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HGF/MET signaling promotes glioma growth via  
up-regulation of Cox-2 expression and PGE2  
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Abstract: Cyclooxygenase2 (Cox-2) is well known for glioma growth through up-regulation of prostaglandin E2 (PGE2) 
levels. MET, a hepatocyte growth factor (HGF) receptor, is also frequently high expressed in glioma, which pro-
motes glioma growth and invasion. Here, we demonstrate that HGF/MET signaling can promote PGE2 production 
in glioma cells via Cox-2 up-regulation. RNA inhibition of MET suggested that MET signaling is essential for Cox-2 
up-regulation. Moreover, HGF could enhance Cox-2 expression and PGE2 release. Knockdown of Cox-2 inhibited 
growth-promoting effects of HGF, suggesting that HGF/MET functioned via Cox-2/PGE2 pathway. Therefore, our 
work reveals a critical relationship of Cox-2/PGE2 and HGF/MET signaling in promoting glioma cells proliferation. 
Further, targeting MET and Cox-2 may represent an attractive target therapy for glioma.
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Introduction

Glioblastoma is the most malignant human pri-
mary brain tumor with poor survival despite 
multimodality treatment [1-3]. Cox-2 is one of 
the famous cyclooxygenase enzymes, catalyz-
ing the synthesis of prostanoids by converting 
arachidonic acid into prostaglandin E2 [4, 5]. 
Previous studies demonstrated that Cox-2 was 
negatively correlated with glioma prognosis 
[6-8]. Additionally, recent evidences indicates 
that Cox-2 is essential for glioma proliferation 
and invasion, which suggesting a critical role of 
Cox-2 in glioma initiation and development [9, 
10].

Prostaglandin E2 (PGE2) is one of the most 
abundant Cox-2 metabolites in tumor tissues 
[4, 11]. So far, Cox-2/PGE2 pathway could influ-
ence most of the hallmarks of cancer, such as 
colon cancers [4, 12]. These signaling could 
directly activated PGE2-dependent downstr- 
eam pathways, including Ras-mitogen-activa- 

ted protein kinase (MAPK) and so on [13]. Such 
pathways are well known for mediators of carci-
nogenesis [14-17].

HGF signaling is one of critical tyrosine kinase 
in different cell types [18-20], and in vivo stud-
ies have demonstrated function of Cox-2 in 
MET-driven hepatocellular tumor progression 
and HGF-induced tumor angiogenesis [21]. 
Despite the importance of Cox-2 in glioma, the 
latent regulation mechanism of Cox-2 by HGF/
MET in glioma cells was not clarified [22, 23]. 
Meanwhile, silencing MET expression in glioma 
could significantly impair tumor growth [24], 
leading targeting HGF/MET signaling therapeu-
tically in most of cancers promising [19, 25]. 
Thus, the mechanisms by which HGF/MET sig-
naling promote glioma survival deserves more 
attention.

Here, we reported that HGF/MET signaling pro-
motes PGE2 release in glioma cells by up-regu-
lating Cox-2 expression. What’s more, inhibition 
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of Cox-2 attenuated HGF induced proliferation 
in glioma. To our knowledge, this is the first 
report highlighting a critical role for HGF/MET 
signaling in the regulation of PGE2 production 
in glioma cells.

Materials and methods

Tissue samples and clinical data

Fifty paraffin-embedded glioma specimens 
with clinical data were collected from the 2nd 
Affiliated Hospital of Harbin Medical University. 
This study was approved by the hospital institu-
tional review board and written informed con-
sent was obtained from all patients.

Cell culture and transfection

Human U87 and U251 glioblastoma cells were 
obtained from the China Academia Sinica Cell 
Repository (Shanghai, China). Cells were cul-
tured in Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco, Los Angeles, CA, USA) supple-
mented with 10% fetal bovine serum (Gibco), 
and incubated at 37°C in a 4% CO2 atmos- 
phere.

Oligonucleotides

Cox-2 siRNA, MET siRNA were chemically syn-
thesized by GenePharma, Shanghai, China. 
Cells were transfected with Cox-2 siRNA, MET 
siRNA oligonucleotides (200 pmol each) using 
Lipofectamine 2000 (Invitrogen). Cells trans-
fected with scrambled oligonucleotides (scram-
ble) were used as control.

Quantitative real-time polymerase chain reac-
tion (qRT-PCR)

For qRT-PCR assays, total RNA was extracted 
using RNAiso Reagent (Takara, Japan). Reverse 
transcription was performed with PrimeScript 
RT reagent Kit (Takara) according to the manu-
facturer’s instructions. The qRT-PCR conditions 
were performed as followed: DNA denaturation 
(94°C for 4 min), 40 cycles of amplification 
(94°C for 40 s, 42°C for 40 s, data collection 
(72°C for 40 s). qRT-PCR was performed on an 
ABI 7400 thermocycler (Applied Biosystems) 
using SYBR Premix Ex TaqTM (Perfect Real 
Time) Kits (TaKaRa) according to the manufac-
turer’s instructions.

MTT proliferation assay

After transfected with scramble or siRNA, cell 
count and MTT assay were used as previously 
described [26]. The absorbance values of each 
well were measured with a microplate spectro-
photometer (Molecular Devices; Sunnyvale, CA) 
at 450 nm. All proliferation experiments were 
performed in triplicate.

Western blot (WB) and immunohistochemistry 
(IHC)

WB and IHC assay were performed as previ-
ously described [8]. Briefly, WB and IHC assays 
were performed using antibodies against MET 
and Cox-2 (1:1000 dilution for WB and 1:100 
dilution for IHC, Santa Cruz, USA), and GAPDH 
(1:1000 dilution for WB, Santa Cruz, USA). IHC 

Figure 1. Expression of MET and Cox-2 in glioma samples. A. Expression of Cox-2 and MET in low grade and high 
grade glioma specimens were assessed by IHC assay. A representative figure in shown. B. Correlation between MET 
and Cox-2 expressions from human samples (n=50).
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scores were performed using a semiquantita-
tive grading system as previous study [26].

Nude mouse tumor xenograft model

Nude mouse tumor xenograft model was made 
as previous study [26]. 4-week-old female nude 
mice were subcutaneously injected with U87 
glioma cells. The tumor volume was measured 
twice a week, using the formula: volume = 
length × width2/2. Then, mice were divided into 

two groups randomly after tumor volume re- 
ached 40 mm3. Each group was treated with 10 
μL Lipofectamine containing MET siRNA or 
scrambled once every 3 days for 14 days by 
local injection at multiple sites.

Statistical analysis

The significance between 2 groups was per-
formed with Student t test and for multiple 
groups was estimated with ANOVA. P < 0.05 

Figure 2. Expression of MET and Cox-2 in glioma cell lines. A. Expression of Cox-2 in U251 and U87 was assessed 
by IF assay. B. Expression of MET in U251 and U87 was assessed by IF assay.
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was considered statistically significant. Stati- 
stics were performed using the SPSS 19.0 soft-
ware (SPSS, Chicago, IL).

Results

Expression of MET and Cox-2 in glioma 
samples and cell lines

Since both MET and Cox-2 are involved in glio-
magenesis [6, 8, 22], we firstly explored the 
expression of MET and Cox-2 protein in differ-
ent grade glioma samples (n=50). In agreement 
with previous studies, MET and Cox-2 were 
indeed high expressed in glioma samples, and 
generally higher expressions were evident in 
high grade than low grade samples (Figure 1). 
Overall, Cox-2 and MET were positively corre-
lated in all grade glioma e (Figure 1, R=0.41168, 
P=0.00297). Furthermore, both MET and Cox-2 

were also detected in U251 and U87 in vitro 
(Figure 2). Thus, both MET and Cox-2 were high 
expressed in glioma.

HGF up-regulates Cox-2 expression and in-
duces PGE2 release in glioma cells

Owing to the proliferation and invasion promot-
ing effects of Cox-2 and MET during gliomagen-
esis, we aimed to investigate regulatory mecha-
nism of Cox-2 and hypothesized that Cox-2 
could be induced by HGF in glioma cells. To tes-
tify this hypothesis, we detected Cox-2 expres-
sion of U251 and U87 cells after HGF stimula-
tion. Cox-2 mRNA levels were significantly 
increased (Figure 3A) and Cox-2 protein expres-
sion were highly induced (Figure 3B) after HGF 
treatment for 48 h.

Plenty evidences points towards an essential 
role for the Cox-2 metabolite PGE2 in the pro-

Figure 3. HGF up-regulates Cox-2 expression and promotes PGE2 accumulation in glioma cells. A. U87 and U251 
were cultured in DMEM supplemented with 10% FBS and then stimulated using vehicle or HGF for 48 h at doses of 
30 ng/ml. qRT-PCR was carried out for COX-2 mRNA. B. Cells were stimulated with vehicle or HGF for 48 h at doses 
of 30 ng/ml. Western Blot assay was carried out for COX-2. C. Cells were stimulated with 30 ng/ml HGF for 48 h 
with or without Cox-2 siRNA. PGE2 levels in the culture medium were subsequently analyzed using a commercial 
enzyme-linked immunosorbent assay and standardized to cell number. D. Cells were treated as in C and western 
blot analysis carried out to examine expression of COX-1 and COX-2 following HGF treatment.
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motion of gliomagenesis [6, 9]. We further 
investigated whether PGE2 levels increased 
after HGF treatment. Results demonstrated 
that HGF stimulation significantly increased 
PGE2 production and this increase could be 
inhibited after transfecting with Cox-2 siRNA 
(Figure 3C). However, no change of Cox-1 was 
observed af-ter HGF stimulation (Figure 3D), 
which suggesting that Cox-2 expression is 
important for HGF-driven PGE2 accumulation.

Inhibition of Cox-2 attenuates HGF-stimulated 
glioma cell growth

As we demonstrated that HGF/MET signaling 
promotes Cox-2 up-regulation and PGE2 pro-
duction, we next investigated the role of Cox-2 
during HGF-promoted proliferation using cell 
counting and MTT assay. After 24 h, HGF 
induced U251 and U87 cells growth, and this 
effect was significantly inhibited by Cox-2 
knock-down (Figure 4A, 4B), suggesting that 
HGF proliferation-promoting effects is depen-
dent on the production of PGE2 induced by 
Cox-2 over-expression.

MET inhibition reduces Cox-2 expression in 
glioma cells

Given that U87 and U251 cells express high 
MET levels, we investigated whether reduction 
of MET inhibit Cox-2 expression and PGE2 
accumulation. MET siRNA treatment lead to 
downregulation of Cox-2 and PGE2 at 48h in 
vitro (Figure 5A, 5B). Further, in vivo MET siRNA 
treatment also decreased expression of Cox-2 
and PGE2 (Figure 5C), which reveals an impor-

tant relationship between HGF/MET signaling 
and PGE2 in glioma.

Discussion

Our previous studies demonstrated the impor-
tant roles for Cox-2 and MET in glioma, their 
relationship was largely unknown. In this study, 
we first reveal that HGF/MET signaling is an 
important regulator for Cox-2/PGE2 pathway in 
glioma. Further, inhibition of Cox-2 restrained 
HGF-induced glioma cell growth, suggesting an 
important role for Cox-2 as a mediator of HGF/
MET signaling pathway. We reported that the 
MET downregulation suppressed Cox-2 expres-
sion and PGE2 biogenesis and propose that 
targeting MET may represent an attractive tar-
get therapy for glioma.

Plenty of studies suggest that MET-targeted 
therapy may benefit patients with various types 
of cancer [25]. ARQ 197, a recently developed 
small molecule MET inhibitor, is currently in 
Phase I clinical trials, which is well tolerated, 
and inhibited intratumoral c-MET signaling 
(c-MET Inhibitor ARQ 197) [27]. We have a 
hypothesis that Cox-2/PGE2 mediate glioma 
growth promoting effects of HGF/MET and low-
expression of MET reduces PGE2 production 
leading to anti-tumor effects. Evidence sup-
ports our hypothesis, because HGF stimulation 
induced Cox-2 expression in MET-positive thy-
roid papillary carcinoma cells and given that 
Cox-2 inhibition prevents HGF-driven invasive-
ness [28]. Besides, our study was consistent 
with previous reports in other various tumor 

Figure 4. Inhibition of Cox-2 attenuates HGF-stimulated glioma cell growth. A. U251 and U87 cells were pre-treat-
ment with vehicle or Cox-2 siRNA for 4 h before treatment with 30 ng/ml HGF for 48 h. Cell number was assessed 
by cell counting. B. U251 and U87 cells were pre-treatment with vehicle or Cox-2 siRNA for 4 h before treatment with 
30 ng/ml HGF for 48 h. Cell proliferation was assessed by MTT assay.
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types, such as gastric epithelial cells [18], 
squamous cell carcinoma cells [29] and lung 
carcinoma cells [30] and identifies Cox-2 as a 
downstream of HGF/MET signaling. However, 
this study first reported that HGF/MET induced 
Cox-2 expression increases PGE2 levels in glio-
ma. Moreover, inhibition of MET reduced Cox-2 
expression as well as Cox-2 mediated PGE2 
production. Therefore, targeting MET may be a 
useful therapeutic strategy to reduce PGE2 by 
reducing Cox-2 expression.

In that HGF stimulation could modulate PGE2 
synthesis and degradation, we propose that 
PGE2 may be an important mediator for HGF/
MET mediated cell survival. Studies revealed 
PGE2 can directly activate MET downstream 
independent of HGF in colon cancer cells [13, 
31]. Meanwhile, our works demonstrate that 
Cox-2 inhibition restrain HGF-promoted cell pro-
liferation. Generally, these results emphasized 
the benefits of disrupting this regulation thera-
peutically and knockdown of Cox-2 may have 
particular merits for glioma clinical therapy with 
high tumor MET or HGF expression.

In conclusion, our study demonstrates a critical 
role for HGF/MET signaling in the promotion of 

PGE2 biogenesis in glioma cells, by inducing 
Cox-2 expression. Given the important role of 
PGE2 during glioma development, therapeuti-
cally inhibition of MET and Cox-2 may represent 
a useful approach for glioma patients.
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