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Abstract: Studies of colon cancer (CC) have shown that hundreds of pathways are differentially expressed in tumors 
when compared to normal tissue samples. A simple approach to identify individual’s differentially expressed path-
ways is to compare tumor data with accumulated normal samples. The rationale behind is to quantify the aberrance 
of an individual sample’s pathway. In this study, a novel approach-the individualized pathway aberrance score (iPAS) 
for the personalized identification of differentially expressed pathways was performed in CC, making special use 
of accumulated normal data. Combination of the differential co-expression network (DCEN) and pathway analysis 
was used to select accurate differentially expressed genes (DEGs) and differentially expressed pathways. There are 
129 DEG in 387 differential pathways selected by the iPAS and the construction of DCEN, including 59 up-regulated 
genes and 70 down-regulated genes. These pathways and DEG might play an important role in the development 
of CC and could be served as therapy targets. Our data concludes that iPAS can provide a sensitive measure for 
clinical features of patients and can be useful to identify CC. We hope the novel way can be helpful in the individual 
interpretation of tumor data and can be a useful tool of customized pharmacy in the future.
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Introduction

The colon cancer (CC) is a frequently occurring 
disease of the digestive tract with high mortal-
ity, representing 13% of all malignancies [1]. 
Studies of CC have shown that thousands of 
genes are differentially expressed in tumors 
when compared to normal tissue samples [2]. 
Gene expression data have been used to clas-
sify tumor phenotypes as well as evaluate CC 
tumors [3-5], while gene expression research is 
limited in the ability to distinguish individual 
genes that are differentially expressed in 
tumors [6]. Meanwhile, existing pathway analy-
sis techniques mainly pay attention to the 
detection of altered pathways between two 
phenotype groups, which are not suitable for 
identifying differentially expressed pathways 
that may occur in an individual sample. 
Therefore the analysis of differentially 
expressed pathways in an individual with can-
cer is efficient to command disease condi- 

tion and suggest personalized therapeutic 
strategies.

Khatri et al. [7] classified current pathway meth-
ods into three kinds: overrepresentation analy-
sis (ORA), functional class scoring (FCS) and 
pathway topology (PT), which added the net-
work topology information. ORA and FCS meth-
ods are focused on developing the new way, 
implementing and extending each for personal-
ized pathway analysis.

The individualized pathway aberrance score 
(iPAS) is outstanding to screen molecular aber-
rances, which based on the comparison of one 
cancer sample with a lot of accumulated nor-
mal samples (ANS) [8]. This is a biologically 
intuitive guideline to interpret a single sample, 
which is absolutely different from previous 
studies. 

The new method provides analysis steps includ-
ing four parts: data processing, gene-level sta-
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tistics, iPAS and a significance test. The iPAS is 
expendable to interpret a patient in the context 
of many published or user-defined pathway 
gene sets [8]. Recently it was reported that 
iPAS was a sensible and efficient way to cap-
ture biological and clinical information for CC 
and lung cancer [8]. In this study, iPAS was 
used to explore differentially expressed genes 
(DEGs) and differentially expressed pathways 
of CC.

Material and methods

Gene expression data

The transcription profile was obtained from 
EMBI-EBI Array Express [9]. Gene expression 
profiling of 111 colon tissues were collected 
from E-GEOD-44861 [10]. Samples came from 
individuals were used from 56 colon tumor tis-
sues and 55 adjacent noncancerous tissues of 
A-AFFY-113. The platform is A-AFFY-113-Affy- 
metrix GeneChip HT Human Genome U133A 
HT_HG-U133A. 

Identification of DEG

Data of the gene chip was read in the affy pack-
age [11]. The Linear Models for Microarray Data 
(LIMMA) was then used to preprocess data 
[12]. Background adjustment and quantile data 
normalization were performed by robust multi-
array average (RMA) [13]. To protect against 
outlier probes we use a robust procedure, 
median polish, to estimate model parameters. 
The average value of a gene symbol with mul-
tiple probes was calculated and 12493 genes 
were obtained. P≤0.01 and |log fold change 
(FC)| ≥2 were set as the threshold levels for the 
identification of DEG.

Construction of differential co-expression net-
work (DCEN)

Co-expression analysis was performed based 
on the expression profile of DEG we got in 111 
microarray data of colon tumor and adjacent 
noncancerous tissues. The identification and 
exhibition of co-expressed gene pairs used 
EBcoexpress at http://www. bioconductor.org/ 
packages/release/bioc/html/EBcoexpress.ht- 
ml [14]. For the tissue transcriptome data, the 
degree, clustering coefficient and betweenness 
value within each set were calculated to con-
struct topology attribute of the DCEN.

Pathway data 

Gene expressing information representing bio-
logical pathways is obtained from Reactome 
Pathway Database (http://www.reactome.org/) 
[15], which are also provided in the Molecular 
Signature Database [16]. Pathways with large 
number of genes metabolize more complicat-
ed. Therefore, pathways of which gene set size 
is >100 are filtered. On account of some differ-
ences among data from different platforms, 
pathways are filtered when the intersection of 
their genes and 12493 got genes is 0. Then 
1004 pathways remained after filtering includ-
ing 4269 genes.

Individualized analysis  

ANS obtained from the gene expression omni-
bus (GEO) database of NCBI (www. ncbi. nlm. 
nih.gov/geo/) [17]. Microarray data of adjacent 
noncancerous tissues of patients with CC were 
served as the ANS. Totally 55 ANS were col-
lected for identifying individual pathways. 

Data preprocessing and gene-level statistics 

Expression level was defined using the robust 
multichip average [13]. For individual tumor 
cases, 
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as quantile normalization was performed after 
combining the single tumor data [18]. 

Pathway-level statistics

Average Z method is a biologically valid modifi-
cation of differentially expressed pathway anal-
ysis techniques for iPAS, enabling us to test an 
individual CC pathway aberrance using the ANS 
[8]. 

Standardizing the gene expression by mean 
and standard deviation (SD) from datasets is 
often used in microarray analysis. A vector Z = 
(z1, z2, . . . , zn) denotes the expression status of 
a pathway where zi symbolizes the standard-
ized expression value of i-th gene, where the 
number of genes belonging to the pathway is n. 
Gene level statistics of every gene from every 
sample: 
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Table 1. Top ten up- and down-regulated 
DEGs
DEGs Log FC P-value
Up-regulated
    IL8 5.28 1.66E-11
    SPP1 4.94 1.11E-09
    CEMIP 4.85 3.25E-13
    PHLDA1 4.74 7.43E-15
    KRT23 4.65 1.89E-09
    SULF1 4.43 5.77E-11
    AZGP1 4.32 4.44E-10
    INHBA 4.26 8.07E-14
    COL11A1 4.25 5.85E-10

    NEBL 4.20 6.33E-12
Down-regulated
    GCG -7.06 1.68E-16
    CA1 -6.92 1.52E-15
    AQP8 -6.89 6.57E-19
    CA4 -6.81 1.71E-17
    GUCA2B -6.79 1.47E-19
    MS4A12 -6.66 1.88E-15
    CLCA4 -6.20 5.72E-12
    CHGA -6.09 1.48E-17
    CHP2 -5.93 7.09E-18
    ZG16 -5.92 1.88E-13
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zi represents the standardized value of 1-i gene 
and the number of genes belonging to the path-
way is n. Pathway statistics from tumor and nor-
mal sample tissues were tested in pairs [19]. 
Since the test might induce false positive 
results, we used the method of Benjamini et al. 
[20], which can adjust the raw P-values into 
False discovery rate (FDR) to circumvent the 
problem. The FDR <0.05 and |log FC| >1 were 
used as the cut-off criteria.

Results

DEGs in CC

According to the criteria outlined (|log FC| ≥2; 
P≤0.01), a total of 485 DEGs were identified in 
CC, of which 194 were up-regulated and 291 

were down-regu lated. The top ten up and down-
regulated DEGs are listed in Table 1. A total of 
245 DEGs were enriched in pathways which 
benefited from the intersection between all the 
genes of 1004 pathways and 485 DEGs.

Construction of DCEN

DCEN was constructed in order to understand 
connections among 485 DEGs and explore the 
molecular mechanism. Co-expression analysis 
was performed based on the expression profile 
of 485 DEGs in 111 microarray data set. A total 
of 4612 pairs of co-expression, involving 480 
DEGs were identified (data not shown). The 
DCEN resembles a tree-like network due to the 
intrinsic properties of co-expression networks. 
The circle nodes denote genes; meanwhile 
edges indicate the linked genes are differen-
tially co-expressed. 

The DCEN has a lower clustering coefficient 
and average shortest path length in contrast to 
other DCEN [21]. Top 10 degree DEGs in the 
DCEN are as follows: QPCT, SFN, SPINT1, GOT1, 
SLC22A18, CFI, PTBP3, FUT3, SSX2IP and 
PRSS8 (Table 2). They are testified to be relat-
ed with cancers except PTBP3 and SSX2IP. 
These results suggest that the differential co-
expressed links typically span multiple path-
ways. Moreover, the linked pathways have clear 
interdependent functional relationships. 

Differentially expressed pathways analysis

Differentially expressed pathways were select-
ed from normal and tumor pathways, respec-
tively, whose P<0.01 were considered as the 
cut-off criterion. Then 387 pathways are 
obtained, which are considered to play a signifi-
cant role in the development of tumors. Main 
pathways inside are Ketone body metabolism, 
Ethanol oxidation, Mitochondrial fatty acid 
beta-oxidation of saturated fatty acids and 
Formation of the active cofactor, UDP-
glucuronate. They linked complicatedly by dif-
ferentially co-expressed genes, which may 
have synergistic effects. They were united to 
observe expression status of the same DEG in 
different tissue samples (Figure 1). Cluster 
analysis of using Average Z as the iPAS method 
identified 4 sample clusters (S1, S3, S4; S2 is 
from the ANS). Sample clusters S1, S3 and S4 
represent well the differentiation status of CC. 
It is a rational result that clusters S1 is close to 
the ANS. This assures us that unbiased cluster-
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Table 2. Top 10 degree DEGs in different co-expression network

DEGs Average Short-
est Path Length

Betweenness 
Centrality

Closeness 
Centrality

Clustering 
Coefficient Degree

QPCT 1.87 0.0852 0.535 0.0387 127
SFN 1.86 0.0606 0.539 0.0368 126
SPINT1 1.90 0.0386 0.527 0.0374 105
GOT1 2.05 0.0300 0.487 0.0477 97
SLC22A18 1.95 0.0307 0.513 0.0741 94
CFI 1.96 0.0331 0.511 0.0597 90
PTBP3 2.02 0.0405 0.496 0.0220 89
FUT3 1.99 0.0198 0.502 0.0377 87
SSX2IP 1.96 0.0360 0.511 0.0388 82
PRSS8 2.04 0.0169 0.492 0.0438 81

ing based on iPAS has enough sensitivity to 
capture clinically important associations. The 
result is consistent with prior report that well-
differentiated lung adenocarcinoma patients 
may have better prognosis [22]. 

DEGs enriched in differential pathways were 
mapped into the DCEN, and their interac- 
tion connections were obtained in Figure 2. 
There are 129 DEGs in the differential path-
ways, including 59 up-regulated genes and 70 
down-regulated genes. Among them, 118 DEGs 
contact complicatedly except FABP6, NR1H4, 

totally 485 DEGs identified in CC, the top one 
up-regulated DEG is IL8, which is often treated 
as variables in expression of tumor necrosis 
factor [24]. The top one down-regulated DEG is 
GCG, which is testified to relate to various intes-
tinal diseases [25]. Thus, these DEGs may iden-
tify further molecular alterations and provide 
new diagnostic biomarkers in the survival ther-
apy of CC. 

Differential co-expression analysis is emerging 
as a valid complement to conventional differen-
tial gene expression research in diseases. The 

ASCC3, PTGS2, CPT2, 
NAT2, CXCL2, CXCL1, 
UGT2B17, SLC35D1 and 
UGT2B15. The top 20 
degree genes of co-
expression network are 
as follows: SFN, GOT1, 
CFI, STAM, VDR, PAPS- 
S2, SLCO2A1, MMP3, 
DGKA, FOXO1, PRKAR- 
2B, AKR1C1, DHDDS, 
CD44, ACACB, RAE1, 
ECT2, ADH1B, AKR1C2 
and CDK1. Among them, 
SFN, GOT1, CFI, STAM, 
VDR, MMP3, DGKA, FOX- 
O1, PRKAR2B, AKR1C1, 
DHDDS, CD44, ACACB, 
ADH1B, AKR1C2 and 
CDK1 are key genes 
which are related to 
some cancers. These 
overlapped DEGs might 
play more important ro- 
les in the development 
of CC.

Discussion

Gene-expression profil-
ing of human diseased 
tissues may provide bet-
ter insights into molecu-
lar mechanisms and ev- 
entually lead to the iden-
tification of novel thera-
peutic targets [23]. The 
identification of poten-
tial DEG may assist in 
improved CC diagnosis. 
In this study, among 

Figure 1. Heat map of differential pathways in normal and tumor tissues. Color bar 
was at top left corner. Samples were clustered with the abscissa and pathways 
were clustered with the ordinate. Blue indicates up-regulated pathways and red 
indicates down-regulated ones; and the expression level is proportional to the 
brightness of the color. White indicates no difference in expression level between 
the two tissue types and lighter coloring indicates lower overall expression.
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identified differential co-expression links can 
be assembled into a DCEN in response to 
genetic changes [21]. Co-expression analysis 
using transcriptome datasets generated by 
high-throughput microarray transcript profiling 
produces correlations that have often been 
considered to imply functional relationships 
[26, 27]. Several reports have revealed that the 
architecture of a molecular network can be 
massively rewired during a cellular response 

and demonstrated the power of differential  
network analyses for elucidating biological 
mechanisms [28, 29]. Among 4612 pairs of co-
expression, GPA33 and FCGBP, AGT and 
S100A2, KRT23 and CEMIP, KRT20 and 
PAPSS2 have the strongest relations in the 
DCEN we constructed, which share the score of 
0.9999999997. Most of DEGs are testified to 
be related with some cancers. The top two 
degree DEG is QPCT and SFN, the former is 

Figure 2. Co-expression links of DEGs in DCEN. The size of nodes represented degree of the DEG; green: up-regu-
lated gene, red: down-regulated gene. 
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densely methylated in >95% of uncultured mel-
anoma tumor samples [30], and the latter is 
dramatically low in two cell lines derived from 
human mammary carcinoma [31]. It indicates 
these DEGs screened accurately in the DCEN 
might play an important role in the develop-
ment of CC, which are considered to be served 
as therapy targets.

Khatri et al. [7] considered that pathway analy-
sis has become the first choice for extract- 
ing and explaining the underlying biology for 
high throughput molecular measurements. 
Identification of differential expressed path-
ways in individuals is significant for understand-
ing disease mechanisms and for the futu 
re application of custom therapeutic decisions. 
Current pathway analysis methods are not suit-
able to identify the pathway aberrance that may 
occur in an individual sample [8]. Therefore, we 
propose the novel method iPAS for the person-
alized identification of differentially express- 
ed pathways. A key innovation of the method is 
the iPAS using ANS in cancer. Ahn et al. [8] 
proved Average Z method had the best statisti-
cal power when identifying a previously known 
survival-related pathway and the best averaged 
validation rate for CC. As the data repository is 
developing rapidly, it is expected that ANS data 
will be available for more and more diseases in 
the upcoming days. Ketone body metabolism is 
screened to be the most significant pathway, 
where HMGCL, HMGCS2, ACAT1, OXCT1 and 
BDH1 were enriched in. Among them, HMGCS2 
is a target gene expressed in differentiated cell 
of human colonic epithelium and down-regulat-
ed in CC [32]. Sawai et al. [33] reported OXCT1 
expression was examined in relation to the 
growth of gastric cancer. Therefore, these dif-
ferentially expressed pathways are associated 
with survival of tumors and can provide broader 
carcinogenic insight [6]. 

Gene expression profiling has been widely used 
for cancer research. Coupled with individual 
pathway analysis, the construction of DCEN 
has been explored in many types of cancer. 
Here, the combination of above two is a signifi-
cant progress to CC: we combine the advantag-
es of the above to obtain more accurate DEGs 
and pathways from large-scale gene expres-
sion profiles in response to different situations. 
DEGs enriched in differential pathways are 
mapped into the DCEN, and their interaction 
connections are supposed to play important 
role in molecular mechanism and pathology 
process of CC.

Eventually 129 DEGs are obtained, of which 
118 DEGs contact closely in the DCEN. Among 
them, SFN, GOT1 are the top two degree genes, 
both of which are down-regulated genes. SFN is 
a maker of gastric adenocarcinoma precursor 
lesions [34], which is the top second degree 
gene of the DCEN. It is enriched in pathways of 
Chk1/Chk2 (Cds1) mediated inactivation of 
Cyclin B: Cdk1 complex, G2/M DNA damage 
checkpoint, Activation of BH3-only proteins, 
Intrinsic Pathway for Apoptosis and G2/M 
Checkpoints. Grenier et al. [35] reported GOT1 
in Schwann cells differed from that in hepato-
ma cells, suggesting a cell-specific regulation, 
which enriched in pathways of Gluconeogenesis, 
Metabolism of polyamines, amino acid synthe-
sis and interconversion (transamination) and 
Glucose metabolism. These DEGs and differen-
tially expressed pathways show the functional 
mechanism of CC precisely.
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