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Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The goal of this 
study is to elucidate the molecular mechanism of IPF. GSE24206 was downloaded from Gene Expression Omnibus, 
which included 17 IPF and 6 control samples. The t-test was applied to identify differentially expressed genes 
(DEGs) between IPF and control samples. Pathway and functional enrichment analyses were used to investigate 
the functions involving these DEGs. According to the information of TRANSFAC, Tumor Associated Gene (TAG) and 
Tumor Suppressor Gene (TSGene) databases, the screened DEGs were further annotated. To comprehensively 
understand the interactions between proteins encoded by the DEGs, protein-protein interactions (PPIs) were pre-
dicted by STRING and PPI network was visualized by Cytoscape software. Additionally, module analysis for PPI net-
work was performed using BioNet tool. Total 192 up-regulated and 28 down-regulated genes were identified. Both 
down-regulated PDGFRA and up-regulated CCND1 were TAGs. Pathway enrichment analysis indicated that PDGFRA 
were involved in all of the 8 pathways for the 28 down-regulated genes. Besides, LTBP3 andTHY1 separately were 
involved in extracellular matrix organization and cell adhesion. After PPI network analysis, we discovered that the 
degree of COL1A2, TGFB1, COL1A1, COL3A1, ASPN, CD4, SDC1, CXCL12, COL5A1, and COMP were significantly 
higher. In conclusions, our results showed that the pathology of IPF involved multiple dysregulated genes, and our 
study would pave ways for further study of IPF.
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action network, module analysis

Introduction

Idiopathic pulmonary fibrosis (IPF) is a progres-
sive and fatal interstitial lung disease, which is 
characterized by temporally heterogeneous 
lung architectural distortion, dense collagen 
and extracellular matrix (ECM) deposition in 
interstitium, alveolar collapse, and the pres-
ence of fibroblastic foci [1]. Nowadays, IPF 
affects about five million people worldwide, and 
its incidence is about 20 to 60 per 100,000 
persons [2]. Besides, IPF occurs usually in mid-
dle-aged and older adults, and men are more 
susceptible to IPF [3]. Notably, the incidence of 
lung cancer seems to be increased in IPF 
patients compared with general population [4, 
5]. Lung cancer may occur before, after, or at 
the time when IPF is diagnosed [6].

Though IPF cannot be cured, oxygen therapy, 
lung transplantation, and drugs have been 

used to help IPF patients. Nowadays, many 
drugs (like macitentan, sildenafil, warfarin, and 
bosentan) have been developed, but these 
drugs show little benefit [7]. Recently, in order 
to get novel therapeutic targets, the pathogen-
esis of IPF has been studied. Previous studies 
showed that deficiencies of surfactant protein C 
(SP-C, encoded by SFTPC) [8] and surfactant 
protein A2 (SP-A2, encoded by SFTPA2) [9] are 
associated with IPF. Seibold et al. identify a 
common variant in the putative promoter of 
mucin 5B (MUC5B), which presents in 38% of 
patients with IPF [10]. Disease-causing hetero-
zygous mutations in two components of telom-
erase complex, telomerase reverse transcrip-
tase (TERT) and telomerase RNA component 
(TERC), are also involved in IPF [11, 12]. 
Besides, many biological pathways which are 
linked to IPF have been identified. Epithelial-
mesenchymal transition in alveolar epithelial 
cells (AECs) is hypothesized as a source of myo-
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(GSM595407, GSM595411, GSM595414, 
GSM595416, GSM595417, GSM595419) from 
healthy donors (Healthy donors provided lung 
samples obtained from routine lung volume 
reduction of lung during lung transplantation).
Combining with the probe annotation file of Affy 
[16] chip provided by Brain Array Lab, the origi-
nal data were preprocessed using AFFY pack-
age in Bioconductor [17]. After Robust Multi-
array Average (RMA) [18] background correc-
tion, quantile normalization and probe summa-
rization, gene expression matrix of the samples 
were obtained.

DEGs screening

For the preprocessed data, t-test [19] was per-
formed to identify DEGs between IPF and con-
trol samples. We defined FDR < 0.05 and |log-
2fold change (FC)| ≥ 1 as the thresholds.

Functional and pathway enrichment analysis

To study the DEGs at a functional level, Gene 
Ontology (GO) functional [20] enrichment analy-

Materials and methods

Collection and preprocessing 
of mRNA expression profile 
data

The mRNA expression profile 
of GSE24206 deposited by 
Meltzer et al. [15] was down-
loaded from Gene Expression 
Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) data-
base using the platform of 
Affymetrix Human Genome 
U133 Plus 2.0 Array. The 
dataset included 17 samples 
(GSM595421, GSM595422, 
GSM595423, GSM595424, 
GSM595425, GSM595426, 
GSM595427, GSM595428, 
GSM595429, GSM595432, 
GSM595434, GSM595435, 
GSM595437, GSM595439, 
GSM595441, GSM595443, 
GSM595445) from 11 IPF 
patients (6 patients contrib-
uted twain samples from 
upper and lower lobes, and 5 
patients provided singleton 
samples) and 6 samples 

fibroblasts which serves as the primary colla-
gen-producing cell [13]. ECM deposition, which 
is regulated by matrix metalloproteinases 
(MMPs) and their inhibitors, can be triggered by 
chronic inflammation and lead to the formation 
of a permanent fibrotic scar [14]. Despite exten-
sive research, the pathogenesis of IPF still 
remains unclear.

In 2011, Meltzer et al. screened differentially 
expressed genes (DEGs) between upper and 
lower lobe samples using paired t-tests, and 
identified DEGs between IPF explants and IPF 
biopsies using unpaired Student’s t-tests [15]. 
Using the data deposited by Meltzer et al. [15], 
the DEGs between IPF and normal samples 
were screened, and their underlying functions 
were predicted by functional and pathway 
enrichment analyses. Besides, gene functional 
annotation analysis was performed. Addi- 
tionally, protein-protein interaction network 
(PPI) network and module were constructed to 
investigate the interactions between these 
DEGs.

Table 1. The statistics of DEGs between IPF and control samples
Transcript Counts Gene Counts

Down 109 28
Up 521 192
Total 630 220
DEGs: differentially expressed genes; IPF: idiopathic pulmonary fibrosis.

Table 2. The enriched KEGG pathways for the DEGs

Description Gene 
counts P-value

Up Complement and coagulation cascades 6 0.000101308
ECM-receptor interaction 6 0.000321922
Staphylococcus aureus infection 5 0.00032338
Protein digestion and absorption 5 0.001909578
Amoebiasis 5 0.006112176

Down Constitutive PI3K/AKT Signaling in Cancer 2 0.006803308
PI3K events in ERBB4 signaling 2 0.008763174
PIP3 activates AKT signaling 2 0.008763174
PI-3K cascade 2 0.008763174
PI3K events in ERBB2 signaling 2 0.008763174
PI3K/AKT Signaling in Cancer 2 0.008763174
GAB1 signalosome 2 0.009288597
PI3K/AKT activation 2 0.009288597

KEGG: Kyoto Encyclopedia of Gene and Genomes; DEGs: differentially expressed 
genes.
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interactions of the proteins encoded by DEGs. 
The Cytoscape software [26] was used to visu-
alize the PPI network. Subsequently, BioNettool 
[27] was employed for performing module anal-
ysis for PPI network, and FDR < 0.0001 was set 
as the criterion.

Results

DEGs screening

Using t-test, a total of 220 DEGs were screened 
in IPF samples compared with normal samples, 
including 192 up-regulated genes (correspond-
ing to 521 transcripts) were, and 28 down-regu-
lated genes (corresponding to 109 transcripts) 
(Table 1).

Functional and pathway enrichment analysis

Pathway enrichment analysis indicated that the 
192 up-regulated genes were enriched in 5 

sis and Kyoto Encyclopedia of Gene and 
Genomes (KEGG) [21] pathway enrichment 
analysis were performed. The p-value < 0.01 
was set as the cut-off criterion.

Functional annotation analysis

According to the information of transcription 
factors provided by TRANSFAC [22] database, 
the DEGs were further screened and annotated 
to obtain genes with transcriptional regulation 
function. Besides, all known oncogenes and 
tumor suppressor genes were extracted based 
on Tumor Associated Genes (TAG) database 
[23] and Tumor Suppressor Gene (TSGene) 
database [24].

PPI network and module construction

Containing known and predicted protein-pro-
tein interactions, STRING database [25] has 
been widely used to construct PPI network. 
Here, STRING database was used to search 

Table 3. The enriched GO functions for the DEGs

Term Description Gene
counts P-value

Up GO: 0030198 Extracellular matrix organization 19 8.33E-10
GO: 0043062 Extracellular structure organization 19 8.79E-10
GO: 0007155 Cell adhesion 31 2.25E-08
GO: 0005576 Extracellular region 71 0
GO: 0044421 Extracellular region part 47 0
GO: 0005615 Extracellular space 36 1.59E-13
GO: 0005201 Extracellular matrix structural constituent 10 4.75E-09
GO: 0008201 Heparin binding 10 5.48E-07
GO: 0048407 Platelet-derived growth factor binding 4 2.60E-06

Down GO: 0034754 Cellular hormone metabolic process 3 0.000451975
GO: 0060325 Face morphogenesis 2 0.001132088
GO: 0060323 Head morphogenesis 2 0.001442882
GO: 0048008 Platelet-derived growth factor receptor signaling pathway 2 0.001699747
GO: 0060324 Face development 2 0.001789859
GO: 0010171 Body morphogenesis 2 0.00217258
GO: 0004745 Retinol dehydrogenase activity 2 0.000243186
GO: 0005001 Transmembrane receptor protein tyrosine Phosphatase activity 2 0.000353342
GO: 0019198 Transmembrane receptor protein phosphatase activity 2 0.000353342

GO: Gene Ontology; DEGs: differentially expressed genes. 

Table 4. The functional statistics of DEGs between IPF and control samples
TF 

counts TF genes TAG 
counts

TAG (Onco-
genes) TGA (Tumor Suppressor Gene) TAG (other)

Down 1 NFIL3 5 PDGFRA PTPRG, HOPX TACC2, RGS2

Up 3 SOX4, NR1H3, 
MEOX1

18 CD24, 
CCND1

THY1, STEAP3, SCGB3A1, SCARA3, PDLIM4, 
NBL1, NAPEPLD, IGFBP4, HTRA1, ENC1

XAF1, TGFB1, SSPN, MUC5B, 
LRRC17, FHL2

DEGs: differentially expressed genes; IPF: Idiopathic pulmonary fibrosis.
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pathways, such as complement and coagula-
tion cascades (P = 0.000101308), ECM-
receptor interaction (P = 0.000321922) and 
staphylococcus aureus infection (P = 0.000- 
32338). Meanwhile, the 28 down-regulated 
genes were enriched in 8 pathways, including 
constitutive PI3K/AKT signaling in cancer (P = 
0.006803308) and PI3K events in ERBB4  
signaling (P = 0.008763174). Notably, insulin 
receptor substrate 2 (IRS2) and platelet-derived 
growth factor alpha receptor (PDGFRA) were 
enriched in all of the 8 pathways for down-regu-
lated genes (Table 2). Moreover, the 192 up-
regulated genes were enriched in some GO 

functions, including extracellular matrix organi-
zation (P = 8.33E-10, which involved latent 
TGF-β binding protein-3, LTBP3) and cell adhe-
sion (P = 2.25E-08, which involved thymus cell 
antigen 1, THY1). And the 28 down-regulated 
genes were also enriched in several GO func-
tions, including cellular hormone metabolic pro-
cess (P = 0.000451975) and face morphogen-
esis (P = 0.001132088) (Table 3). 

Functional annotation analysis

Among the up-regulated genes, 3 genes were 
transcription factors, and 18 genes (e.g. cyclin 

Figure 1. PPI network of DEGs between IPF and control samples. Red and green nodes represent up-regulated 
and down-regulated genes, respectively. PPI: protein-protein interaction; DEGs: differentially expressed genes; IPF: 
idiopathic pulmonary fibrosis.
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genes in this module were mainly enriched in 
extracellular matrix organization (P = 3.12E-

genes). Among the down-re- 
gulated genes, nuclear fac- 
tor interleukin-3 (NFIL3) was 
transcription factor, PDGFRA 
was oncogene, receptor pro- 
tein tyrosine phosphatases 
gamma (PTPRG) and homeo- 
domain-only protein X (HOPX) 
was tumor suppressor genes. 
However, as TAGs, trans- 
forming acidic coiled-coil 2 
(TACC2) and regulator of G 
protein signaling 2 (RGS2) 
were uncertain genes (Table 
4).

PPI network and module 
analysis

Based on STRING database, 
PPI network was constructed 
(Figure 1), and the top 10 
genes with degree ≥ 9 were  
α 2 type I collagen gene 
(COL1A2, degree = 17), trans-
forming growth factor-β1 (TG- 
FB1, degree = 17), α 1 type  
I collagen gene (COL1A1, 
degree = 16), α 1 type III col-
lagen gene (COL3A1, degree 
= 15), asporin (ASPN, degree 
= 14), CD4 (degree = 12), syn-
decan-1 (SDC1, degree = 10), 
stromal cell-derived factor 1 
(CXCL12, degree = 10), α 1 
type V collagen gene (COL5A1, 
degree = 9) and cartilage 
oligomeric matrix protein (CO- 
MP, degree = 9). The module 
involving 37 nodes was ob- 
tained from the PPI network, 
in which COL1A1 (degree = 
11) had the highest degree 
(Figure 2). After KEGG pa- 
thway enrichment analysis, 
genes in this module were 
mainly involved in ECM-rece- 
ptor interaction (P = 7.39E-
06), protein digestion and 
absorption (P = 0.000137815) 
and axon guidance (P = 0.0- 
08992409) (Table 5). More- 
over, through GO functio- 
nal enrichment analysis, the 

D1, CCND1) were TAGs (including 2 oncogenes, 
10 tumor suppressor genes and 6 uncertain 

Figure 2. Module analysis of PPI network. The depth of color is proportional 
to |log2 FC| of DEGs. Red and green nodes represent up-regulated and 
down-regulated genes, respectively. Square nodes represent genes with low 
importance, and circular nodes represent genes with high importance. PPI: 
protein-protein interaction; DEGs: differentially expressed genes; FC: fold 
change. 
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highest degree in the identified module. These 
indicated that these genes might be key genes 
in IPF.

Functional enrichment indicated that LTBP3 
was involved in extracellular matrix organiza-
tion. The ECM protein LTBP3 have a dual func-
tion, which is required both for the secretion of 
small latent TGF-beta complex and binding 
latent TGF-beta to ECM microfibrils [39, 40]. As 
stated before, growth factors TGF-beta stimu-
lates ECM production of fibroblast, myofibro-
blast differentiation, and resistance to apopto-
sis [41, 42]. THY1, which involved in cell adhe-
sion, has been proposed as a “fibrosis suppres-
sor” gene [43]. THY1is present in normal lung 
fibroblasts [44], but absent in the fibroblasts of 
IPF patients because of methylation [43]. Thus, 
LTBP3 and THY1 might play an important role 
in IPF progression.

Additionally, gene functional annotation analy-
sis showed that 5 down-regulated genes  
(e.g. PDGFRA) and 18 up-regulated genes (e.g. 
CCND1) are TAGs. Schwartz et al. hypothesis 
that CCND1 plays an instrumental role in the 
pro-fibrogenic process, which was further vali-
dated by in situ growth factor overproduction 
and exaggerated extracellular matrix deposi-
tion [45]. Intedanib is a triple kinase inhibitor 
that blocks PDGFR, vascular endothelial growth 
factor receptor (VEGFR) and fibroblast growth 
factor receptor (FGFR) for the therapy of IPF 

13), extracellular structure organization (P = 
3.25E-13) and biological adhesion (P = 3.91E-
09) (Table 5).

Discussion

IPF is a devastating form of interstitial lung dis-
ease [28]. However, there is no effective treat-
ment. To understand the potential mechanism 
of IPF, bioinformatics might be an effective 
method. In this study, a total of 220 DEGs were 
identified in IPF samples in comparison to con-
trol samples. 

Peroxisome proliferator-activated receptor γ 
(PPARγ) agonists can suppress TGF-β-induced 
myofibroblast differentiation and production of 
collagen protein, hence, PPARγ agonists have 
potential antifibrotic effects and may be used 
in therapy of fibrotic lung diseases [29]. The 
synthesis of type I collagen reacts both posi-
tively and negatively to stimulation generated 
by tissue injury and repair, and is accumulated 
in IPF patients [30, 31]. Via transcriptional acti-
vating COL1A2, connective tissue growth fac-
tor (CTGF) contributes to lung fibrosis and may 
serve as a promising target for treatment of 
fibrotic diseases [32]. ASPN can bind with col-
lagen and calcium, and then induce collagen 
mineralization which is essential for ECM depo-
sition [33]. Previous study shows that down-
regulated CD28 in circulating CD4 T-cells are 
related to manifestations and progression of 

IPF [34]. Increased syndecan-1 
(which is encoded by SDC1) have 
been detected in lung homogenates 
and lavage fluid of lungs in patients 
with IPF, and syndecan-1 ectodo-
main induces neutrophil chemotax-
is, inhibits wound healing in alveolar 
epithelial, and promotes fibrogene-
sis [35]. In the bleomycin model, up-
regulated CXCL12 is the major che-
mokine responsible for recruiting 
bone-marrow derived fibrocytes to 
lung [36]. COMP was overexpressed 
in serum of IPF patients and it may 
be a novel biomarker for disease 
activity and TGF-β1 activity [37, 38]. 
In the PPI network, COL1A2, TGFB1, 
COL1A1, COL3A1, ASPN, CD4, 
SDC1, CXCL12, COL5A1, and COMP 
had higher degrees. Module analy-
sis showed that COL1A1 had the 

Table 5. KEGG pathway and GO functional enrichment analy-
sis of DEGs in the identified module

Enriched terms Gene 
Counts P-Value

KEGG pathway
ECM-receptor interaction 5 7.39E-06
Protein digestion and absorption 4 0.000137815
Focal adhesion 5 0.000445781
Amoebiasis 3 0.005217842
Axon guidance 3 0.008992409
GO function
Extracellular matrix organization 13 3.12E-13
Extracellular structure organization 13 3.25E-13
Multicellular organismal catabolic process 7 9.13E-10
Cell adhesion 15 3.80E-09
Biological adhesion 15 3.91E-09
KEGG: Kyoto Encyclopedia of Gene and Genomes; GO: Gene Ontology; 
DEGs: differentially expressed genes. 
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and several types of cancer [46]. Pathway en- 
richment analysis indicated that PDGFRA were 
involved in all of the 8 pathways for the 28 
down-regulated genes. These suggested that 
PDGFRA and CCND1 might be implicated in IPF.

Conclusions

In conclusion, to illustrate the pathological 
mechanism of IPF, the gene expression profile 
containing 23 samples was downloaded and 
analyzed. Total 220 DEGs were identified in  
IPF samples. Besides, several genes (COL1A2, 
TGFB1, COL1A1, COL3A1, ASPN, CD4, SDC1, 
CXCL12, COL5A1, COMP, LTBP3, THY1, CCND1 
and PDGFRA) might play important roles in IPF. 
However, further experimental validation is still 
needed to prove this speculation.
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