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Abstract: Calcium is a strong inducer of keratinocyte differentiation. We have previously demonstrated that extracel-
lular calcium promotes keratinocyte differentiation via E-cadherin-catenin complex-mediated phospholipase C-γ1 
(PLC-γ1) activation in the plasma membrane. However, it is unclear whether dietary calcium regulates keratinocyte 
proliferation, differentiation or carcinogenesis. To address this issue, the rates of oral tumor and levels of prolifera-
tion and differentiation in the oral epithelium were assessed in mice on different calcium diets and the carcinogen 
4-nitroquinoline-1-oxide. The results showed that mice on the high calcium diet had lower rates of oral tumors, lower 
levels of proliferation and higher levels of differentiation in the normal oral epithelium than those on the normal 
calcium diet. Higher levels of E-cadherin, β-catenin, p120-catenin (p120), epidermal growth factor receptor (EGFR), 
and calcium and lower levels of PLC-γ1 were also noted in the normal oral epithelium in mice on high calcium diet 
than the control mice. In contrast, mice on low calcium diet had opposite effects. However, dietary calcium had 
no effect on the proliferation, differentiation or the levels of E-cadherin,  β-catenin, p120, PLC-γ1 and EGFR in 
oral tumors. These data indicate that dietary calcium increases calcium levels in oral epithelium, suppresses oral 
carcinogenesis, inhibits proliferation and promotes differentiation of normal oral epithelium. Increased E-cadherin,  
β-catenin, p120 and EGFR and decreased PLC-γ1 may participate in the inhibitory effect of dietary calcium in oral 
carcinogenesis.
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Introduction

Oral cancer is a malignant tumor of oral muco-
sa and has high mortality rates. It is the eighth 
leading cause of cancer and 263,900 new 
cases and 128,000 deaths occurred worldwide 
in 2008 [1]. Oral squamous cell carcinoma 
(OSCC) accounts for approximately 90% of oral 
cancers and it is frequently associated with 
smoking, excessive alcohol intake, chewing 
tobacco or betel nut and HPV infections [2, 3]. 
These patients are often diagnosed at an 
advanced stage [4]. These necessitate the 
search for the identification and implementa-
tion of novel preventive and therapeutic strate-
gies, and this, most certainly, calls for the thor-
ough understanding of the mechanism of oral 
carcinogenesis.

Calcium is the most abundant mineral in the 
body. It combines with phosphorus to form cal-
cium phosphate in bones and teeth. Calcium 
homeostasis is tightly regulated by the actions 
of 1,25-dihydroxycholecalciferol [1, 25-(OH)2D3], 
parathyroid hormone (PTH) and calcitonin and 
direct exchange with the bone matrix. Calcium 
plays a critical role in muscle contraction and 
relaxation, blood coagulation, nerve transmis-
sion and keratinocyte differentiation and prolif-
eration [5, 6]. It has been demonstrated that 
change in calcium concentration in the culture 
medium markedly alters the pattern of prolifer-
ation and differentiation of epidermal keratino-
cytes [7]. Our previous studies [8-12] indicate 
that calcium-induced formation of the E-cad- 
herin-β-catenin-p120-catenin (p120) complex 
in the plasma membrane triggers an intracellu-
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lar signaling pathway essential for keratinocyte 
differentiation.

Under high extracellular calcium (Cao) condi-
tions, phosphatidylinositol-4-phosphate 5-ki- 
nase1α (PIP5K1α) and phosphatidylinositol 
3-Kinase (PI3K) are recruited to the E-cadherin- 
β-catenin-p120 complex in the plasma mem-
brane in which the synthesis of phosphati-
dylinositol (4,5)-bisphosphate (PIP2) and phos-
phatidylinositol (3,4,5)-triphosphate (PIP3) is 
induced respectively. Phospholipase C-γ1 (PLC-
γ1) is then recruited to the plasma membrane 
and activated by PIP3, produces more inositol 
trisphosphate (IP3) that increases intracellular 
calcium (Cai) concentration by means of the 
calcium release from endoplasmic reticulum 
(ER) and Golgi and calcium influx through calci-
um channels. Increased Cai triggers keratino-
cyte differentiation. The relevance of calcium-
induced differentiation in vitro to the in vivo 
situation is indicated by the steep gradient of 
calcium within the epidermis, with the highest 
levels in the uppermost (most differentiated) 
layers [13]. However, it is unclear whether 
dietary calcium regulates the level of calcium, 
differentiation and proliferation of keratino-
cytes in the squamous epithelium such as oral 
epithelium, and oral carcinogenesis. To address 
these issues, we fed mice with different levels 
of dietary calcium and assessed the levels  
of calcium, proliferation, differentiation and 
chemically induced carcinogenesis in the oral 
epithelium of these mice.

Materials and methods

4NQO-induced oral carcinogenesis model

Sixty-six weaned mice (C57BL/6) were random-
ly divided into the high (n=25), normal (n=19) 
and low calcium diet groups (n=22). Each group 
was fed with the diet containing 2.0% calcium, 
1.3% calcium or 0.1% calcium (Harlan Lab) at 4 
weeks of age. All mice were also fed with drink-
ing water containing 4-nitroquinoline 1-oxide 
(4NQO, 100 μg/ml) for 16 weeks. 4NQO is a 
chemical carcinogen which is known to selec-
tively induce oral carcinogenesis [14]. Our 
experiment showed that calcium does not pre-
cipitate 4NQO out of solution. The mice were 
then fed with normal drinking water for 12 
weeks. At the end of 12 weeks, these mice 
were sacrificed and their tongues were removed 
for subsequent experiments. The study was 
approved by the Animal Care and Use Com- 
mittee of the Second Xiangya Hospital of 

Central South University, China and San 
Francisco VA Medical Center, USA.

Determination of calcium levels in the oral 
epithelium

To determine the levels of calcium in the oral 
epithelium, samples of tongues in some mice 
were processed for ion-capture cytochemistry, 
as previously described by Bikle et al [15]. 
Samples were minced and immediately im- 
mersed in an ice-cold fixative containing  
2% glutaraldehyde, 2% formaldehyde, 90 mM 
potassium oxalate, and 1.4% sucrose. After 
overnight incubation at 4°C in the fixative, sam-
ples were postfixed in 1% osmium tetroxide 
containing 2% potassium pyroantimonate at 
4°C for 2 h, rinsed in cold distilled water (adjust-
ed to pH 10 with KOH), and dehydrated, paraf-
fin embedded and sectioned. Ultrathin sections 
were examined under a Zeiss electrons micro- 
scope.

Histological and immunohistochemical assess-
ment

Tumors larger than 1 mm in diameter in the 
tongue were noted and the incidence of tumors 
was determined. The tongue tissues were fixed 
in formalin solution and embedded in paraffin 
blocks for routine histological and immu- 
nohistochemical analysis. Paraffin-embedded 
4-micrometer-thick specimens were dewaxed 
in turpentine and rehydrated through decreased 
concentrations of ethanol. Endogenous peroxi-
dase activity was blocked by using 3% H2O2 in 
methanol for 15 min. The sections were incu-
bated with trisodium citrate dihydrate liquid 
(0.125%, pH 6.0) for 15 min, and then soaked 
with phosphate buffered saline (PBS) liquid (pH 
7.2-7.4) three times for 5 min. The sections 
were then pre-incubated with sheep serum for 
10 min to block non-specific antigen. The pre-
treated slides were incubated overnight at 4°C 
in a humidified chamber with rabbit polyclonal 
or monoclonal primary antibodies against 
mouse keratin 1, involucrin, loricrin, filaggrin, 
E-cadherin, β-catenin, p120, PLC-γ1, PIKE, or 
EGFR. Antibodies purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA) include rabbit 
polyclonal antibodies against proliferating cell 
nuclear antigen (PCNA, cat# sc-7907), PLC-γ1 
(cat# sc-81), E-cadherin (cat# sc-7870), p120 
(cat# sc-13957), or EGFR (cat# sc-03) and rab-
bit monoclonal antibody against b-catenin 
(cat# sc-7199). Antibodies purchased from 
Covance Research Products (Denver, PA) 
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include rabbit polyclonal antibodies against 
involucrin (cat# PRB-140c, dilution 1:1500), fil-
aggrin (cat# PRB-417p-100, dilution 1:3000), 
keratin 1 (cat# PRB-1499-100, dilution 1:500), 
or loricrin (cat# PRB-145p-100, dilution 
1:1000). Antibodies purchased from upstate 
biotechnology (Lakeplacid, NY) include rabbit 
polyclonal the antibody against PIKE (cat# 
52-5817, dilution 1:100). After incubation with 
these antibodies, the slides were incubated at 
room temperature for 1 hour. After rinsing with 
PBS three times, the slides were incubated 
with appropriate biotinylated secondary anti-
bodies for 20 min followed by avidin (Maixin 
Biological Technology Development Company) 
and diaminobenzidine (Maixin Biological Tech- 
nology Development Company). Hematoxylin 
was used as counter-staining. In the negative 
controls, PBS (pH 7.4) was used instead of the 
primary antibody.

Determination of calcium and PTH levels in 
serum

At the end of 28 weeks, blood samples were 
obtained from sacrificed mice for serum calci-
um determination. Serum total calcium was 
measured by an ion-specific electrode (ABL 
700, Radiometer, Copenhagen, Denmark). 

Serum PTH was measured by chemilumine- 
scence.

Statistical analysis

Immunohistochemical results were assessed 
by counting number of cells stained and total 
number of cells in five representative regions of 
the sections. The percentages of positively 
stained cells were calculated [16]. For routine 
histological analysis, the results were exam-
ined under a light microscope (Olympus, Japan) 
and reviewed by two Board-certified patholo-
gists at the Second Xiangya Hospital. Data are 
presented as mean ± standard deviation. 
Analysis of variance (ANOVA) and chi-square 
test were used to calculate differences among 
three groups. Results were considered statisti-
cally significant when the P value was less than 
0.05.

Results

Inhibition of oral tumor formation by dietary 
calcium

High calcium intake is associated with low risk 
of some cancers [17]. Calcium is a strong 
inducer of differentiation of keratinocytes in 
the squamous epithelium [18]. However, the 
relationship between dietary calcium and squa-
mous cell carcinoma is unknown. To determine 
the effects of dietary calcium on the develop-
ment of squamous cell carcinoma, we fed mice 
with different calcium diets and 4NQO and 
examined the rates of tumors in the oral cavity. 
Tumors larger than 1 mm were counted. In the 
low calcium diet group, 64% mice (14 out of 22) 
developed oral tumors (Figure 1). In the normal 
calcium diet group, 36% mice (7 out of 19) 
developed oral tumors (Figure 1). In the high 
calcium diet group, only 12% mice (3 out of 25) 
developed oral tumors (Figure 1). The differ-
ences among three groups are significant (P < 
0.05). These data indicate that dietary calcium 
inhibits oral tumor formation.

Dietary calcium affected the calcium level in 
the oral epithelium but not the serum calcium 
and PTH

To determine whether dietary calcium affects 
calcium levels in the oral epithelium, we exam-
ined the level of calcium in the oral epithelium 
in mice on different calcium diets. The results 
showed that the low calcium diet reduced the 
level of calcium in the oral epithelium and the 

Figure 1. Effects of dietary calcium on the incidence 
of oral tumors. Sixty-six mice were divided into the 
low calcium diet group (n = 22), the normal calcium 
diet group (n = 19) and the high calcium diet group (n 
= 25). All the mice were fed with 4NQO and the diets 
containing high (2%), normal (1.3%) or low (0.01%) 
calcium. At the end of study, the mice were sacrificed 
and examined for oral tumors. The bar graph indi-
cates the rates of tumors in the oral cavity of these 
mice. The data are expressed as mean ± SD, *P < 
0.05 (compared with the normal calcium diet group).
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Figure 2. Effects of dietary calcium on calcium gradient in the nor-
mal oral epithelium, serum calcium and PTH. A. The graphs show 
electron micrographs of representative sections of the oral epithelial 
samples taken from the mice on different calcium diets. The calcium 
gradient (black granules) in the oral epithelium was determined by 
the ion-capture electron microscope cytochemistry. The left panel 
shows calcium precipitates in oral epithelium of mice on the low 
calcium diet. The middle panel shows calcium precipitates in oral 
epithelium of mice on the normal calcium diet. The right panel shows 
calcium precipitates in oral epithelium of mice on the high calcium 
diet. B. Serum was obtained from the mice described in Figure 1. 
The bar graph indicates the serum calcium and PTH concentration in 
these mice. The data are expressed as mean ± SD.

high calcium diet enhanced the level 
of calcium in the oral epithelium 
(Figure 2A). These data suggest that 
dietary calcium increases the level of 
calcium in the oral epithelium.

To determine whether serum calcium 
and PTH is affected by dietary calci-
um, we collected blood samples from 
these mice. The results showed that 
there was no significant difference in 
the levels of serum calcium or PTH 
among three groups on different cal-
cium diets (Figure 2B). These results 
suggest that dietary calcium does 
not affect levels of serum calcium or 
PTH.

Dietary calcium inhibited prolifera-
tion of normal oral epithelium

To determine whether dietary calci-
um affects oral epithelial prolifera-
tion, the expression levels of PCNA in 
oral epithelium of mice on three dif-
ferent calcium diets were examined 
by immunohistochemistry. The 
results showed that the level of PCNA 
in normal oral epithelium was lower 
in mice on high calcium diet and 
higher in mice on low calcium diet 
compared to mice on normal calcium 
diet (P < 0.05, Figure 3A, 3B). 
However, there was no difference in 
the expression level of PCNA in papil-
loma or squmaous cell carcinoma 
(SCC) among three groups. These 
data indicate that dietary calcium 
inhibits proliferation of normal oral 
epithelium, but has no effect on pro-
liferation of oral tumors.

Dietary calcium promoted differen-
tiation of normal oral epithelium

To determine whether dietary calci-
um affects oral epithelial differentia-
tion, we examined expression levels 
of epidermal differentiation markers 
in oral papilloma, SCC and normal 
epithelium using immunohistochem-
istry (Figure 4A-D). The results 
showed that levels of differentiation 
markers (keratin 1, involucrin, filag-
grin and loricrin) in the normal oral 
epithelium were higher in the mice 
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on the high calcium diet and lower in the mice 
on the low calcium diet than mice fed with nor-
mal calcium diet (P < 0.05, Figure 4E). However, 
there were no differences in the expression lev-
els of differentiation markers in papilloma or 
SCC among three groups. These results indi-
cate that dietary calcium promotes differentia-
tion of normal oral epithelium, but has no effect 
on 4NQO-induced differentiation of oral tumors.

Dietary calcium stimulated expression of 
E-cadherin, β-catenin and p120 in normal oral 
epithelium

Upon Cao stimulation, the extracellular domain 
of E-cadherin interacts with the extracellular 
domain of E-cadherin molecules on the surface 
of neighboring cells, and its cytoplasmic tail 
interacts with β- (or γ-), and p120-catenins to 

Figure 3. Effects of dietary calcium on the proliferation of oral epithelia. The tongue was removed from the mice 
described in Figure 1 and the tissue was fixed in formalin solution and embedded in paraffin blocks for pathologi-
cal analysis and immunohistochemistry using the antibody against PCNA. A. Tissue sections were stained with the 
antibody against PCNA (brown) and counterstained with hematoxylin (blue). The representative section shows the 
average expression level of PCNA. B. Quantitation of the PCNA levels in the cells was shown as bar graphs. The 
quantitation for each section was obtained by counting the number of positive cells and total number of cells in the 
corresponding region in five representative regions in each section. The data are expressed as mean ± SD, *P < 
0.05 (compared with the normal calcium diet group).



Dietary calcium and oral carcinogenesis

3534	 Int J Clin Exp Pathol 2015;8(4):3529-3542



Dietary calcium and oral carcinogenesis

3535	 Int J Clin Exp Pathol 2015;8(4):3529-3542

Figure 4. Effects of dietary calcium on the differentiation of oral epithelium. The tongue was removed from the mice described in Figure 1 and the tissue was fixed 
in formalin solution and embedded in paraffin blocks for routine histological and immunohistochemical analysis using antibodies against differentiation markers 
including keratin 1, involucrin, filaggrin and loricrin. Positive expression is shown in blown and the counterstaining is shown in blue. The figure shows the representa-
tive sections of oral papilloma, SCC and normal epithelium. The bar graph shows quantitation of the levels of differentiation markers in the cells. The quantitation 
was obtained as described in Figure 3. The data are expressed as mean ± SD, *P < 0.05 (compared with the normal calcium diet group).
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form the core adhesive structure of adherent 
junctions [19]. Our previous studies [8-12]  
indicated that Cao induces E-cadherin-β-
catenin-p120 complex formation in the plasma 
membrane. To investigate the effects of dietary 
calcium on the E-cadherin-β-catenin-p120 
complex in the oral epithelium, the expression 
levels of E-cadherin, β-catenin and p120 in the 
oral papilloma, SCC and normal epithelium 
were examined by immunohistochemistry. The 
results showed that E-cadherin, β-catenin and 
p120 were mainly expressed in the plasma 
membrane, and barely expressed in the cyto-
plasm (Figure 5A-C). The levels of E-cadherin, 
β-catenin and p120 in the normal oral epitheli-
um were higher in mice on the high calcium diet 
and lower in mice on the low calcium diet than 
mice on the normal calcium diet (P < 0.05, 
Figure 5D). However, there were no differences 
in the expression levels of E-cadherin, β-catenin 
or p120 in papilloma or SCC among three 
groups. The results indicate that dietary cal- 
cium increases expression of E-cadherin, 
β-catenin and p120 in the normal oral epitheli-
um, but has no effect on expression of them in 
oral tumors.

Dietary calcium inhibited expression of PLC-γ1 
but did not affect the expression of PIKE

PLC-γ1 is the most abundant member of the 
phospholipase C family in keratinocytes and 
required for calcium-induced keratinocyte dif-
ferentiation [8] as well as epidermal growth fac-
tor receptor (EGFR)-induced keratinocyte and 
SCC cell proliferation [20, 21]. The SH3 domain 
of PLC-γ1 acts as a guanine nucleotide 
exchange factor for PIKE, the short form of 
which is a nuclear GTPase and enhances the 
activity of nuclear class Ia PI3K required for 
proliferation [22, 23]. To determine the effects 
of dietary calcium on the expression of PLC-γ1 
and the downstream signaling molecule PIKE in 
the oral epithelium, we examined expression 
levels of PLC-γ1 and PIKE in the oral papilloma, 
SCC and normal epithelium using immunohisto-
chemistry. The results showed that PLC-γ1 was 
localized to the cytoplasm and the cell mem-
brane of keratinocytes in the oral papilloma, 
SCC and normal epithelium (Figure 6A). The 
expression level of PLC-γ1 in the normal oral 
epithelium was lower in mice on the high calci-
um diet and higher in mice on the low calcium 
diet than that in mice on the normal calcium 

diet (P < 0.05, Figure 6D) PIKE was detected 
only in the nucleus (Figure 6B). However, there 
were no differences in the expression levels of 
PLC-γ1 in the oral papilloma or SCC epithelium 
and PIKE in the oral tumor or normal epithelium 
among three groups (P > 0.05) (Figure 6D). 
These data suggest that dietary calcium inhib-
its expression of PLC-γ1 in the normal oral epi-
thelium, but has no effect on expression of 
PLC-γ1 in oral tumor epithelium and also no 
effect on expression of nuclear PIKE in the oral 
tumor and normal epithelium.

Dietary calcium stimulated expression of EGFR 
in normal oral epithelium

It is known that EGFR, a 170-kDa transmem-
brane tyrosine kinase receptor, is expressed in 
tissues of epithelial, mesenchymal and neuro-
nal origin [24]. Upon activation by one of its 
ligands such as EGF or transforming growing 
factor-α, EGFR forms homo- or heterodimer 
leading to its autophosphorylation and triggers 
downstream signaling cascades including pro-
tein kinase C and Ras-activated ERK1/2 MAP 
kinase pathways [25, 26]. EGFR-mediated sig-
nal transduction plays a major role in cell prolif-
eration, migration and differentiation [27, 28]. 
Therefore, EGFR is considered to be an impor-
tant regulator of keratinocyte terminal differen-
tiation [29] and proliferation [30]. To determine 
the effects of dietary calcium on the expression 
level of EGFR in the oral epithelium, we exam-
ined expression levels of EGFR in the oral papil-
loma, SCC and normal epithelium using immu-
nohistochemistry. The results showed that 
EGFR was expressed in the plasma membrane 
(Figure 6C). The expression level of EGFR in the 
normal oral epithelium was lower in mice on the 
low calcium diet and higher in mice on the high 
calcium diet than that in mice on the normal 
calcium diet (P < 0.05, Figure 6D). However, 
there were no differences in the expression lev-
els of EGFR in the oral papilloma or SCC (P > 
0.05, Figure 6D). These data suggest that 
dietary calcium stimulates expression of EGFR 
in the normal oral epithelium, but has no effect 
on expression of EGFR in oral tumors.

Discussion

In the present study, we used the 4NQO-
induced oral cancer mouse model to investi-
gate the role of dietary calcium in regulating 
oral carcinogenesis. The results showed that 
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there was a significant decrease in the inci-
dence of oral tumors in mice on high calcium 
diet but an increment in mice fed on low calci-
um diet. Furthermore, the dietary calcium 
decreased proliferation and increased differen-
tiation of keratinocytes in the normal oral epi-
thelium. These results indicate that dietary cal-
cium inhibits oral carcinogenesis probably by 
regulating proliferation and differentiation of 
oral epithelium.

Our results are consistent with a recent study 
which showed that dietary calcium suppresses 
DMBA-induced oral carcinogenesis in hamster 
[31]. The role of calcium in suppressing carcino-
genesis is not only found in the oral epithelium, 
but also seen in other tissues [17]. More recent-
ly, it has been shown that calcium supplement 
reduced risk of head and neck cancers [32]. 
However, not all of studies suggest that calcium 
suppresses carcinogenesis. For example, a 
prospective cohort study showed no statisti-
cally significant association between dietary 
calcium and site-specific or overall cancer inci-
dence or mortality [33]. The multi-factorial eti-
ology of various cancers may account for the 
discrepancy between studies.

The rationale for conducting the present study 
was the association between dietary calcium 
and the incidence of oral cancers as well as the 
regulation of keratinocyte differentiation by 
extracellular calcium [17, 34-39]. Our present 
results showed that dietary calcium increases 
the level of calcium in the normal oral epitheli-
um. However, the serum calcium was not 
affected by the dietary calcium in our study. 
Serum calcium is maintained within narrow 
range under tightly homeostatic control of PTH, 
1,25-(OH)2D3 and calcitonin (CT) and does not 
change as alteration of dietary calcium [40]. 
The dorsum of the tongue is covered by special-
ized epithelium as a mosaic of keratinized and 
non-keratinized epithelium. The non-keratin-
ized epithelium allows penetration of small mol-
ecules into the extracellular space [41]. We 

cannot rule out the possibility that dietary cal-
cium increases levels of calcium in the oral epi-
thelium through direct penetration.

Our present studies show that dietary calcium 
suppresses keratinocyte proliferation and 
induces keratinocyte differentiation of normal 
oral epithelium but not papilloma or SCC epi-
thelium. It is seems that dietary calcium has 
stronger impact on normal keratinocytes than 
on tumor keratinocytes. The anti-proliferative 
and pro-differentiative effects of calcium on 
keratinocytes may account for calcium inhibi-
tion of oral carcinogenesis.

Calcium-dependent adherence proteins or cad-
herins are a family of proteins essential for  
connecting the plasma membrane of adja- 
cent cells. E-cadherin forms a complex with 
β-catenin. Loss of E-cadherin-β-catenin adhe-
sion represents an important step in the pro-
gression of many epithelial malignancies [42]. 
Our previous studies [8-12] have indicated that 
the signaling pathway involving calcium-induc- 
ed formation of the E-cadherin-β-catenin-p120 
complex in the plasma membrane and subse-
quent activation of PLC-γ1 mediates calcium-
induced human keratinocyte differentiation. 
Our present results showed that dietary cal- 
cium stimulated expression of E-cadherin, 
β-catenin and p120 in normal oral epithelium. 
However, the dietary calcium had no effect on 
the expression of these proteins in oral papillo-
ma or SCC. It seems that dietary calcium pro-
motes E-cadherin-β-catenin-p120-meditated 
signaling in normal keratinocytes but not in 
tumor keratinocytes.

PLC-γ1 is a critical component of the signaling 
pathway mediating calcium-induced keratino-
cyte differentiation via its mobilization of intra-
cellular calcium [8-12], and also is required for 
EGFR-induced keratinocyte and SCC prolifera-
tion [20, 21]. PLC-γ1 contains two Src homolo-
gy (SH2), one SH3, one pleckstrin homology (PH) 
domain and two catalytic domains. Activation 
of the SH3 and catalytic domains of PLC-γ1 

Figure 5. Effects of dietary calcium on the expression of E-cadherin, β-catenin and p120 in the oral epithelium. 
The tongue was removed from the mice described in Figure 1 and the tissue was fixed in formalin solution and 
embedded in paraffin blocks for routine histological and immunohistochemical analysis using antibodies against 
E-cadherin, β-catenin and p120. Positive expression is shown in blown and the counterstaining is shown in blue. 
The representative section shows the average level of E-cadherin, β-catenin and p120 in oral papilloma, SCC and 
normal epithelium. Quantitation of E-cadherin, β-catenin and p120 in the cells is shown in the bar graph. The quan-
titation was obtained as described in Figure 3. The data are expressed as mean ± SD, *P < 0.05 (compared with 
the normal calcium diet group).
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leads to proliferation and migration, respective-
ly [21]. The activation of PLC-γ1 in the plasma 
membrane via increased PIP3 formation pro-
duced by c-src- and fyn-activated PI3K is 
required for calcium-induced human keratino-
cyte differentiation [10]. The activation of PIKE 
by PLC-γ1 is required for EGF-induced SCC cell 
proliferation [43]. Our results indicate that 
dietary calcium inhibits PLC-γ1 expression and 
stimulates EGFR expression, but does not 
affect PIKE expression. The functional link 
between the regulation of these molecules and 
inhibition of oral carcinogenesis by dietary cal-
cium requires further investigation.
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