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Abstract: MiRNAs have been shown to play fundamental role in diverse biological and pathological processes, 
including fibrotic diseases. In the present study, we investigated whether miR-21 regulated the fibrogenic epithelial-
mesenchymal transition (EMT) in rat hepatic oval cells WB-F344 and explored underlying mechanisms. The results 
showed that treatment of WB-F344 cells with pro-fibrogenic factor TGF-β1resulted in increased expression of miR-
21 and promoted fibrogenic EMT in hepatic oval cells. Downregulation of miR-21 expression by transfection of miR-
21 inhibitor lentivirus into WB-F344 cells inhibited fibrogenic EMT induced by TGF-β1. Furthermore, overexpression 
of miR-21 alone also resulted in EMT-like transformation in WB-F344 cells. TGF-β1 treatment resulted in decreased 
RECK and anti-miR-21 canceled this effect. Overexpression of miR-21 in WB-F344 cells also downregulated RECK. 
Inhibition of RECK by RECK siRNA enhanced TGF-β1 and miR-21-induced fibrogenic EMT. In summary, our results 
identify miR-21 as a key regulator of fibrogenic EMT in hepatic oval cells via RECK. Targeting miR-21 may provide a 
new therapeutic strategy against hepatic fibrosis.
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Introduction

In almost all patients with chronic liver injury, 
we find a reversible scarring response liver 
fibrosis. Accmulation of extracellular matrix 
(ECM) is characteristic of liver fibrosis, finally 
inducing to liver cirrhosis. Hepatic oval cells 
have emerged as a frequent part of normal 
repair, and a crucial element in the pathobiolo-
gy of fibrotic liver diseases. Apart of that, anoth-
er related mesenchymal cell types may also 
play partly contributions to total ECM accumu-
lation [1], including classical portal fibroblasts 
[1], bone marrow derived cells [2], fibroblasts 
derived from epithelial-mesenchymal transition 
(EMT) as well [3].

EMT is a process in which epithelial cells lose 
basal-apical polarity, become more spindle-
shaped, and acquire invasion like cancer stem 
cell (CSC) phenotypes with a heightened pro-
pensity which can enhance migration [4]. And 

EMT can greatly accelerate deposition of ECM 
components [5]. It has been reported that epi-
thelial cells are potential sources of fibroblasts 
via EMT in hepatic fibrosis, lung [6] and renal 
[7].

MicroRNAs (miRNAs), small, regulatory RNA 
molecules of 21-23 nucleotides, are involved in 
the regulation of biological processes, including 
cell proliferation, differentiation, apoptosis, ho- 
meostasis, and stress responses [8]. They act 
as negative regulators of gene expression by 
inhibiting mRNA translation or promoting mRNA 
degradation [9]. We all know that miRNAs par-
ticipate in activation of HSC and the liver fibrotic 
process [10]. During recent years, additional 
roles of miR-21 in renal, pulmonary and cardiac 
fibrosis have been described. A growing body of 
evidence suggests that miR-21 enhances the 
malignant behavior of cells, including invasion 
and migration [11]. Additionally, miR-21 is a 
component of the cellular signaling circuitry 
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that regulates the EMT program [12], indicating 
that it is involved in the process of EMT. 
However, the biological functions of miR-21 in 
the regulation of EMT remain to be investi- 
gation.

Materials and methods

Cell culture and treatments

Rat hepatic oval cells WB-F344 was obtain- 
ed from the Chinese Academy of Sciences 
(Shanghai, China). Cells were cultured in RPMI-
1640 medium containing 10% fetal bovine 
serum (FBS, Life Technologies/Gibco, Grand 
Island, NY), 100 IU/ml penicillin and 100 mg/
ml streptomycin (Life Technologies/Gibco, Gai- 
thersburg, MD) and incubated at 37°C in a 
humidified chamber supplemented with 5% 
CO2. Cells grown to subconfluence were wa- 
shed three times with serum-free RPMI-1640 
and serum starved for 24 h at 37°C. The cells 
were washed once again with serum-free RPMI-
1640 and incubated with either RPMI-1640 
alone or RPMI-1640 supplemented with 10 ng/
ml TGF-β1 for indicated time at 37°C. RECK 
siRNA and Control siRNA was purchased from 
Santa Cruz Biotechnology (Santa Cruz). RECK 
siRNA was added 30 min before TGF-β1 treat-
ment or 12 h after transfection of pre-miR-21. 

Transient transfection analysis 

Cells (5×105) were seeded in six-well plates and 
grown to 80% confluence. Transfection with 
miR-21 enhanced lentivirus (pre-miR-21), miR-
21 inhibitor lentivirus (anti-miR-21) and scram-
ble (Genechem, Shanghai, China) into HOC was 
performed at a concentration of 100multiplici-
ty of infection(MOI) according to the manufac-
turer’s protocol. We put it incubated for 48 
hours at room temperature.

Real-time PCR 

Total cellular RNA was isolated by use of Trizol 
(Invitrogen) according to the manufacturer’s 
protocol. The RT primers for miR-21 and U6 
small nuclear RNA (snRNA) were as follows: 
miR-21, 5’-GTCGTATCCAGTGCAGGGTCCGAGGT- 
ATTCGCACTGGATACGACTCAACA-3’, and U6 sn- 
RNA, 5’-CGCTTCACGAATTTGCGTGTCA-3’. The 
sequences of mature miRNAs were from Sanger 
miRBase (http://microrna. sanger.ac.uk/sequ- 
ences/). Forward (F) and reverse (R) primers 
were as follows: miR-21-F, 5’-GCGGCGGTAGC- 
TTATCAGACTG-3’; miR-21-R, 5’-ATCCAGTGCAG- 

GGTCCGAGG-3’; U6-F, 5’-GCTTCGGCAGCACAT- 
ATACTAAAAT-3’; U6-R, 5’-CGCTTCACGAATTTG- 
CGTGTCAT-3’. All of the primers were synthe-
sized by Invitrogen. Quantitative real-time PCR 
was performed with an Applied Biosystems 
7500 machine and SYBRGreen Real-time PCR 
Master Mix-Plus-(Toyobo, Japan). U6 snRNA 
was used as internal controls to determine rela-
tive expressions of miRNAs. All Real-time 
RT-PCRs were performed at least 3 separate 
times in triplicate and the data are presented 
as mean ± SD. Gene expression profiles were 
normalized to U6 snRNA and calculated using 
the ΔΔCt (2-ΔΔCt) levels. 

Western blot 

Protein concentrations were measured with the 
BCA protein assay according to the manufac-
turer’s manual (Beyotime Institute of Biotech- 
nology, Shanghai, China). Equal amounts (80 
mg) of protein were separated by 10% sodium 
dodecyl sulfate–polyacrylamide gel electropho-
resis and were transferred to polyvinylidene 
fluoride membranes (Millipore, Billerica, MA). 
The PVDF membranes were blocked with 50% 
skimmed milk, treated with primary antibody at 
4°C overnight, washed and then incubated with 
the secondary horseradish (1:5000) for 2 h. 
Bands were detected with Enhanced Chemilu- 
minescence (ECL). Immunoblotting was per-
formed with E-Cadherin, vimentin, N-cadherin 
and RECK antibody (Cell Signaling Technology, 
1:1000). Densitometry was detected by Im- 
agine J. Western blot analyses were performed 
at least in triplicate.

Statistical analyses 

Derived values are presented as the means ± 
SD. Comparison of mean data among multiple 
groups was analyzed by one-way analysis of 
variance (ANOVA), and a multiple range least 
significant difference (LSD) was used for inter-
group comparisons. P values < 0.05 were con-
sidered statistically significant. All statistical 
analyses were performed with SPSS 16.0.

Results 

TGF-β1 upregulated miR-21 and induced EMT 
in WB-F344 cells 

TGF-β1 is one of the most important factor pro-
moting liver fibrosis [13]. TGF-β1 can promote 
the occurrence of epithelial mesenchymal tran-
sition [14]. EMT was induced in WB-F344 cells 
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by exposure to 10 ng/ml TGF-β1. TGF-β1 treat-
ment could lead WB-F344 cells to undergo 
EMT-like transformation evidenced by loss of 
cell-cell adhesion and alterations of morpholo-
gy from a round compact shape to a spindle-
like shape with irregular processes (Figure 1A). 
Western-blots demonstrated a phenotypic tr- 
ansition from epithelial properties to mesen-
chymal-like properties evidenced by loss of the 
epithelial marker, E-cadherin and in turn incr- 
eased expression of the mesenchymal marker, 
N-cadherin and vimentin (Figure 1B). We then 

expression (Figure 2B). Were transfected with 
miR-21 inhibition and enhanced lentivirus lenti-
virus to WB-F344 cells were detected by PCR 
the expression of miR-21, the result is signifi-
cantly suppressed and enhanced miR-21 
(Figure 2C).

RECK mediated TGF-β1-and miR-21-induced 
EMT in WB-F344 cells

According microRNA target gene databases we 
search to miR-21 target genes is RECK, RECK is 
a tumor suppressor. Zhang [15] et al study 

Figure 1. TGF-β1 upregulated miR-21 and induced EMT in WB-F344 cells. A. 
WB-F344 cells were treated with 10 ng/mL TGF-β1 for 5 days. The changes in 
cell morphology were observed under microscope (× 200). B. WB-F344 cells 
were treated with 10 ng/ml TGF-β1 for different times. The protein expression of 
E-cadherin and vimentin was examined by Western blot. C. WB-F344 cells were 
treated with 10 ng/mL TGF-β1 for 5 days. miR-21 expression was measured by 
real-time PCR. (*P < 0.05). 

examined the expression 
changes of miR-21 in WB- 
F344 cells by TGF-β1 treat-
ment. Expression of miR-
21 was upregulated time-
dependently after 10 ng/
ml TGF-β1 treatment, sug-
gesting that it may play an 
important role in TGF-β1 
induced EMT (Figure 1C).

miR-21 mediated TGF-β1-
induced EMT in WB-F344 
cells

In order to confirm the role 
of miR-21 in EMT, we exam-
ined whether inhibition of 
miR-21 could attenuate 
EMT induced by TGF-β1 in 
WB-F344 cells. After down-
regulation of miR-21 expr- 
ession in WB-F344 cells by 
transfection of miR-21 inhi- 
bitor lentivirus, the EMT 
was inhibited significantly. 
Western blot showed that 
TGF-β1- induced downregu-
lation of E-cadherin and 
upregulation of N-cadherin 
and vimentin were signifi-
cantly restored by downreg-
ulation of miR-21 expres-
sion. (Figure 2A). Next, we 
found that overexpression 
of miR-21 alone also result-
ed in EMT-like transforma-
tion in WB-F344 cells. Tra- 
nsfection of miR-21 enha- 
nced lentivirus into WB- 
F344 cells lead to reduced 
E-cadherin and increased 
N-cadherin and vimentin 



MiR-21 overexpression enhances epithelial-to-mesenchymal transition

4782 Int J Clin Exp Pathol 2016;9(4):4779-4785

found that gastric RECK expression and miR-21 
was negatively correlated. So we asked wheth-
er RECK mediates the process of EMT induced 
by TGF-β1- and miR-21 in WB-F344 cells. The 
results showed that TGF-β1 treatment resulted 
in decreased RECK. However, downregulation 
of miR-21 by transfection of miR-21 inhibitor 
lentivirus into WB-F344 cells abolished this 
effect, indicating that miR-21 regulates TGF-β1-
induced RECK in WB-F344 cells (Figure 3A). 
Furthermore, overexpression of miR-21 alone 

in WB-F344 cells downregulated RECK (Figure 
3B), suggesting that RECK is a miR-21 target in 
WB-F344 cells.

We next examined whether modulation of RECK 
affected miR-21- induced EMT in WB-F344 
cells. The results showed RECK siRNA, signifi-
cantly enhanced TGF-β1- and miR-21-induced 
EMT by decreasing E-cadherin and increasing 
N-cadherin and vimentin (Figure 3C and 3D), 
suggesting RECK mediates the EMT induced by 
TGF-β1 and miR-21 in WB-F344 cells.

Discussion

miR-21 in a number of fibrosis of organs univer-
sal expression. Inhibition of miR-21 expression 
can reduce organ fibrosis, such as, lung [16], 
heart [17], kidney diseases [18] and myofibro-
blasts fibrosis [19]. It suggests that the role for 
miR-21 in the EMT of fibrotic diseases is impor-
tant. Wang et al [20] demonstrated that miR-21 
overexpression can contribute to TGF-β1-
induced EMT by inhibiting target smad7, and 
that targeting miR-21 may be a better alterna-
tive to directly suppress TGF-β1-mediated fibro-
sis in diabetic nephropathy. Liu et al [21] report-
ed that up-regulation of miR-21 in the lungs of 
mice with bleomycin-induced fibrosis and also 
in the lungs of patients with idiopathic pulmo-
nary fibrosis. Kumarswamy et al [22] reported 
that TGF-β1 treatment of endothelial cells sig-
nificantly increased miR-21 expression and 
induced endothelial-to-mesenchymal transition 
characterized by suppression of endothelial in 
cardiac fibrosis. Liu et al [23] showed that miR-
21 over-expression enhanced TGF-β1-induced 
EMT characterized by upregulating of vimentin 
and downregulating of E-cadherin in human 
hepatocytes. Targeting miR-21 may provide a 
new therapeutic strategy against hepatic fibro-
sis. However, expression changes in miR-21 
and the role of miR-21 in EMT during liver fibro-
sis in hepatic oval cell have not yet been 
defined. In the present study, we showed that 
downregulation of miR-21 prevented TGF-β1-
induced fibrogenic EMT in hepatic oval cells, 
suggesting that miR-21 is required for TGF-β1-
induced fibrogenic EMT in hepatic oval cells. 
More importantly, miR-21 manipulations 
showed substantial impact on EMC phenotype, 
since overexpression of miR-21 in hepatic oval 
cells markedly promoted biomarkers of fibro-
genic EMT. Previous study has demonstrated 

Figure 2. A. Cells were treated with 10 ng/ml TGF-β1 
for 3 days after anti-miR-21 was transfected. The 
protein expression of E-cadherin, N-cadherin and vi-
mentin was examined by western blot. B. Cells were 
transfected with pre-miR-21. The protein expression 
of E-cadherin, N-cadherin and vimentin was exam-
ined by Western blot. C. Cells were transfected with 
anti-miR-21 and pre-miR-21, miR-21 expression was 
measured by real-time PCR. (*P < 0.05).
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that miR-21 stimulates the activation of hepat-
ic stellate cells [24] and hepatocytes [23]. 
Taken together, our data suggest that miR-21 
may be important target for treatment of liver 
fibrosis.

TGF-β is master player of fibrosis and EMT [25]. 
TGF-β initiates signaling by binding to type I and 
type II receptor serine/threonine kinase on the 
cell surface [26], regulating gene expression by 
receptor-mediated activation of Smad (R-Smad) 
transcription factors [27].

MiR-21 target genes includes PDCD4 [28], 
TPM1 [29], PTEN [30], Sprouty protein [31], 
RECK [15]. RECK (reversion inducing-cysteine-
rich protein with kazal motifs), a unique mem-
brane-anchored MMP regulator, is expressed in 
various organs, including developing vascula-
ture, skeletal muscles, neuromuscular junc-
tions, cartilage, fibroblasts, and neural precur-
sor cells [32-35]. The RECK gene encodes a 
membrane-anchored glycoprotein capable of 
regulating several members of the MMP family 
(MMP2, MMP7, MMP9, and MT1-MMP) [32, 36] 
and some other extracellular metalloproteinas-
es. RECK expression is regulated at multiple 
levels; while Sp1 activation represses RECK 

transcription [37], post-transcriptional modifi-
cations such as acetylation, methylation and 
modulation by microRNAs have been shown to 
target RECK. Multiple microRNAs, including 
miR-21, target RECK 3’UTR, and repress its 
expression in various cancer cells. Tumor sup-
pressor reck is a target gene of miR-21 [38, 
39]. Expression of RECK inhibit tumor cell inva-
sion and metastasis [40]. Tumor suppressor 
RECK is a target gene of miR-21. RECK expres-
sion is usually reduced or absent in human 
malignancies, including renal-, lung-, and glia-
derived tumors. That RECK directly interacts 
with transcription factors. According to my 
experiments RECK directly inhibit EMT tran-
scription unit, for example Twist1 and zeb1, 
eventually lead to the weakening of the EMT, 
over-expression of Twist1 represses Ecadherin 
transcription activity.

Hepatic oval cells are considered primitive and 
pluripotent stem cells, and in vivo experiments 
confirmed that it can differentiate into hepato-
cytes, bile duct cells, pancreatic cells, intesti-
nal epithelial cells et al [41]. Yovchev et al [42] 
reported freshly purified from rat hepatic oval 
cells can co-expression of epithelial and mes-
enchymal markers. EMT also demonstrated in 

Figure 3. RECK mediated TGF-β1- and miR-21-induced EMT in WB-F344 cells. A. Cells were treated with 10 ng/
mL TGF-β1 12 h after anti-miR-21 was transfected. The protein expression of RECK was examined by western blot. 
B. Cells were transfected with pre-miR-21. The protein expression of RECK was examined by Western blot. C. Cells 
were treated with 10 ng/mL TGF-β1 30 min after 20 μmol/L RECK siRNA treatment. The protein expression of E-
cadherin, N-cadherin and vimentin was examined by western blot. D. Cells were transfected with pre-microR-21 or in 
combination treatment with 20 μmol/L RECK siRNA. The protein expression of E-cadherin, N-cadherin and vimentin 
was examined by western blot.
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vivo in rats oval cells in the induction of certain 
conditions, eventually differentiate into mesen-
chymal tumor tissue.

In the present study, as expected, TGF-β1 inhib-
ited the expression of RECK protein and upreg-
ulated miR-21 expression in hepatic oval cells. 
These results indicate that miR-21 mediates 
TGF-β1-induced RECK in hepatic oval cells. Our 
results demonstrated that RECK siRNA enh- 
anced TGF-β1 or miR-21 induced fibrotic EMT in 
hepatic oval cells, suggesting that RECK medi-
ated TGF-β1 or miR-21 induced fibrogenic EMT 
in hepatic oval cells. In conclusion, our results 
identify miR-21 as a key regulator of fibrogenic 
EMT in hepatic oval cells via RECK. Targeting 
miR-21 may provide a new therapeutic strategy 
against hepatic fibrosis.
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