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in human gastrointestinal smooth muscle cells  
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Abstract: Diabetes mellitus (DM) brings about multiple gastrointestinal complications. Nesfatin-1 is an ingestion 
regulating peptide which possesses a considerable effect in delaying gastric emptying. We aimed to investigate ef-
fects and mechanism of nesfatin-1 application on human gastrointestinal smooth muscle cells (HGSMC). HGSMC 
were treated with different concentrations of nesfatin-1, and expression of endothelial nitric oxide synthases (eNOS) 
was confirmed. Besides, HGSMCs were administrated nesfatin-1 along or combination of nesfatin-1 and eNOS 
inhibitor NG-Nitro L-arginine Methyl Ester (L-NAME). Thereafter, the cell viability, apoptosis, and adhesion were as-
sessed. Western blot analysis was performed to analyze expression of key proteins extracellular regulated protein 
kinas (ERK) 1/2, p38 mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) on the 
signaling pathway. The eNOS was significantly upregulated by nesfatin-1 at the optimal concentration of 100 nM (P 
< 0.05). Nesfatin-1 remarkably suppressed the HGSMC viability and adhesion (P < 0.05) and expedited apoptosis 
(P < 0.01). Additionally, nesfatin-1 significantly reduced expressions of ERK1/2, p38MAPK and mTOR in HGSMC 
compared with those in the control group (P < 0.05). However, administration of eNOS inhibitor L-NAME could relieve 
these effects on HGSMC. Nesfatin-1 inhibited cell viability and adhesion of HGSMC, and promoted cell apoptosis. 
These effects might be by regulating eNOS-mediated downstream ERK/MAPK/mTOR signaling pathway. It reveals 
that eNOS inhibitor is praised to be a novel therapeutic strategy and target for DM induced gastrointestinal compli-
cations.
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Introduction

Diabetes Mellitus (DM) is a metabolic disorder 
disease, characterized by hyperglycemia on 
account of insulin resistance (IR) and impair- 
ed insulin secretion, which has reached pan-
demic levels worldwide [1, 2]. Chronic DM 
brings about multiple gastrointestinal compli-
cations such as delayed gastric emptying (DGE) 
and gastroparesis, which diminish life quality  
in affected individuals [3-6]. Gastric emptying 
dysfunction occurs in 30-50% of DM patients 
and contributes to irregular blood glucose fluc-
tuations and weakened oral antidiabetic drug 
emptying and absorption. As documented, DGE 
has been present in 25-55% of patients with 
type 1 and 30% of those with terminal type 2 

diabetes mellitus (T2DM) [7-9]. Evidence points 
to a pivotal role of gastric motility disorder in 
DM patients, which markedly influences nutri-
tional status and therapeutic effects. To our 
current knowledge, treatment options for DGE 
in DM patients remain limited. 

Since first identified in 2006 [10], nesfatin-1 
has been an anorexic hormone in the region  
of the precursor peptide nucleobindin-2 (NU- 
CB2) [11]. As an ingestion regulating peptide, 
nesfatin-1 possesses a considerable effect in 
restraining food intake, losing weight, delay- 
ing gastric emptying and adjusting blood glu-
cose [11-15]. Foregoing studies in rodents have 
concluded that nesfatin-1 was proposed to re- 
medy obesity with the systemic or local admin-
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istration [11, 16]. Recently it has been reveal- 
ed that gastrointestinal nesfatin-1 might be in- 
volved in the control of gastric mobility by ad- 
justing the vagal activity [17, 18]. Ayada et al. 
found nesfatin-1 administration was related to 
endothelial nitric oxide synthases (eNOS) in  
balanced oxidative status [19]. Further, a novel 
site of action of nesfatin-1 on the Akt kinase 
(Akt)/AMP-dependent protein kinase (AMPK)/
target of rapamycin complex 2 (TORC2) path-
way [20] and mammalian target of rapamy- 
cin (mTOR)-signal transducer and activator of 
transcription 3 (STAT3) signaling pathway was 
detected in diet-induced IR [21]. 

However, the mechanism of nesfatin-1 on  
eNOS level and signaling pathways remains  
to be elucidated in DM-induced DGE. We aim- 
ed to investigate the effects and mechanism  
of nesfatin-1 application on human gastroin- 
testinal smooth muscle cells (HGSMC), which  
is expected to address the unmet need and 
provide a theoretical basis for DM-induced gas-
trointestinal complications.

Materials and methods

Cell culture and treatment

HGSMC isolated from the human stomach were 
obtained from ScienCell Research Labo- 
ratories (San Diego, CA, USA). Cells were grown 
in Smooth Muscle Cell Medium (SMCM, Cat. 
#1101; Beijing Yuhengfeng Biotech Co., LTD, 
Beijing, China). HGSMC were maintained at 
37°C in a humidified atmosphere containing 
5% CO2. All cells were cultured to 80-90%  
confluency as judged under a phase contrast 
microscopy (Olympus, Tokyo, Japan) before the 
medium was replaced with Dulbecco’s Modi- 
fied Eagle’s Medium (DMEM, Lonza, USA) for  
a further 15 h. Then HGSMC were assigned  
to three groups: control (C) group, nesfatin-1  
(N) group and nesfatin-1 + NG-Nitro-L-arginine 
Methyl Ester (L-NAME) (NL) group (n = 2 × 104 
in each group). Cells in C group were kept in 
DMEM as control. N group was treated by nes-
fatin-1 (R&D Systems, Minnesota, USA) of opti-
mal concentration for 48 h selected from cor-
responding concentrations 10, 50, 100, 200 
nM. NL was applied with 1.0 mmol/L eNOS 
inhibitor L-NAME (AMQUAR, Guangzhou, China) 
for 24 h after HGSMC were treated with nesfa-
tin-1 of optimal concentration.

Cell viability assay

The cell viability of C, N and NL groups was 
determined using 3-(4, 5-dimethylthiazol-2-yl)- 
2, 5-diphenyltetrazolium bromide (MTT) colo- 
rimetric assay. HGSMC treated with 100 nM 
nesfatin-1 were cultured in DMEM with 10% 
fetal bovine serum (FBS, Invitrogen, CA, USA) 
containing 0.5 mg/mL MTT (Sigma, USA) for  
4 h on days 1, 2, 3 and 4. Then 100 μl dime- 
thylsulfoxide (DMSO, Lonza, USA) was added  
to dissolve the blue formazan (Sigma, USA) 
product. HGSMC viability was measured by 
absorbance at a wavelength of 550 nm.

Detection of apoptosis

Apoptotic cells were identified and quantified 
by flow cytometry (Beckman Coulter, USA) with 
Annexin V-FITC/Propidium iodide (PI) apoptosis 
detection kit (Beijing Biosea Biotechnology, 
Beijing, China). HGSMC of C, N and NL groups 
were seeded in 6-well culture plate respec- 
tively and washed twice with cold phosphate 
buffer saline (PBS). Then they were co-incubat-
ed with serum-free culture medium containing 
10 μM dichlorofluorescein diacetate (20 min, 
37°C, in dark). Subsequently, samples were 
collected by a trypsin digestion approach and 
centrifuged. Then they were resuspended in 
100 μl annexin-binding buffer and measured 
according to the manufacturer’s protocol to dif-
ferentiate apoptotic cells (Annexin-V positive 
and PI-negative) from necrotic cells (Annexin-V 
and PI-positive).

Adhesion assay

Cell adhesion in C, N and NL groups was carried 
out with the Adhesion assay kit (Cell Bio- 
labs, CA, USA) based on the manufacturer’s 
introductions. After treatment in C, N and NL 
groups, HGSMC were trypsinized and added to 
Matrigel-coated inserts (BD Bioscience, CA, 
USA) in DMEM containing 2% FBS and 5 ng/ 
ml transforming growth factor beta 1 (TGFb1) 
(Sino Biological Inc., Beijing, China) for 24 h. 
Then attached HGSMC were stained in 4% pa- 
raformaldehyde with 4, 6-diamidino-2-pheny- 
lindole (DAPI; Southernbiotech, Birmingham, 
USA) for 10 min. Inoculated HGSMC were de- 
tected by the optical density 560 nm in Digi- 
Scan Microplate Reader (Assys Hitech, Kornen- 
burg, Austria) and their percentages in extract-
ed samples were calculated.
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Quantitative reverse-transcription polymerase 
chain reaction (qRT-PCR)

Total RNA of HGSMC in C, N and NL groups was 
isolated respectively using Trizol reagent (Invi- 
trogen, CA, USA) and treated with DNaseI (Pro- 
mega, Madison, USA). A total of 2 μg RNA was 
used to synthesize poly-oligo (dT) primed com-
plementary DNA (cDNA) with the RevertAid H 
Minus First strand Cdna Synthesis Kit (Thermo 

Fischer Scientific Inc., MA, USA). qRT-PCR re- 
actions for eNOS, p53, factor associated sui-
cide (Fas), extracellular regulated protein kinas 
(ERK) 1/2, p38 mitogen-activated protein ki- 
nase (MAPK) and mammalian target of rapa- 
mycin (mTOR) were performed using RiboMAX 
Large Scale RNA Production System T7 (Pro- 
mega, Karlsruhe, Germany). The specific pri- 
mer sequences were: eNOS, forward 5’TCT- 
GCGGCGATGTCATATG’3, reverse 5’CATGCCGC- 
CCTCTGTTG’3; p53, forward 5’ACCTGGTCCT- 
CTGACTGCTCTTTTCA’3, reverse 5’CCAGGCAT- 
TGAAGTCTCATGGAAGC’3; Fas, forward 5’ATG- 
CTGGGCATCTGGACC’3, reverse 5’CTGTTCTG- 
CTGTGTCTTGG’3; ERK1, forward 5’CCAGAGT- 
GGCTATCAAGAAG’3, reverse 5’TCCATGAGGTC- 
CTGAACAA’3; ERK2, forward 5’TGCCGTGGAA- 
CAGGTTGT’3, reverse 5’TGGGCTCATACATTGG- 
GT’3; p38MAPK, forward 5’ACTGCCAAGGAG- 
CATCTA’3, reverse 5’GAAGAGCCTGACCTACAG- 
T’3; mTOR, forward 5’CTGGGACTCAAATCTGT- 
GCAGTTC’3, reverse 5’GAACAATAGGGTGAATG- 
ATCCGGG’3; glyceraldehyde-3-phosphate de- 
hydrogenase (GAPDH; Abcam, Cambridge, Unit- 
ed Kingdom), forward 5’ATCTGGCACCACACC- 
TTCTACA’3, reverse 5’GTTTGGTGGATGCCACA- 
GGACT’3.

Western blot analysis

HGSMC in C, N and NL groups were lysed by 
means of 12% sodium dodecyl sulfate-polyac- 
rylamide gel electrophoresis (SDS-PAGE) and 
blotted on nitrocellulose membrane (Millipore, 
USA). The proteins used for western blotting 
were extracted using radio-immunoprecipi- 
tation assay (RIPA) lysis buffer (Beyotime Bio- 
technology, Shanghai, China) with protease 
inhibitors (Applygen Technologies Inc., Beijing, 
China). The total amount of proteins was quan-
tified by Bicinchoninic Acid (BCA) Protein As- 
say Kit (Pierce, Appleton, USA). A Bio-Rad  
Bis-Tris Gel system was employed to establish 
the western blot system, in which GAPDH was 
regarded as an internal control. Primary anti-
bodies eNOS (ab66127), p53 (ab1101), Fas 
(ab82419), ERK1/2 (ab196883), p38MAPK 
(ab31828) and mTOR (an2732) were obtain- 
ed from Abcam (Cambridge, United Kingdom). 
After incubation with the membrane at 4°C 
overnight, secondary antibodies were marked 
by horseradish peroxidase for 1 h at room  
temperature. Then Images were developed and 
photographed using Image Lab Software (Bio-
Rad, Shanghai, China).

Figure 1. Nesfatin-1 upregulated eNOS in HGSMC. A. 
HGSMC were treated with nesfatin-1 for 48 h at cor-
responding concentrations 10, 50, 100, 200 nM; B. 
The eNOS proteins were measured by different con-
centrations of nesfatin-1. GAPDH, glyceraldehyde-
3-phosphate dehydrogenase; eNOS, endothelial 
nitric oxide synthases; HGSMC, human gastrointes-
tinal smooth muscle cells. *, P < 0.05.

Figure 2. Nesfatin-1 inhibited cell viability in HGSMC. 
C, control group; N, nesfatin-1 group; NL, nesfatin-1 
+ NG-Nitro-L-arginine Methyl Ester group. *, P < 0.05.
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Statistical analysis

Each experiment was carried out in triplicate. 
All results were presented as mean ± standard 
deviation (SD). Values were performed by one-
way analysis of variance (ANOVA) with SPSS 
19.0 software (SPSS, IL, USA). Statistical sig-
nificance was defined as P < 0.05. 

Results

Impact on eNOS by nesfatin-1 treatment in 
HGSMC

In the N group, HGSMC were treated by  
nesfatin-1 with corresponding concentrations 
10, 50, 100, 200 nM for 48 h. Figure 1A 
showed that the expression of eNOS mRNA  
was increased by nesfatin-1 with a concen- 
tration-dependent manner. However, no statis-
tical difference was witnessed on express- 
ions of eNOS mRNA between nesfatin-1 con-
centration of 0 nM, 10 nM, and 50 nM, re- 
spectively (P > 0.05). At concentration of 100 
nM and 200 nM, the expressions of eNOS 
mRNA raised observably compared to that  
at concentration of 0 (P < 0.05). We detected 
that there was the highest expression of eNOS 
mRNA at concentration of 100 nM. The west-
ern blotting result declared as concentrations 
of nesfatin-1 increased, the expressions of 
eNOS protein were higher (Figure 1B). At nes- 
fatin-1 concentration of 100 nM, there was  
the highest expression of eNOS protein. There- 
by, 100 nM was selected as the optimal con-
centration of nesfatin-1 to treat HGSMC in  
the N group.

Nesfatin-1 inhibited cell viability in HGSMC

MTT colorimetric assay was applied to deter-
mine cell viability of C, N and NL groups. In the 
N group, the cell viability was statistically lower 
than that in the C group (P < 0.05; Figure 2) at 
day 4. The addition of eNOS inhibitor L-NAME 
made cell viability increased to the level of C 
group and there was no difference between C 
and NL group (P > 0.05). These results claim- 
ed that nesfatin-1 inhibited cell viability in 
HGSMC by upregulating expressions of eNOS.

Nesfatin-1 promoted cell apoptosis in HGSMC

Apoptotic HGSMC was quantified by flow cytom-
etry and pro-apoptotic factors were measured. 
Apoptotic HGSMC quantified by flow cytometry 
was 3.1% in the C group, 15.6% in the N group 

and 8.0% in the NL group (Figure 3A). Apopto- 
sis cells went up significantly by nesfatin-1 
compared to the C group (P < 0.01; Figure 3B). 
The addition of eNOS inhibitor L-NAME made 
apoptotic HGSMC reduce and there was no  
difference between C and NL group (P > 0.05). 
It revealed that nesfatin-1 promoted cell apop-
tosis in HGSMC by upregulating expressions  
of eNOS. Both pro-apoptotic factors p53 and 
Fas were markedly upregulated in the N group 
compared to those in the C group (P < 0.05; 
Figure 3C). The addition of L-NAME made mRNA  
expressions of p53 and Fas reduce to the level 
of C group and there was no difference between 
C and NL group (P > 0.05). In Figure 3D both 
p53 and Fas proteins were upregu- 
lated by nesfatin-1 and weakened by addition 
of L-NAME.

Nesfatin-1 suppressed adhesion in HGSMC

HGSMC adhesion capacity in C, N and NL 
groups was identified in Figure 4. In the N 
group, the percentage of relative adhesion  
was statistically lower than that in the C  
group (P < 0.05). The addition of eNOS inhibi- 
tor L-NAME made the percentage increased  
to the level of C group and there was no differ-
ence between C and NL group (P > 0.05). These 
results claimed that nesfatin-1 inhibited ad- 
hesion capacity in HGSMC by upregulating ex- 
pressions of eNOS.

Nesfatin-1 inhibited ERK/MAPK/mTOR signal-
ing pathway

To further understand the function and mecha-
nism of nesfatin-1 in gastrointestinal compli- 
cation of DM, we evaluated the impact of nes- 
fatin-1 on expression of key proteins in ERK/
MAPK/mTOR pathway. Figure 5A showed that 
nesfatin-1 significantly reduced mRNA expres-
sions of ERK1/2, p38MAPK and mTOR in 
HGSMC compared with those in the C group (P 
< 0.05). The mRNA expressions of ERK1/2, 
p38MAPK and mTOR were observably higher in 
addition of L-NAME than those in the C group (P 
< 0.05 or P < 0.01). Similar outcomes were 
observed in western blot results (Figure 5B). 
The eNOS protein was upregulated in N group 
and downregulated in NL group. P-ERK1/2, 
p-p38MAPK and p-mTOR proteins were down-
regulated in N group and upregulated in NL 
group. It revealed that nesfatin-1 inhibited 
ERK/MAPK/mTOR pathway in HGSMC and the 
pathway was activated by restraining eNOS in 
addition of eNOS inhibitor.
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Discussion

To our knowledge, this study provided the first 
insight into the role and mechanism of nesfa-
tin-1 in HGSMC. The eNOS was significantly 
upregulated by nesfatin-1 at the optimal con-
centration of 100 nM. Nesfatin-1 significantly 

suppressed the HGSMC viability and adhe- 
sion. Nesfatin-1 remarkably expedited apopto-
sis and upregulated pro-apoptotic factors p53 
and Fas. The addition of eNOS inhibitor L-NA- 
ME could relieve these effects in HGSMC. Ad- 
ditionally, nesfatin-1 significantly reduced ex- 
pressions of ERK1/2, p38MAPK and mTOR in 
HGSMC compared with those in the C group. 

DM induced gastric complications, including 
DGE, diabetic gastroparesis (DGP) and gastro-
esophageal reflux disease (GERD), are chronic 
syndromes with complex pathogenesis and 
high morbidity [4]. Most of DGE patients under-
go lower living quality and bear higher medical 
costs. Although improving gastric motility is 
proposed to be a pertinent therapeutic stra- 
tegy for DGE, to our current knowledge of the 
pathophysiology, there remains no establish- 
ed therapy of DGE for clinical use. Thus, the 
application of gastrointestinal regulatory pep-
tides is expected to be effective.

For nesfatin-1, the anorectic physiological ac- 
tion was a hotspot [22] and recently its function 
in gastrointestinal movement and motility has 

Figure 3. Nesfatin-1 promoted cell apoptosis in HGSMC. A. Apoptosis cells were quantified by flow cytometry; B. 
Apoptosis cells were measured in C, N and NL groups; C. Expressions of pro-apoptotic factors p53 and Fas mRNA 
were measured in C, N and NL groups; D. Pro-apoptotic factors p53 and Fas proteins were measured in C, N and 
NL groups. C, control group; N, nesfatin-1 group; NL, nesfatin-1 + NG-Nitro-L-arginine Methyl Ester group; HGSMC, 
human gastrointestinal smooth muscle cells; Fas, factor associated suicide; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase. *, P < 0.05; **, P < 0.01.

Figure 4. Nesfatin-1 suppressed adhesion in HGSMC. 
C, control group; N, nesfatin-1 group; NL, nesfatin-1 
+ NG-Nitro-L-arginine Methyl Ester group; HGSMC, 
human gastrointestinal smooth muscle cells. *, P < 
0.05.
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come to front [23-26]. Nesfatin-1, released 
from cholinergic neuron ending, may regulate 
gastrointestinal movement [27] since gastroin-
testinal smooth muscle is governed by a host of 
cholinergic neuron. Stengel et al. reported that 
a forebrain site of action for intracerebroven-
tricular nesfatin-1 in rats could modulate gas-
tric propulsive motor function [28]. HGSMC are 
the foundation of gastrointestinal movement. 
This study is the first comprehensive evaluation 
of nesfatin-1 in DM induced DGE at the cellular 
level. Nesfatin-1 statistically suppressed the 
HGSMC viability, adhesion and expedited apop-
tosis. Accordingly, it was concluded that nesfa-
tin-1 served as an inhibitory factor on HGSMC, 
which was consistent with the previous study 
[24]. 

To further understand the mechanism of nesfa-
tin-1 inhibitory action in DGE, we evaluated the 
impact of nesfatin-1 on eNOS. It is well known 
that eNOS plays a potent vasodilator role in 
restraining the gastric secretion and protecting 
the gastric mucosa against various damaging 
agents and corrosive substances in upper gas-
trointestinal tract [29]. Huang et al. found that 
nitric oxide (NO) synthase acted as an inhibi- 
tory factor in modulating gastric motility [30]. 
However, to date, activation of eNOS has not 
been investigated as a mechanism for gastro- 
intestinal movement at cell level. In the pre- 
sent study, eNOS was activated by nesfatin-1 
and addition of eNOS inhibitor L-NAME could 

pathway mediates cell growth and differen- 
tiation [33, 34]. A growing body of literature 
implies mTOR signaling is of great importance 
in cell growth and metabolism, which is fre-
quently upregulated in malignancies [35, 36]. 
Our results showed that nesfatin-1 decreased 
expressions of p-ERK1/2, p-p38MAPK and p- 
mTOR proteins, which suggested that nesfa-
tin-1 inhibited phosphorylation of ERK1/2, 
p38MAPK and mTOR in HGSMC. eNOS inhibitor 
achieved aberrant activation of ERK/MAPK/
mTOR signaling pathway. These results pointed 
to a critical role of nesfatin-1 in ERK/MAPK/
mTOR signaling pathway by regulating eNOS. It 
was considered that the inhibitory effects of 
nesfatin-1 on HGSMC were by means of activa-
tion of eNOS and inhibition of ERK/MAPK/
mTOR pathway. 

In summary, the present study detects regula-
tory effect and mechanism of nesfatin-1 in 
HGSMC, which provides theoretical basis for 
further research on function of nesfatin-1. It 
reveals that eNOS inhibitor is praised to be a 
novel therapeutic strategy and target for DM 
induced gastrointestinal complications.
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Figure 5. Nesfatin-1 inhibited ERK/MAPK/mTOR signaling pathway in 
HGSMC. A. Expressions of ERK1/2, p38MAPK and mTOR mRNA were as-
sessed in HGSMC; B. The eNOS, ERK1/2, p38MAPK and mTOR proteins 
were assessed in HGSMC. C, control group; N, nesfatin-1 group; NL, nesfa-
tin-1 + NG-Nitro-L-arginine Methyl Ester group; HGSMC, human gastrointes-
tinal smooth muscle cells; GAPDH, glyceraldehyde-3-phosphate dehydroge-
nase; eNOS, endothelial nitric oxide synthases; ERK, extracellular regulated 
protein kinas; MAPK, mitogen-activated protein kinase; mTOR, mammalian 
target of rapamycin. *, P < 0.05; **, P < 0.01.

relieve effects of nesfatin-1  
in HGSMC. Thus inhibitory im- 
plications of nesfatin-1 for 
HGSMC might be by activa-
tion of eNOS and eNOS inhi- 
bitor might alleviate DM in- 
duced DGE, which raised po- 
tential possibility to DM in- 
duced gastric emptying disor-
der treatment.

MAPKs, comprising c-Jun N- 
terminal kinase (JNK), ERK, 
ERK5 and p-38 pathways, 
have been involved in numer-
ous aspects of key cellular 
processes and regulated mi- 
tochondrial pathway activa-
tion in cell apoptosis [31, 32]. 
Accumulating studies have 
shown that ERK1/2 signaling 
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