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MC4R expression in pedunculopontine nucleus involved 
in the modulation of midbrain dopamine system
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Abstract: Background and objective: Separate studies have implicated the pedunculopontine tegmental nucleus 
(PPTg) in processing aversive stimuli to dopamine systems, and melanocortin-4 receptor (MC4R) are broadly ex-
pressed by the neurons in the PPTg, but the exact neurosubstrate underlying the regulation of dopamine systems by 
the central melanocortin pathway is poorly understood. Methods: In this study, the PPTg of 6 adult mice expressing 
green fluorescent protein (GFP) under the control of the MC4R promoter was detected by fluorescence immunohis-
tochemistry. Results: A large number of GFP-positive neurons in the dissipated parts of PPTg (dpPPTg) were found, 
and approximately 50% of MC4R-GFP- positive neurons in the dpPPTg coexpressed tyrosine hydroxylase, a marker of 
dopamine neurons, indicating that they were dopaminergic. Conclusions: Our findings support the hypothesis that 
MC4R signaling in the dpPPTg may involve in the modulation of midbrain dopamine systems.
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Introduction

It is well known that midbrain dopamine neu-
rons play an important role in Parkinson’s dis-
ease [1]. The pedunculopontine tegmental 
nucleus (PPTg), a part of the mesencephalic 
locomotor region, is involved in the gait distur-
bance that characterized parkinsonian syn-
dromes [2, 3]. Neurons in the PPTg exhibit the 
sophisticated neurochemical properties, inclu- 
ding cholinergic, serotonergic, catecholaminer-
gic, GABAergic and glutamatergic-containing 
neurons [4-9]. Previous studies in rat and 
mouse documented that a subpopulation of 
PPTg neurons expresses the melanocortin-4 
receptor (MC4R), a G protein-coupled, seven-
transmembrane receptor expressed in the 
brain [10-13]. Otherwise, there is evidence that 
the melanocortins can act on mesolimbic dopa-
mine pathways [14]. These data suggest that 
there exist a tight link between MC4R and 
dopaminergic system in the PPTg. We specu-
late that MC4R in the PPTg may primarily involve 

in the modulation of midbrain dopamine sys- 
tems.

Although it is now widely recognized that dopa-
minergic activity are tightly interconnected via 
central melanocortinergic pathways involving 
the MC4R [15-17], the exact neurosubstrate 
underlying the regulation of dopamine systems 
by the central melanocortin circuit is poorly 
understood. Many studies have shown that 
tyrosine hydroxylase (TH) is the marker of mid-
brain dopamine neurons [1, 18-21]. The main 
objective of this study is to provide direct neuro-
anatomical evidence for the central melanocor-
tin-dopaminergic circuits in the PPTg using fluo-
rescence immunohistochemical detection.

Materials and methods

Animal care

Generation of MC4R-GFP mice was described 
previously [22, 23]. Male mice between 7 and 
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12 weeks old were used for the experiments. 
All the mice were housed under a 12 h light/
dark cycle with food and water provided ad libi-
tum. All experiments were performed in accor-
dance with the guidelines of the NIH and the 
International Association for the Study of Pain 
and were approved by the Institutional Animal 
Care and Use Committees at Tongji Hospital, 
Tongji Medical College, Huazhong University of 
Science and Technology University.

Immunohistochemistry

Standard procedures were used as described 
previously [22, 24]. Briefly, mice were anesthe-
tized with the mixture of ketamine (10 mg/ml) 
and xylazine (0.5 mg/ml) by intraperitoneal 
injection, and fixed by intracardiac perfusion of 
cold 0.01 M PBS (pH 7.4) and 4% paraformalde-
hyde. Brain tissues were immediately removed, 
post-fixed in the same fixative overnight at 4°C, 
and cryoprotected in 30% sucrose PBS so- 
lution. 

Brain tissues were frozen and sectioned at 
25 μm thickness on a cryostat. Free-floating 
sections were blocked in a solution containing 

2% donkey serum and 0.3% Triton X-100 in PBS 
for 1 h at room temperature. The sections were 
incubated with primary antibodies overnight at 
4°C followed by secondary antibodies. The fol-
lowing primary antibodies were used at the 
specified dilutions: a chicken polyclonal anti-
body against GFP (ab13970, 1:1,000; Abcam), 
rabbit anti-TH (1:2000; Chemicon International, 
Temecula, CA). The secondary antibodies 
included Cy3- or FITC-conjugated donkey anti-
rabbit or anti-mouse IgG (1:1,000, Invitrogen, 
Molecular Probes, Eugene, OR). Finally, the sec-
tions were washed in 0.1 M PBS, mounted on 
gelatin-coated slides, dried, and observed via 
the fluorescence microscope (Leica DM2500) 
.When taking pictures, we defined the FITC as 
the red while the Cy3 as the green.

Results

Specific expression of TH and MC4R-GFP in 
the PPTg

TH-positive neurons were observed in the dis-
sipated parts of PPTg (dpPPTg) but TH-positive 
fibers expressed in the compact parts of PPTg 
(cpPPTg) (Figure 1A1-A3). We assayed GFP 

Figure 1. Colocalization of TH in subsets of MC4R-GFP positive neurons within PPTg areas. (A1-A3 and B) show TH- 
positive neurons (green); (A2) indicates split channel image of the corresponding PPTg area in panel (A1) during high 
magnification. (C) shows MC4R-GFP -positive neuron (red); (D) shows overlaid images of (B) plus (C). Arrows indicate 
double-labeled neurons (yellow). TH and MC4R-GFP are broadly expressed by the neurons in the dpPPTg. In contrast 
to the dpPPTg, we did not detect dual labeled neurons in the compact (cp) parts of PPTg (cpPPTg). Aq, aqueduct; DR, 
doral raphe; dpPPTg, the dissipated parts of the PPTg; cpPPTg, the compact parts of the PPTg. Some drawings were 
taken from HB Xiang (Brain 2013, Med Hypotheses 2011, Epilepsy & Behavior 2013). Scale bar: 400 µm for (A1), 
200 µm for (A2 and A3), 100 µm for (B-D).
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expression in the MC4R-GFP reporter mouse 
and observed a large number of GFP-positive 
neurons in the dpPPTg (Figure 1C) and the 
cpPPTg. 

MC4R-GFP and TH co-expression in the PPTg

We found that double-labeled MC4R-GFP/TH 
neurons were mainly located in the dpPPTg, 
and approximately 50% of MC4R-GFP-positive 
neurons coexpressed TH-immunoreactive cells 
in the dpPPTg (Figure 1D). In contrast to the 
dpPPTg, we did not detect dual labeled neurons 
in the cpPPTg.

Discussion

In this study, we used a unique MC4R-green-
fluorescent protein transgenic mouse model to 
demonstrate the distribution of MC4R-GFP and 
TH in the caudal parts of PPTg. Three major 
findings have emerged from this investigation: 
1) a large number of GFP-positive neurons were 
located in the dpPPTg and cpPPTg; 2) approxi-
mately 50% of the MC4R-GFP-positive neurons 
were TH-immunoreactive cells in the dpPPTg; 
and 3) MC4R-GFP-positive neurons in the 
cpPPTg were not coexpressed with TH.

Some research has identified that the MC4R 
interacts with dopaminergic systems involved 
in the regulation of physiological and behavior-
al processes [25, 26]. Lindblom et al reported 
that alpha- melanocyte stimulating hormone 
(alpha-MSH) administered into the ventral teg-
mental area induced a significant increase in 
dopamine and DOPAC levels in the nucleus 
accumbens, and this increase was completely 
blocked by pre-treatment with the MC4R selec-
tive antagonist HS131, indicating that the 
MC4R may mediate the effects of alpha-MSH 
on dopamine transmission [25]. Lute et al 
reported that the hypometabolic/hypothermic 
effect of the nonselective melanocortin agonist 
MTII was prevented by dopamine antagonists, 
and MTII selectively activated arcuate nucleus 
dopaminergic neurons [27]. Cuit et al reported 
that the development of locomotor sensitiza-
tion to repeated administration of cocaine was 
blunted in MC4R-null mice and normalized in 
MC4R/dopamine 1 receptor (D1R) mice, sug-
gesting that the effects of MC4R signaling with-
in D1R neurons may be involved in the long-
term regulation of energy balance and behav-
ioral responses to cocaine [28]. These data 
highlight that the MC4R contributes to a regu-

lated response occurring at dopaminergic neu-
rons, potentially beneficial during extreme 
physiologic stress. We found that approximate-
ly 50% of the MC4R-GFP-positive neurons were 
TH-immunoreactive cells in the caudal parts of 
PPTg, this result was consistent with the con-
cept that melanocortins may act on mesolimbic 
dopamine pathways [14], indicating that MC4R 
expression in the PPTg is hypothesized to be 
involved in the modulation of midbrain dopa-
mine systems.

Early studies of PPTg neurons contained at 
least six neuronal phenotypes: dopaminergic, 
cholinergic, serotonergic, catecholaminergic, 
glutamatergic, and GABAergic cells, but our 
work had emphasized its MC4R-positive neu-
rons. It has been established that the PPTg 
areas are crucial for motor processes and 
behavioral state control [29]. There is growing 
evidence that the participation of midbrain mel-
anocortinergic systems in diverse clinical con-
texts suggests these systems are highly com-
plex, including energy balance, glucose homeo-
stasis, and nociception [12, 14, 22, 30-32]. It 
has been shown previously that there is a phys-
iological role of MC4R-mediated signaling, for 
example, MC4R enhances adenylyl cyclase 
activity by coupling to the stimulatory G protein 
(Gs), and leads to increased cyclic AMP (cAMP) 
production that subsequently increases the 
activity of protein kinase A (PKA) [33-35]. The 
present results showed that MC4R-positive 
neurons within midbrain dopamine regions may 
play important roles in motor processes and 
behavioral state control.

In summary, the results of the present study 
demonstrated that double-labeled MC4R-GFP/
TH neurons were mainly located in the dpPPTg, 
suggesting that melanocortin-4 receptor 
expression in the PPTg may be involved in the 
modulation of midbrain dopamine systems. 
Further work on elucidating the organization, 
function and modification of midbrain melano-
cortin-dopaminergic circuits will importantly 
contribute to understanding the importance of 
central melanocortinergic system in mediating 
the pathophysiology of midbrain motivational 
systems.
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