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Abstract: LncRNAs have been shown to regulate multiple major biological processes in development processes and 
differentiation. Accumulating evidence suggests that lncRNAs play an important role in tumorigenesis. Up to now, 
genetic, epigenetic and transcriptional and posttrancriptional regulatory mechanisms have been clarified to involve 
in lncRNA disregulation in cancers. However, the detailed mechanisms of most lncRNAs involve in the cancer-asso-
ciated signal transduction pathways remain largely unknown. In this review, we highlight the recent studies about 
the biological characteristics of lncRNAs in cancer, and the role of lncRNAs in some conventional caner-associated 
signaling pathways for clinical application in diagnosis, prognosis and potential treatment.
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Introduction

RNA was considered as an intermediate be- 
tween DNA and protein. The central dogma  
has provided us a simplified framework of  
how genetic information is translated into di- 
versity of biological process [1]. With the ge- 
nome-wide sequencing technology and tran-
scriptome analysis the astonishing notion is 
found that up to 70%-90% of the human geno- 
me is transcribed into RNA [2-4]. However, only 
1%-2% of the human genome contains the 
blueprint for protein-coding transcripts, which 
led to the birth of a new category of transcripts-
non-coding RNAs (ncRNAs). The long non-cod-
ing RNAs (lncRNAs) are defined as noncoding 
RNA molecules greater than 200 nucleotides  
in length according to the size [5]. Many of the 
lncRNAs are expressed in a tissue-specific and 
timely restricted manner and show a low level 
of expression and sequence conservation [6,  
7] suggesting a distinguished and regulatory. 
LncRNA based on their genomic proximity to 
protein-coding genes, including five types: sen- 

se, antisense, bidirectional, intronic and inter-
genic [8, 9].

The current research has shown that lncRNAs 
regulate multiple major biological processes in 
development processes and differentiation, 
and play a role in human diseases, certainly 
including cancer [10]. LncRNAs play significant 
regulatory roles as activators, decoys, guides, 
or scaffolds for their interacting proteins, such 
as transcription factors and histone modifiers 
[11]. Besides these transcriptional and epigen-
etic regulations, lncRNAs have also been found 
to be important players in posttranscriptional 
regulation, such as mRNA editor, mRNA splicing 
regulators, and reservoirs of small ncRNAs [12]. 

Accumulating evidence suggests that lncRNAs 
play an important role in tumorigenesis [13, 
14]. However, the detailed mechanisms of most 
lncRNAs involve in these cancer-associated sig-
nal pathways remain largely unknown. In this 
review, we will overview the recent studies 
about the biological characteristics of lncRNAs 
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the promoters and repression of tumor sup-
pressor genes [21]. A recent study identified 
707 potential cancer-related lncRNAs and 
showed that these lncRNAs tend to exhibit sig-
nificant differential expression and differential 
DNA methylation in multiple cancer types [24]. 
In addition, lncRNA TARID has been proven to 
activate the tumor suppressor TCF21 expres-
sion by inducing promoter demethylation with 
the GADD45A, a regulator of DNA demethyl-
ation [25].

Nucleosome positioning: The positioning and 
remodelling of the nucleosomes are able to 
regulate the gene expression by altering the 
accessibility of regulatory DNA sequences to 
transcription factors and to the transcriptional 
machinery [26]. Like the role of lncRNA in DNA 
methylation in cancer, the participation of 
nucleosome positioning in tumours is less well 
understood. A possible participation of lncRNAs 
in changing the nucleosome positioning is  
that lncRNAs can interact with a nucleosome 
remodelling complex, leading to the restructur-
ing or dislocation of the nucleosome in specific 
genomic regions. An increase in the packing of 
the nucleosome in a region containing a tumor 
suppressor gene can lead to its repression 
[21]. A newly study revealed that dysregulation 
of lncRNA HNF1A-AS1 participates in oesopha-
geal tumorigenesis mediated, at least in part, 
by modulation of chromatin and nucleosome 
assembly as well as by H19 induction, a mecha-
nism essential to cell cycle progression [27]. 

Histone modifications: Histone modifications 
are catalysed by a large variety of histone-mod-
ifying enzymes, which are able to read, add or 
remove covalent modifications to histone pro-
teins [28]. Histone modification occurs in cis-
function, when the lncRNA recruits the histone-
modifying enzymes to the genes in the vicinity 
of the site of lncRNA transcription. And other 
lncRNAs act in trans-regulation by recruiting 
the histone-modifying enzymes to different loci 
away from the lncRNA transcription locus. For 
example, in prostate cancer, lncRNA CTBP1-AS 
regulates epigenetic network in response to 
androgens, acting in cis and in trans [29]. 
CTBP1-AS was shown to repress the sense 
CTBP1 mRNA in cis and therefore to be associ-
ated with stimulation of cell proliferation. 
CTBP1-AS acts in trans by participating in the 
recruitment and influencing the DNA-binding 

in cancer, and the role of lncRNAs in some  
conventional caner-associated signaling path- 
ways.  

Role of lncRNA in cancer

It is not surprising that lncRNAs have been 
implicated in cancer, considering the wide 
range of roles that lncRNAs play in cellular net-
works [15], and the broader involvement of 
lncRNAs in cancer has been extensively re- 
viewed elsewhere [10, 16, 17]. In particular, 
several large-scale studies have led to the 
identification of several lncRNAs-based expre- 
ssion signatures of malignancy [18, 19]. These 
experimental approaches have suggested that 
various lncRNAs are indeed involved in cellu- 
lar transformation, acting as potential tumour 
suppressors or oncogenes, and leading to tu- 
morigenesis [10]. Up to now, genetic, epigene-
tic and transcriptional and posttranscriptional 
regulatory mechanisms have been clarified to 
involve in lncRNA disregulation in cancers [1].

Epigenetic regulation of lncRNA in cancer

The epigenetics is currently used to refer to the 
study of heritable changes in gene expression 
that occur independently of modifications in 
the primary DNA sequence. The possible me- 
chanism of epigenetic regulation of lncRNA in- 
cluded two types: one kind of actions is direct- 
ly on lncRNA genes-epigenetic changes during 
tumorigenesis or contribute to cancer develop-
ment. The most common epigenetic modifica-
tions of cancer-associated lncRNA are loss  
of imprinting or changed methylation (hypo-
methylation and hypermethylation). Another is 
lncRNAs themselves can act as triggers for  
epigenetic modification of other functional 
genes and thereby cause or prevent diseases 
[20]. Generally, these changes can include vari-
able patterns of DNA methylation, nucleosome 
positioning and histone modifications [21].

DNA methylation: DNA methylation affects 
cytosine residues in CpG dinucleotides concen-
trated in CpG islands. lncRNAs can recruit DNA 
methyltransferases, resulting in induced meth-
ylation or demethylation, which is commonly 
associated with silencing of tumor-suppressor 
genes in many cancer types [22, 23]. A possible 
mechanism in which lncRNAs affecting DNA 
methylation is that lncRNAs interacts with a 
DNA methyltransferase and guides this protein 
to specific targets, leading to the methylation of 
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activity of PSF to genes involved in the cell 
cycle.

Transcriptional regulation of lncRNA in cancer

In addition to regulating gene expression by 
recruiting epigenetic complexes, lncRNAs can 
directly affect the process of transcription by 
influencing the activity of specific transcrip- 
tion factors (TFs) and polymerases due to  
the wide-spread distribution. The regulation of 
lncRNAs, in transcriptional level, depends on 
the relative position and sequence features of 
the lncRNA and the target gene to regulate 
gene expression. For instance, lncRNA HOTAIR 
usually shows overexpressed patterns in early 
and metastatic breast cancer cells [30]. Me- 
chanically, HOTAIR regulates the gene expres-
sion by interacting with polycomb repressive 
complex 2 (PRC2) and lysine-specific deme- 
thylase 1A. Together with these two enzymes, 
HOTAIR can control methylation and demethyl-
ation status of histones [30].

Posttranscriptional regulation of lncRNA in 
cancer

Obviously, lncRNAs, particularly antisense tran-
scripts, can specifically interact with comple-
mentary mRNAs via the formation of a RNA 
dimer via complementary base pairing which 
can block the binding sites of transcription fac-
tors and processing-related factors that affect 
various processes of posttranscription, such  
as regulating mRNA splicing, transport, transla-
tion and degradation [31, 32]. As for lncRNA 
MALAT1, a recent study reveals that MALAT1 
regulates the alternative splicing of pre-mRNAs 
by modulating the activation of serine/arginine 
splicing factors [33], implying that MALAT1 reg-
ulates the posttranscriptional processing or 
modification of RNA.

Besides the genetic and epigenetic changes 
conferring the dysregulation of lncRNAs in can-
cer, there are dozens of lncRNAs altered in can-
cers having been documented to be regulated 
by specific oncogenic and tumor-suppressor 
related signals and regulatory factors. 

Role of lncRNAs in cancer-associated signal 
transduction pathways

The signaling transduction pathways such as 
Wnt, p53, ERK/MAPK, PI3K/AKT, cAMP/PKA 
and so on, regulating the cell growth and dif-

ferention in normal microenvironment, can 
become disordered and aberrant frequently 
during the initiation and progression of can-
cers. As we mentioned above, because of the 
abroad range of involvement in cellular net-
works and the huge amount, lncRNAs play an 
important and wide role in many signal trans-
duction pathways in cancer development. As 
the potential tumor suppressors and/or onco-
genes, lncRNAs are strongly linked with some 
conventional but aberrant caner-associated 
signal transduction pathways. In this regard, 
aberrant lncRNAs can regulate these signal 
transduction pathways in cell to promote the 
cancer development through the down-regula-
tion of suppressors or the up-regulation of 
oncogenes as the regulators. Meanwhile, aber-
rant transcriptional and expression of lncRNAs 
in cancers can also be regulated by multi- 
ple kinds of signal pathways as the effectors 
like protein-coding genes or microRNAs. Thus, 
lncRNAs and cancer-related signal pathways 
compose together complex regulation networks 
to participate amount of cancer cell biological 
activities.

Role of LncRNAs as regulators in signaling 
pathways

Some lncRNAs are capable of directly or indi-
rectly regulating signal transduction pathways 
in cancer. Although the regulation can occur at 
the transcriptional or posttranscriptional lev-
els, to data, the evidence of regulation of sig-
naling pathways by lncRNAs is still unclear. 
Available evidence points of regulation by 
lncRNAs, which may be able to either activate 
or suppress the signal transduction pathways.

Wnt/β-catenin signaling pathway: The canoni-
cal Wnt pathway regulates the stability of the 
proto-oncogene β-catenin and is aberrantly 
activated in many cancer types [34]. The Wnt/
β-catenin signaling pathway is an evolutionari- 
ly conserved pathway which plays an impor- 
tant role in regulating cell proliferation and 
migration and in controlling tumor progression. 
Aberrant activation of this pathway, generally 
caused by genetic and epigenetic alterations, 
has been linked to several types of tumors [35]. 

Recent study has found the mechanism of 
lncRNA HOTAIR in esophageal squamous cell 
carcinoma (ESCC) via Wnt/β-catenin signaling 
pathway via newly identified HOTAIR/WIF-1 axis 
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[36]. The overexpression of HOTAIR, along with 
PRC2, directly inhibited WIF-1 expression by 
promoting its histone H3K27 methylation re- 
gion in the WIF-1 promoter region to activate 
the Wnt/β-catenin signaling pathway and then 
induced ESCC cell metastasis (Figure 1) [36]. 
In bladder cancer, associated with enhancer 
EZH2, LncRNA H19 activates Wnt/β-catenin 
pathway and subsequently downregulates E- 
cadherin [37]. Thus, the overexpression of H19 
increases bladder cancer metastasis by asso- 
ciating with EZH2 and inhibiting E-cadherin 
expression. In addition, as for the chemothera-
py of bladder cancer, the recent study reveals 
that lncRNA UCA1/Wnt6 signaling represents  
a novel pathway regulating chemoresistance 
[38]. Upregulated UCA1 increases Wnt6 expres-
sion and activates Wnt signaling, which results 
in the cisplatin resistance. And this will be use-

ful for predicting treatment outcome and devel-
oping effective chemotherapeutic agents. 

AKT signaling pathway: The serine-threonine 
kinase Akt (also known as protein kinase B) is a 
central convergence node in a broadly influen-
tial signaling network. AKT pathway regulates 
essential cellular functions such as migration, 
proliferation, differentiation, apoptosis, and 
metabolism [39]. 

Just as we mentioned above, lncRNA UCA1 is 
correlated with cell proliferation and migration 
in bladder cancer [40]. Another study [41] dem-
onstrated that transcription factor Ets-2 can 
directly band to the UCA1 promoter region and 
stimulate UCA1 promoter activity in bladder 
cancer cells, and Ets-2 knockdown enables to 
induce apoptosis in bladder transitional cell 
carcinoma cell lines suggesting that UCA1 may 
be involved in the activation of AKT signal- 
ing pathway by Ets-2 in bladder cancer cells 
(Figure 2). LncRNA H19 also has been proven 
to play an important role of invasion [42] and 
carcinogenesis [43] in hepatocellular carcino-
ma (HCC). A newly study suggested that inhi- 
bition of H19 with miR-675 promotes migration 
and invasion of human HCC cells by activat- 
ing the AKT/GSK-3β/Cdc25A signaling path- 
way which may partly explain the molecular 
mechanism of migration and invasion in HCC 
[44]. In addition, lncRNA PTENP1 was effec- 
tively delivered and ectopicly expressed in  
HCC cells. Then, the overexpressed PTENP1 
repressed the oncogenic PI3K/AKT pathway 
and elicited pro-death autophagy via seques-
tering miR-17, miR19b and miR-20a in vitro, 
and inhibited the HCC tumor growth in vivo, 
which was accompanied by enhanced apopto-
sis, autophagy and dampened angiogenesis/
neovasculature maturation demonstrating the 
potentials of modulating PTENP1 for HCC ther-
apy [45]. In non-small cell lung cancer (NSCLC), 

Figure 1. Proposed model illustrating the effect of HO-
TAIR in the esophageal squamous cell carcinoma [36].

Figure 2. Proposed model illustrating the UCA1 regu-
lation by Ets-2 [41].
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LncRNA TUG1, recruiting and binding to poly-
comb repressive complex 2 (PRC2), is general- 
ly downregulated in NSCLC tissues [46]. The 
recent study reveals that TUG1 can participate 
in AKT and MAPK pathway through the modula-
tion of HOXB7, by the binding to PRC2, indicat-
ing that TUG1 affects NSCLC cell growth at 
least partly through the epigenetic regulation of 
HOXB7 [47]. 

ERK/MAPK signaling pathway: The ERK/MAPK 
pathway impinges on all the functional hall-
marks of cancer cells, including immortalisa-
tion, growth-factor-independent proliferation, 
insensitivity to growth-inhibitory signals, ability 
to invade and metastasis, ability to attract 
blood vessels, and evasion of apoptosis. 
Indeed, the pathway is hyperactivated in 30% 
of all human tumours including prevalent can-
cers of the colon and lung [48]. 

LncRNA MALAT1 was found to promote tumor 
growth and metastasis by activating this signal-
ing cascade [49, 50]. ERK/MAPK pathway was 
found to be inactivated in the gallbladder carci-
noma (GBC) cell lines after MALAT1 knockdown 
which indicated that MALAT1 might serve as an 
oncogenic lncRNA that promotes proliferation 
and metastasis of GBC and activates the ERK/
MAPK pathway [51]. In HCC, the recent study 
was demonstrated that, the levels of a novel 
lncRNA URHC were significantly increased and 
it can regulate cell proliferation and apoptosis 
via ERK/MAPK inactivation by targeting ZAK 
which is the neighboring gene located near 
URHC [52]. Thus, the ERK/MAPK pathway in- 
activation functioned as the downstream of 
URHC-ZAK axis partially accounted for URHC-
ZAK-induced cell growth and apoptosis. Ano- 
ther widely expressed lncRNA, BANCR was con-
firmed the role in the proliferation of malignant 
melanoma involved of MAPK pathway in this 
process [53]. BANCR regulated melanoma pro-
liferation synergistically with ERK1/2 and JNK 
activation of which are the terminal MAPKs 
both in vitro and in vivo meaning that BANCR 
can promote melanoma proliferation via acti-
vating ERK1/2 and JNK MAPK pathway [53].

p53 signaling pathway: The p53 tumor sup-
pressor pathway is activated in the presence of 
cellular stress, such as DNA damage and onco-
genic signaling, and in turn coordinates the 
transcriptional response of hundreds of genes 
[54]. 

The present studies have shown that lncRNAs 
are part of the p53 transcriptional network [55, 
56]. LincRNA Pint, interacted with PRC2, is a 
bona fide p53 transcriptional target. The new- 
ly study has proven that Pint is downregulated 
in colorectal cancer, and considered to serve 
as a novel tumor suppressor, which established 
a new connection between the tumor suppres-
sor p53 and epigenetic regulation by PRC2 
[57]. Another p53-regulated lincRNA p21 has 
been proposed to act in trans via several me- 
chanisms ranging from repressing genes in  
the p53 transcriptional network to regulating 
mRNA translation and protein stability [58]. The 
findings in the recent study show that p21 acts 
in concert with hnRNP-K as a coactivator for 
p53-dependent p21 transcription indicating 
that p21 as a key modulator of gene expression 
via influencing the p53 tumor suppressor path-
way, by affecting the activation and the chro-
matin state of hundreds of genes through its 
cis control of p21 expression [59].

ATM-CHK2 signaling pathway: The ATM-CHK2 
pathway is an important component of cell 
cycle regulation, which responds to DNA dam-
age signals, and prevents tumors growing too 
fast by arresting cell cycle in G2/M stage [60].

In esophageal cancer (ESCC), a newly study 
showed that [61], ESCC growth is moderated  
by the ATM-CHK2 pathway which is involved in 
cell cycle orchestrating. In addition, a negative 
association between MALAT1 expression and 
ATM-CHK2 pathway phosphorylation was re- 
vealed suggesting that upregulation of MALAT1 
may promote ESCC growth by dephosphoryla-
tion of the ATM-CHK2 pathway, which may lose 
the cell cycle arrest. In addtion, another lncRNA 
CUDR may promote tumorigenesis through 
upregulating PDGFB in tumorigenesis pathway 
and downregulating FAS and ATM in cell apop-
tosis pathway in bladder cancer [62].

STAT3 signaling pathway: STAT3 induces pro-
gression through the cell cycle, prevents apop-
tosis and may be associated with cancer de- 
velopment in some cases, which plays an im- 
portant role in normal development, particular-
ly hematopoiesis [63]. Most cancer cells rely 
mainly on aerobic glycolysis to generate the 
energy known as the Warburg effect [64]. 

In a newly study discovered that UCA1 pro-
motes glucose consumption and lactate pro-
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duction in bladder cancer cells revealing a 
novel UCA1-mTOR-STAT3/miR143-HK2 axis 
that links lncRNA and glucose metabolism in 
cancer cells [65]. Two signals control are found 
in the regulation of HK2 by UCA1 through the 
mTOR pathway. First, UCA1 facilitates the acti-
vation of STAT3, which promotes the transcrip-
tion of HK2. Second, UCA1 represses miR143 
and subsequently restores HK2 expression at 
the post-transcriptional level. The importance 
of this dual-control system is reflected by the 
results that both activation of STAT3 and 
repression of miR143 are required for UCA1 to 
accelerate glycolysis in bladder cancer cells. 
(Figure 3).

Role of LncRNAs as effectors in signaling path-
ways

Like protein-coding genes or microRNAs, 
lncRNAs can also serve as signaling pathways 
effectors. The transcriptional properties of 
lncRNAs suppose regulations of lncRNAs are 
involved in amount of transcription factors 
which are, furthermore, strongly linked to cor-
responding with signaling pathways. Profiling 
experiments probably are the most effective 

way to identify such lncRNAs. Therefore, the fol-
lowing lncRNAs participate in the signaling 
pathways network by serving as the effectors.

Wnt/β-catenin signaling pathway: As we men-
tioned, LncRNA MALAT1 involves in the Wnt/β-
catenin signaling pathway in cancer initiation 
and progression which can also be an effector 
regulated in Wnt signaling pathway.

In endometrioid endometrial carcinoma (EEC), 
MALAT1 is as the effector through a novel 
PCDH10- Wnt/β-catenin -MALAT1 regulatory 
axis which contributes to EEC development  
and progression [66]. The mechanistic studies 
uncovered that MALAT1 expression is tran-
scriptionally induced by Wnt/β-catenin signal-
ing through a direct binding site of TCF4 in 
MALAT1 promoter region and PCDH10 decre- 
ased MALAT1 by modulating this pathway 
(Figure 4). In addition, in liver cancer, MALAT1 
is a genuine and common target gene of both 
the Wnt/TCF/β-catenin and Hippo/YAP sig- 
naling pathway. And the association between 
YAP and TCF/β-catenin may synergies in pro-
moting MALAT1 expression [67].

PI3K/AKT signaling pathway: LncRNA HOXD-
AS1 is encoded in HOXD cluster. A newly study 
implied that HOXD-AS1 is a subject to morpho-
genic regulation, which is activated by PI3K/
AKT pathway in a human metastatic neuroblas-
toma model and itself is involved in control of 
retinoic acid-induced cell differentiation could 
be regulated via PI3K/AKT pathway by onco-
genic BDNF/TrkB axis. And in bladder cancer, 
through the PI3K/AKT pathway, the expression 
of lncRNA UCA1 can give rise to cell prolifera-
tion and regulate cell cycle progression by acti-
vating CREB [68] which is a leucine zipper type 
transcription factor participating in oncogene-
sis in many types of cancer [69].

TGF-β signaling pathway: The multifunctional 
cytokine transforming growth factor-β (TGF-β) 
orchestrates an intricate signaling network to 
modulate tumorigenesis and progression [70, 
71] through inducing cell-cycle arrest and apop-
tosis, in part by its ability to induce epithelial-
mesenchymal transition (EMT) [72, 73]. 

The newly study found that in HCC, lncRNA ATB 
is induced through TGF-β signaling pathway, 
which as effector to reinforce the prometastat-
ic TGF-β response via two distinct mechanisms. 

Figure 3. Proposed model illustrating the representa-
tion of the mechanism for UCA1-regulated metabolic 
switch [65].
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First, ATB promotes HCC cell invasion by com-
petitively binding the miR-200 family, upregu-
lating ZEB1/2, and then inducing EMT. On the 
other hand, ATB promotes HCC cell colonization 
at the site of metastases by binding mRNA 
IL-11, increasing IL-11stability, causing auto-
crine induction of IL-11, and then activating 
STAT3 signaling (Figure 5) [74]. A significant 
role of lncRNA ANRIL in the occurrence and 
development of ESCC through TGF-β1 signaling 
pathways was confirmed in another study [75]. 
As one of three tumor suppressors encoded by 
ANRIL, p15INK4b can be induced by TGF-β1 which 

pathways simultaneously forming a positive or 
negative feedback loop between lncRNAs and 
signal pathways.

A newly study has found that a novel lncRNA 
CCAT2 and Wnt signaling pathway could com-
pose a positive feedback loop in colorectal can-
cer (CRC) [78]. The results suggest that the 
CCAT2 transcript up-regulates Wnt activity and 
increases expression levels of Wnt target genes 
including MYC. This regulation by CCAT2 is pos-
sibly through its physical interaction by enhanc-
ing transcriptional factors TCF7L2 transcrip-

Figure 4. Proposed model illustrating PCDH10-Wnt/β-catenin-MALAT1 axis in 
EEC development [66].

Figure 5. Proposed model illustrating the ATB acting downstream of TGF-β to 
promote different steps of cancer metastasis [74].

is a member of the TGF-β  
family through the canonical 
TGF-β/Smad signaling path- 
way.

cAMP/PKA signaling pathway: 
The cAMP/PKA pathway has 
been reported to stimulate 
cell growth in many cell types. 
One cAMP response element 
binding protein (CREB) bind-
ing site within the Hulc proxi-
mal promoter region can spe- 
cifically bind phospho-CREB 
transcription factors through 
the PKA pathway. Moreover, 
phospho-CREB is able to 
‘open’ and maintain the local 
chromatin structure across 
the Hulc promoter [76]. Lnc- 
RNA HULC is identified as a 
novel mRNA-like lncRNA, hi- 
ghly up-regulated in HCC [77]. 
Phospho-CREB binding at its 
binding site through activa-
tion of PKA pathway for Hulc 
promoter activity may involve 
in the up-regulation of the 
HULC expression in a cancer-
specific manner [76].

Feedback loop between 
LncRNAs and signal trans-
duction pathways

Interestingly, during some de- 
velopment of cancer, we real-
ize that some lncRNAs regu-
late the signal transduction 
pathways, and the lncRNA it- 
self can be as the down-
stream targets in the signal 
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tional activity. On the other hand, CCAT2 
expression is regulated by TCF7L2, meaning 
that CCAT2 itself is a Wnt downstream target 
indicating a positive feedback loop between 
CCAT2 and Wnt signaling (Figure 6). Another 
feedback loop found in CRC is between lnc- 
RNA CRNDE and insulin/IGF signaling path-
ways. LncRNA CRNDE was originally discover- 
ed as an upregulated gene in colorectal adeno-
mas and cancers [79]. In CRC, insulin/IGFs re- 
press CRNDE intronic transcripts via the two 
signaling pathways, PI3K/AKT/mTOR pathway 
and Raf/MAPK pathway. The elevated levels  
of CRNDE nuclear transcripts in CRC cells in- 
crease glucose metabolism, lactate secretion 
and lipid synthesis. Meanwhile, CRNDE nu- 
clear transcripts also feedback on upstream 
insulin/IGF signaling pathways, but the extent 
to which these pathways can be attenuated 
likely depends on whether constitutively acti-
vating mutations are present. And there ap- 
pears to be potential for both positive and neg-
ative feedback on upstream signaling mole-
cules, in addition to the likelihood that CRNDE 
mediates a subset of insulin/IGF’s downstream 
effects. (Figure 7) [80]. 

phosphorylation of downstream target proteins 
triggers a cascade of signals to activate cell 
cycle checkpoints and DNA repair [82]. The 
recent data [83] revealed that ATM-induced 
E2F1 transcriptionally activates ANRIL, and the 
elevated ANRIL consequently suppresses the 
expression of INK4B-ARF-INK4A which is INK4 
family members to alleviate p53 and pRB sig-
naling pathways at the late-stage of the DDR, 
forming a negative feedback loop to the DDR. 
The cell will eventually return to normal at the 
completion of the DDR. The feedback loop 
demonstrates that ATM-E2F1 signaling regu-
lates the expression of ANRIL, furthermore, to 
affect DNA repair efficiency, which provide 
novel mechanistic insights into the DDR and a 
novel layer of regulation in gene expression pro-
gram (Figure 8).

Conclusions and perspectives

In this review, we highlight characterized onco-
genic and tumor-suppressor lncRNAs described 
to have a functional role in cancer-associated 
signaling transduction pathways. As represent 
a significant new vista in cancer, aberrant 

Figure 6. Proposed model illustrating CCAT2 locus involvement in CRC [79].

In gastric cancer (GC), there is 
a positive feedback loop 
between lncRNA ANRIL and 
mTOR and CDK6/E2F1 signal-
ing pathway. A recent study 
[81] demonstrated that ANRIL 
was up-regulated in GC tis-
sues and could be served as 
an independent predictor for 
overall survival in GC. In addi-
tion, ANRIL could epigeneti-
cally silence miR-99a/miR-
449a by binding to PRC2 to 
regulate mTOR and CDK6/
E2F1 pathway. Interestingly, 
the silenced miR-449a by 
ANRIL releases E2F1 expres-
sion, then, upregulated E2F1 
promotes ANRIL expression, 
thus forming a positive feed-
back loop, continuing to pro-
mote GC cell proliferation. 

The DNA damage response 
(DDR) is an important anti-
cancer barrier to maintain 
genome integrity against in- 
trinsic and extrinsic genotoxic 
stresses. The ATM-mediated 



Long non-coding RNAs and signal pathway

7787 Int J Clin Exp Pathol 2016;9(8):7779-7792

lncRNA expression participates in carcinogen-
esis by disrupting major biological processes 
involved in signaling transduction pathways as 
regulators, effectors or forming feedback loops. 
The signaling transduction pathways, regulat-

identified because current studies are still scat-
tered. A more systematic and clear screen may 
be able to provide a more comprehensive rela-
tions of lncRNAs and cancer-associated signal-
ing pathways. We can take a hypothesis that 

Figure 7. Proposed model il-
lustrating the role of CRNDE in 
insulin signaling and metabo-
lism [80].

Figure 8. Proposed model illustrating the working role of ANRIL in the DNA 
damage response [83].

ing the cell growth and differ-
ention in cellular microenvi-
ronment, play an import role 
in cancer initiation and pro-
gression. Despite the fast 
progress in the lncRNA field 
and we have a deeper under-
standing of their roles in can-
cers, overall, lncRNA studies 
are still at a primary stage. To 
better understand the lnc- 
RNA-cancer-associated sig-
naling network, we still need 
to solve several issues. For 
instance, a much more sys-
tematical and detailed rela-
tions between lncRNAs and 
cancer-associated signaling 
pathways are needed to be 
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studies elucidating exact molecular functions 
and mechanisms in cancer will continue to 
emerge. Therefore, we need to make much 
endeavor to fully elucidate the diverse regula-
tory mechanisms of the detailed lncRNAs 
involved in how they confer cancer cell associ-
ated signaling transduction pathways would 
ultimately pave novel strategies for cancer 
diagnosis and therapy.
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