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Abstract: Rapid detection and timely treatment are of great significance to reduce Mycobacterium tuberculosis (M. 
tuberculosis) transmission, especially in cases suffering from the infection of multidrug-resistant (MDR) or exten-
sively drug-resistant (XDR) M. tuberculosis. Here we have developed a reverse dot blot hybridization (RDBH) tech-
nique for rapid diagnosis of M. tuberculosis resistance to fluoroquinolones (FQ). One wild-type and seven mutant 
oligonucleotide probes were designed to detect the gyrA gene common mutations conferring to FQ resistance. A 
total of 160 clinical M. tuberculosis isolates including 83 FQ-resistant and 77 FQ-sensitive strains were analyzed in 
this study. Compared with the results of culture-based phenotypic drug susceptibility test (DST), the overall sensitiv-
ity, specificity and accuracy of this RDBH assay were 71.1% (59/83), 100% (77/77) and 85.0% (136/160), while 
compared with direct DNA sequencing method, the sensitivity, specificity and accuracy of the RDBH were 93.7% 
(59/63), 100% (97/97) and 97.5% (156/160), respectively. Therefore, the newly-established RDBH assay is rapid, 
simple and efficient method to detect fluoroquinolones resistance of M. tuberculosis and can hold the promise for 
screening FQ-resistance in the clinical samples from the patients with tuberculosis.
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Introduction

Tuberculosis (TB) caused by Mycobacterium 
tuberculosis (M. tuberculosis), ranks as the 
second leading cause of death among infec-
tious diseases worldwide [1]. Rapid case detec-
tion and timely treatment are of great signifi-
cance to reduce M. tuberculosis transmission, 
especially in cases suffering from the infection 
of multidrug-resistant (MDR) or extensively 
drug-resistant (XDR) M. tuberculosis. MDR M. 
tuberculosis is defined as the strain resistance 
to at least both isoniazid (INH) and rifampin 
(RIF), whereas XDR M. tuberculosis is MDR with 
additional resistant to both a fluoroquinolone 
(FQ) and at least one of the following second-
line injectable agents: capreomycin (CAP), 
kanamycin (KAN), and amikacin (AMK), consti-

tutes an emerging threat for effective TB pre-
vention and control [2]. In 2014, World Health 
Organization (WHO) reported that an estimated 
9% of MDR-TB were XDR-TB worldwide, China 
alone accounted for 11% of total cases and an 
estimated 5.7% of new TB cases were MDR-TB 
[3].

Fluoroquinolones have been demonstrated to 
have high in vitro activity against M. tuberculo-
sis and used as backbone drugs recommended 
to treat MDR-TB [4]. The main target of FQ in M. 
tuberculosis is DNA gyrase, a GyrA2GyrB2 tetra-
meric enzyme consist of two A and two B sub-
units encodes by gyrA and gyrB genes, respec-
tively. The mutations in the specific gyrA region 
which is called the fluoroquinolone resistance-
determining region (QRDR) are the predomi-
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nately mechanism conferring FQ resistance of 
M. tuberculosis [5, 6]. Some researches show- 
ed that approximately 50%-91% of FQ-resistant 
M. tuberculosis isolates bore missense muta-
tions in QRDR of gyrA (codons 88 to 94) [7-10]. 
Therefore, it is critical to identify the mutations 
associated with FQ-resistance as soon as pos-
sible for timely adequate adjusting treatments 
and improving the outcome of patients.

Generally, culture-based tests remain the gold 
standard for detecting drug-resistant M. tuber-
culosis, but it takes at least 2-4 weeks after the 
isolate has been cultivated. Therefore, nucleic 
acid-based drug susceptibility methods are 
considered more attractive as diagnostic 
means. Currently, WHO has endorsed the 
molecular probe assays to detect common 
mutations conferring resistance to specific 
anti-tuberculosis drugs [1]. Two commercial 
detecting system: GeneXpert MTB/RIF (Ce- 
pheid, Sunnyvale, CA) and GenoType MTBDR- 
plus (Hain Life Science GmbH, Nehren, Ger- 
many), which indirectly identify mutations by 
lack of probe hybridization to wild-type loci 
have been recommended in clinical applica-
tions [11-13]. However, the technologies can 
not detect the resistance to second-line drugs. 
Although the novel Hain Life Science GenoType 
MTBDRsImolecular kit were evaluated for sec-
ond-line drugs and EMB resistance-associated 
mutations, the expensive equipment and con-
sumables has also hindered the widespread 
use in TB high-burden and low-income 
countries. 

The reverse dot blot hybridization (RDBH) assay 
has been widely performed in the spoligotyping 
technique for M. tuberculosis molecular geno-
typing identification [14, 15]. Similarly, the 
method has been developed to identify the 
mutations that confer resistance to antibiotics. 
In this study, we established a RDBH method 
for simultaneous identification of seven com-
mon gyrA gene mutations and further blind 
evaluate the sensitivity and specificity of this 
assay compared to the results of conventional 
drug susceptibility test (DST) based on bacteri-
al culture and DNA sequencing [16, 17]. 

Materials and methods

Clinical isolates

A total of 160 clinical M. tuberculosis isolates 
were randomly obtained from different patients 
with TB in Fujian, Tibet, Henan, Sichuan, Hunan 
province of China and M. tuberculosis refer-

ence strain H37Rv was provided by Tuberculosis 
Laboratory of the National Institute for Com- 
municable Disease Control and Prevention 
(ICDC), Chinese Center for Disease Control and 
Prevention (China CDC) in Beijing used as the 
standardization reference of the method.

Phenotypic drug susceptibility testing

All isolates were initially identified as M. tuber-
culosis by PNB/TCH differential media. The 
drug susceptibility testing with the proportion 
method on L-J medium was performed accord-
ing to WHO guidelines by using recommended 
concentration (2 mg/mL for Ofloxacin) [16]. The 
critical growth proportion for resistance was 
1%.

Genomic DNA extraction

Genomic DNA was extracted from fresh myco-
bacteria colonies grown on L-J media slants by 
resuspending in 500 ml TE buffer (10 mM Tris-
HCl and 1 mM EDTA, pH 8.0), then incubated at 
95°C for 30 min. After centrifugation for 3 min 
at 12000 rpm, the supernatants were recov-
ered and stored at -20°C before use.

PCR amplification and sequencing of the gyrA 
gene

A 314-bp fragment of gyrA QRDR was amplified 
using gyrA primers (forward primer, biotinyla- 
ted at the 5’ end: 5’-bio-GGGTGCTCTATGCAAT-
GTTCG-3’; reverse primer: 5’-GCCGTCGTAG- 
TTAGGGATGA-3’). The PCR was standardized in 
a total reaction volume of 50 mL containing 25 
mL 2× Hot Taq MasterMix (Sibino Biotech, 
Beijing, China), 1 mL (10 mmol/mL) of each 
primer, 2 mL (20-200 ng/mL) genomic DNA and 
added DD H2O to 50 mL. PCR was done as fol-
lows: pre-denaturation at 94°C for 5 min, 35 
cycles of 1 min at 94°C, 1 min at 58°C and 1 
min at 72°C, then the final extension 10 min at 
72°C.

The PCR products were sent to TsingKe 
Company (Beijing, China) for sequencing, and 
then the results were aligned with the homolo-
gous sequences of M. tuberculosis reference 
strain H37Rv by using personalized Perl script.

Hybridization and detection

We designed 8 oligonucleotide probes (Table 1) 
based on wild-type (wt) and common mutant 
type (mt) were immobilized onto the negatively-
charged nylon membrane (Biodyne C, Pall 
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Phenotypic drug susceptibility testing of M. 
tuberculosis clinical isolates

Out of the 160 M. tuberculosis clinical isolates, 
83 were fluoroquinolone resistant and the 
remaining 77 strains were identified as fluoro-
quinolone sensitive by means of conventional 
proportion method.

DNA sequencing of the gyrA gene

The DNA sequencing indicated that the 
AGC→ACC alteration at codon 95 was found in 
all of the clinical M. tuberculosis isolates. As 
compared to the DST results, no mutation was 
observed in FQ-sensitive strains and 63 
(75.9%) of the 83 fluoroquinolone resistant M.  
tuberculosis bear gyrA mutations in QRDR. 
Among these 63 gyrA mutation isolates, the 
point mutations were clustered at codon 90, 91 
and 94. Position 94 was the most frequent and 
diverse site of mutation associated with FQ 
resistance, with six different amino acid substi-
tutions-GGC (Gly), GCC (Ala), TAC (Tyr), AAC 
(Asn), CAC (His) and GTC (Val), which accounted 
for 50.6% of FQ resistant M. tuberculosis 
strains. Asp94Gly, Asp94Ala and Ala90Val were 
the most prevalent mutation type, totally har-
bored by 49.4% (n=41) of the isolates. In addi-
tion, two double sites mutations-Ala90Val+ 
Asp94Ala, Ser91Pro+Asp94Ala were detected 
in our research (Table 2).

RDBH assay

A total of 83 FQ-resistant and 77 FQ-sensitive 
clinical M. tuberculosis isolates were tested by 
RDBH assay. The results showed that 59 
(71.1%) of the FQ-resistant strains possessed 
gyrA gene mutations in the QRDR and 77 iso-
lates phenotypically sensitive to FQ, including 

Corporation) in parallel lines. 20 mL of each 
PCR product was diluted in 150 mL 2× 
SSPE/0.1% SDS and heat-denatured at 100°C 
for 10 min, then cooled on ice immediately. The 
denatured single-stranded DNAs were applied 
on the prepared membrane in the miniblotter 
slots and hybridized at 60°C for 1 h. The mem-
brane was washed twice each time for 10 min 
with 2× SSPE/0.5% SDS buffer at 50°C after 
hybridization. The membrane was subsequent-
ly incubated at 42°C for 40 min with 1:2000 
diluted streptavidin-AP conjugate in 20 mL 2× 
SSPE/0.5% SDS, and then the unbound conju-
gate was removed by washing twice in 2× 
SSPE/0.5% SDS for 10 min at the same tem-
perature, rinsed once in 2× SSPE for 5 min at 
ambient temperature. The chemiluminescent 
detection was under the condition of protection 
from light accession KPL color-developing 
agent following the manufacturer’s instructions 
(KPL, Inc) at 42°C for 40 min. Finally, the results 
were recorded.

A clear and identifiable purple-blue spot was 
recorded as ‘positive’. When the wild-type 
probes reacted positively and all the seven 
mutant type probes were negative, the experi-
mental clinical isolate was recorded suscepti-
ble to FQ; Only the signal of mutant probes 
whose color were much stronger than the wild-
type probe, the strains were considered as 
mutant genotypes (Figure 1). In order to ensure 
the quality and repeatability of this research, all 
the strains were repeated detected by RDBH.

Statistical analysis

A Pearson’s chi-square test was used to ana-
lyze the sensitivity and specificity of the RDBH 
assay in comparison with the DST. The consis-
tency analysis on the results of the different 

methods was used by Kappa identity 
test. Kappa value was used for evalu-
ating the agreement to compare the 
two methods, e.g., RDBH and DNA 
sequencing, respectively. Kappa value 
below 0.40 revealed weak consisten-
cy, values between 0.41-0.60 indicat-
ed moderate agreement and values 
above 0.60 demonstrated good agree-
ment [18]. All statistical analyses were 
performed using SAS 9.2 software. 

Results

Table 1. The information of eight probes used for detect-
ing gyrA gene of M. tuberculosis
Probe Codon Genotype Sequence
pwt 90-94 Wild-type C GCG TCG ATC TAC GAC A
pm1 90 Mutant type (GTG) TC GTA GAT CGA CAC GTC G
pm2 91 Mutant type (CCG) C GCG CCG ATC TAC GAC A
pm3a 94 Mutant type (GGC) GT GCC GTA GAT CGA CGC
pm3b 94 Mutant type (GCC) G TCG ATC TAC GCC ACC CTG
pm3c 94 Mutant type (TAC) ATC TAC TAC ACC CTG GTG C
pm3d 94 Mutant type (AAC) C GCG TCG ATC TAC AAC AC
pm3e 94 Mutant type (CAC) C GCG TCG ATC TAC CAC AC
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H37Rv, had no mutations in gyrA QRDR. Com- 
pared to DST, the sensitivity, specificity, and 
accuracy of RDBH were 71.1% (59/83), 100% 

(77/77) and 85.0% (136/160), respectively. 
The kappa value was 0.70, showing good agree-
ment between RDBH and DST.

Figure 1. Reverse dot blot hybridization map of gyrA mutations conferring FQ resistance. H37Rv: negative control 
(pwt positive control); 1-22: FQ-resistant clinical isolates; pwt-: absence of wild-type probe spot or the wild-type spot 
was much weaker than mutant probe; pm+: presence of mutant probe spot; Bold: inconsistent results between 
RDBH and DNA sequencing.
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were observed gyrA QRDR mutations. The fre-
quency of the mutation associated with FQ 
resistance was similar to the data of Shanghai 
(75.7%) [20] and France (78.0%) [21], higher 
than that in Russia (57%) [22] and Korea 
(69.2%) [23], but lower than the results of 
America (85.0%) [24]. Therefore, it was inferred 
that gyrA mutation in clinical M. tuberculosis 
isolates might vary in different geographical 
region and sampling. Our study indicated that 
the most frequently mutation type was 94 
GAC→GGC, followed by 94 GAC→GCC and 90 
GCG→GTG, which was responsible for 21.7%, 
14.5%, 13.3%, respectively. This observation 
coincided with the research results from report-
ed by Takiff et al [6], Hu Y [25] and Wang H [26]. 
Furthermore, we also observed that all clinical 
strains possessed codon 95 (AGC→ACC) muta-
tion, which showed to be unrelated to fluoroqui-
nolones resistance but considered as a natural 
polymorphism in M. tuberculosis.

The application of the reverse dot blot hybrid-
ization assay to investigate the incidence of M. 
tuberculosis resistance was reported in the 
world in recent years. As shown in our research, 
59 of the 83 FQ-resistant and all the 
FQ-sensitive strains were successfully identi-
fied by RDBH as compared to DST, with 71.1% 
sensitivity and 100% specificity. As compared 
to the results of DNA sequencing, our assay 
could correctly detected 97.5% of FQ-resis- 

Among the 63 M. tuberculosis strains that car-
ried mutations in the QRDR of gyrA based on 
DNA sequencing, 57 (90.5%) were recorded the 
same results and four isolates failed to recog-
nized by the RDBH assay. Among the six missed 
diagnosis samples, two had a single mutation 
located outside the target region of Wt probe-
codon 88 (GGC→GCC), two had amino acid 
substitutions at codon 94 where GAC (Asp) was 
replaced by CAC (His) and GCC (Ala), and anoth-
er two isolates which sequencing showed 94 
GAC→GTC alteration, absent the both Wt and 
Mt probes hybridization signal in our assay 
were considered to had a mutation in codon 
90-94, but the mutant type was not involved in 
our designed probes. The sensitivity, specificity 
and accuracy of RDBH assay for FQ resistance 
detection compared with DNA sequencing were 
93.7% (59/63), 100% (97/97), 97.5% (156/ 
160). The kappa value was 0.95, revealing 
excellent agreement between RDBH and DNA 
sequencing. 

All the strains detected by RDBH assay repeat-
edly showed the same outcome.

Discussion

Fluoroquinolones are the potent second-line 
anti-tuberculosis drugs which have been widely 
applied to treat TB, especially for MDR-TB. The 
abuse and excessive use has lead to the 

increasing emergence of FQ- 
resistant M. tuberculosis in 
China [7]. Fluoroquinolones, 
predominately by inhibiting the 
DNA gyrase of M. tuberculosis 
to block DNA replication and 
transcription, result in bacterial 
death. A previous report show- 
ed that the missense muta-
tions clustered in a conserved 
320 bp nucleotide sequences 
of gyrA gene had been proved 
main mechanism conferring FQ 
resistance of M. tuberculosis 
[15]. Otherwise, the mutations 
found in gyrB may convey low 
levels of phenotypic FQ resis-
tance [19].

In our study, 63 (75.9%) of 83 
clinical M. tuberculosis isolates 
with phenotypic FQ resistance 

Table 2. Distribution of gyrA gene mutations in 63 clinical isolates 
of M. tuberculosis

DNA Sequencing
RDBH assay No. of 

isolates

Mutation 
frequency 

(%)Codon Mutation type

88 GGC→GCC(Gly→Ala) pwt+ 2 2.4 
90 GCG→GTG(Ala→Val) pwt-, pm1+ 11 13.3 
91 TCG→CCG(Ser→Pro) pwt-, pm2+ 8 9.6 
94 GAC→GGC(Asp→Gly) pwt-, pm3a+ 18 21.7 
94 GAC→GCC(Asp→Ala) pwt-, pm3b+ 12 14.5 
94 GAC→TAC(Asp→Tyr) pwt-, pm3c+ 3 3.6 
94 GAC→AAC(Asp→Asn) pwt-, pm3d+ 2 2.4 
94 GAC→CAC(Asp→His) pwt-, pm3e+ 3 3.6 
94 GAC→GTC(Asp→Val) pwt- 2 2.4 
90+94 GCG→GTG(Ala→Val) pwt-, pm1+, pm3b+ 1 1.2 

GAC→GCC(Asp→Ala)
91+94 TCG→CCG(Ser→Pro) pwt-, pm2+, pm3b+ 1 1.2 

GAC→GCC(Asp→Ala)
Total 63 75.9 
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tance. Moreover, the two double-sites mutation 
isolates were accurately caught by RDBH assay, 
showing that our method also had good sensi-
tivity in detecting multiple locus mutations. 
However, the analysis of inconsistent results 
among DST, DNA sequencing and RDBH assay 
could be included as follows. Firstly, for the 20 
FQ-resistant isolates carried no mutations in 
the gyrA QRDR in this study, we speculated that 
some mutations attributed to gyrB gene, either 
they were outside the QRDR or the resistance 
might be caused by other underlying mecha-
nisms, such as drug efflux pumps as well as  
the decreased permeability of the outer mem-
brane [27, 28]. Besides, we failed to detect  
the specific mutant type of samples which bear 
88 GGC→GCC or 94 GAC→GTC alteration. It 
implied that certain limitation of probe design 
made some less frequently mutation type in 
“hot-spot region” to escape the detection. 

The Global Tuberculosis Report 2014 indicated 
that drug resistance surveillance would expand 
to more countries and cover more key drugs 
such as Fluoroquinolones in order to under-
stand and control the prevalence of drug resis-
tance all over the world. Molecular technolo-
gies have been being incorporated into drug 
resistance surveys [29]. Currently, GenoType 
MTBDRsl was a reliable tool for rapid identifica-
tion of second-line drugs resistance in labora-
tory studies, but so far in China, it has not 
received approval in clinic use. Additionally, the 
high cost of equipments and consumables as 
well as the potential requirement for laboratory 
facilities has limited its clinical application in 
some developing countries. In contrast, our 
RDBH technology is a probe-based method 
that can be easily performed in local laborato-
ries where a PCR amplifier is available. 45 
specimens could be examined simultaneously 
by RDBH, and this can reduce the cost of the 
assay, making it practical for large sample 
screening of any suspected MDR-TB patients in 
clinical laboratory. 

To conclude, it takes only 6-8 h to complete 
RDBH assay post-DNA extraction that sharply 
reduce and simplify laboratory work [30]. Given 
the probe performed high sensitivity, specificity 
and superior agreement with DST and DNA 
sequencing. A lot of our experiments indicated 
that the technique has good reproducibility and 
stability. Therefore, the RDBH assay estab-

lished in our study is a rapid, simple and effi-
cient method, which can provide a good basis 
for developing the FQ-resistance detection kit 
and has a good application prospect being 
used for the diagnosis and surveillance of the 
drug resistance of M. tuberculosis to Fluoro- 
quinolones. Furthermore, research is underway 
to concern if the RDBH assay could detect 
directly DNA extracted from clinical specimen, 
which will further accelerate the detection and 
play a vital role in FQ-resistant tuberculosis.
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