated mice via 
activating AKT signaling pathway to protect 
dopamine neurons (Xiaocui et al., 2014). In 
view of this, insights into the physiological func-
tions of sEH have emerged from studies in mice 
with global EPHX2 gene deficiency or pharma-
cological inhibition of sEH, which in turn pro-
vides beneficial effects in blood pressure [43], 
cardiovascular [44], renal [45] in murine 
models.

Many studies have shown that alternations of 
neuropeptides from hypothalamic pituitary axis 
resulted in neurodegenerative diseases, such 
as Huntington’s disease [46]. Besides, post-
mortem studies pointed out that dopamine 
concentrations in the hypothalamus were 
involved in Parkinson’s disease [47]. More 
recently, 18F-dopa based positron emission 
tomography (PET) also discovered the hypotha-
lamic monoamine storage capacity decreased 
in patients with idiopathic Parkinson’s disease, 
which was in agreement with the postmortem 
observations [48].

Pathway enrichment analysis also indicated 
that TGF-beta signaling pathway, T cell receptor 
signaling pathway, ErbB signaling pathway and 
MAPK signaling pathway were engaged in 
EPHX2 gene deficiency. However, detailed rela-
tions associated with EPHX2 gene and these 
regulatory pathways still lacks and undefined.

In summary, we identified 31 significantly 
expressed proteins in mouse hippocampus 
using proteomics analysis and constructed a 
protein-protein interaction network associated 
with EPHX2 gene knockout. Our study may 
shed new lights for sEH in the chronic neurode-
generative diseases, like Parkinson’s disease 
and Alzheimer’s disease.
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