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Abstract: Malignant melanoma is one of the most highly ranked cancers in terms of years of life lost. Hereditary 
melanoma with its increased familial susceptibility is thought to affect up to 12% of all melanoma patients. In the 
past, only a few high-penetrance genes associated with familial melanoma, such as CDKN2A and CDK4, have been 
clinically tested. However, findings now indicate that melanoma is a cancer most likely to develop not only due to 
high-penetrance variants but also due to polygenic inheritance patterns, leaving no clear division between the 
hereditary and sporadic development of malignant melanoma. Various pathogenic low-penetrance variants were 
recently discovered through genome-wide association studies, and are now translated into polygenic risk scores. 
These can show superior sensitivity rates for the prediction of melanoma susceptibility and related mixed cancer 
syndromes than risk scores based on phenotypic traits of the patients, with odds ratios of up to 5.7 for patients in 
risk groups. In addition to describing genetic findings, we also review the first results of epigenetic research showing 
constitutional methylation changes that alter the susceptibility to cutaneous melanoma and its risk factors.
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Introduction

Malignant melanoma is a type of skin cancer 
derived from neoplastic melanocytes. Once a 
rare cancer, incidence numbers have been 
growing worldwide for decades and are esti-
mated to rise further [1]. Presently, malignant 
melanoma is one of the most frequent cancers 
with an estimated lifetime risk of 2% in Western 
populations. In the United States, it is the fifth 
most frequent type of cancer in men, and the 
sixth most frequent in women. Between 1973 
and now, the annual number of cases has risen 
by more than 270%; partially explained by an 
aging society, imprudent tanning behavior,  
and loss of the ozone layer [2, 3]. In Europe, 
incidence rates follow a gradient from the 
southern Mediterranean with lower, to northern 
Scandinavian countries with higher malignant 
melanoma rates [2]. Europe accounts for 45% 
of all malignant melanoma deaths worldwide 
[1]. Depending on the geographic region, mela-
noma can rank as high as third place in a popu-
lation based on the number of years of life lost 
(YLL) [4, 5].

However, malignant melanoma is not the most 
common type of skin cancer, but is the most 
lethal. This is due to early dissemination and 
metastasis formation, as well as high resis-
tance to treatment [6]. Currently, the only cura-
tive treatment is early detection, followed by 
tumor excision [7].

Certain somatic mutations driving tumorigene-
sis have been identified in sporadic cases of 
malignant melanoma. In contrast, 5-12% of 
malignant melanoma cases are thought to 
develop due to genetic germline alterations, 
referred to as hereditary melanoma [8, 9]. 
Several genes with pathogenic variants predis-
posing for a higher risk of developing malignant 
melanoma have been identified, with CDKN2A 
(cyclin-dependent kinase inhibitor 2A) being the 
most commonly altered gene, which accounts 
for an estimated 20-45% of hereditary melano-
ma cases [8-10]. Genetic alterations can be 
inherited, as well as constitutional epigenetic 
modifications. Studies have shown that cer- 
tain DNA methylation changes increase the 
susceptibility to melanoma risk factors, such as 
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dysplastic nevi, or for cutaneous melanoma 
itself [8, 11, 12].

As most hereditary tumors, also hereditary mel-
anoma presents itself with an earlier age of 
cancer development onset, as well as familial 
clustering of specific cancer types [13].

As the available evidence on inherited melano-
ma susceptibility has advanced rapidly in re- 
cent years, the aim of this review was to provide 
a comprehensive and updated overview of the 
topic. This includes recent clinical and genome-
wide association study (GWAS) findings, as well 
as a summary of the results from studies inves-
tigating the epigenetic factors of malignant 
melanoma.

Methods

Sources for this review were identified on 
Medline, UpToDate, and Cochrane Central Re- 
gister with scientific publications spanning at 
least a five-year period up until May 17, 2021. 
Search terms included “melanoma”, “heredi-
tary melanoma” and “familial melanoma”. Peer-
reviewed sources were included in this article  
if they contained specific results on germline 
mutations and/or constitutional epigenetic 
alterations. Sources also included a medical 
textbook and a published doctoral dissertation. 
We did not include non-English language sour- 
ces or articles on somatic melanoma driver 
mutations (exclusion criteria).

Genes with high-penetrance variants

Genes containing pathogenic variants associ-
ated with malignant melanoma are usually 
grouped by penetrance of the variant(s), bio-
logical pathomechanism or cumulative number 
of single nucleotide variants (SNVs) [9, 10].

Penetrance for genes or variants, defined as 
the ratio of gene expression or susceptibility, 
can be high, intermediate, or low with respec-
tive odds ratios of over 5, 2 to 5, or lower than 
2, although slightly varying in the literature. For 
intermediate-and low-penetrance variants, pre-
dicting melanoma occurrence is still very impre-
cise [9].

CDKN2A (Cyclin-dependent kinase inhibitor 
2A): CDKN2A is a gene located on chromosome 

9p21. Germline alterations in this gene show 
an autosomal dominant inheritance pattern, 
and multiple single-nucleotide variants (SNVs) 
are associated with a higher risk of malignant 
melanoma [1, 8, 9].

It is the most common gene with pathogenic 
variants in hereditary melanoma, with variants 
varying by geographic region [9, 14-16]. One of 
the most frequent of these so-called founder 
mutations is p.G101W, which is mostly detect-
ed in French, Spanish and Italian populations 
[9, 17].

CDKN2A itself consists of four exons contain-
ing the genetic code for two unrelated proteins, 
p16 inhibitor of cyclin-dependent kinase 4 
(p16INK4A) and p14 alternate reading frame 
(p14ARF) [9, 18]. Both protein products act as 
tumor suppressors. P16INK4A is an inhibitor of 
CDK4 (cyclin-dependent kinase 4) and CDK6 
(cyclin-dependent kinase 6), preventing the cell 
from entering the S-phase of the cell cycle, 
whereas p14ARF positively regulates the tumor 
suppressor p53, thus preventing an excess 
load of damaged DNA in the cell [9].

CDKN2A mutations increase the risk of malig-
nant melanoma itself, yet certain pathogenic 
CDKN2A variants are associated with other 
cancer types, such as pancreatic cancer, lung 
cancer, breast cancer, sarcoma, and, in rare 
cases, mesothelioma and esophageal squa-
mous cell cancer [13, 18-21].

The most common CDKN2A variant-associated 
melanoma-dominant tumor syndrome is call- 
ed familial atypical multiple mole-melanoma 
(FAMMM) and is rarely associated with CDK4 
and MITF (microphthalmia-associated tran-
scription factor) alterations [1, 13]. The typical 
phenotypic manifestations of FAMMM are a 
high nevi count over 50 and multiple precancer-
ous dysplastic nevi [13]. In this tumor syn-
drome, affected patients tend to regularly 
develop melanoma on unaffected and healthy 
skin tissue, but not from nevi. As with heredi-
tary cancers in general, the onset of disease is 
also early in FAMMM [1].

Patients with Melanoma-Astrocytoma syn-
drome have a higher incidence of nervous sys-
tem tumors (NSTs), such as astrocytoma, which 
can occur before or after the development of 
melanoma [1]. Here, the main gene involved is 
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CDKN2A/ARF, which encodes p14ARF, alth- 
ough there have been rare associations with 
more comprehensive 9p21 chromosome alter-
ations affecting the genetic cluster of CDKN2A, 
CDKN2B, and CDKN2BAS until the gene MLLT3 
[1, 22].

For nearly two decades, CDKN2A and CDK4 
were the only two genes tested in a clinical con-
text when hereditary melanoma was suspected 
[23].

Pathways affected by CDKN2A and other genes 
with high-penetrance variants associated with 
melanoma susceptibility are shown in Figure 1, 
whereas Figure 2 depicts a gene network anal-
ysis based on genes with both high-and medi-
um-penetrance variants.

CDK4 (Cyclin-dependent kinase 4): CDK4 is a 
gene with rare pathogenic variants found on 
chromosome 12q4 [8, 9, 23]. Its identically 
named translational product is part of the same 
signaling pathway of the cell cycle as the gene 

products of CDKN2A [9]. Pathogenic variants  
of CDK4 associated with malignant melanoma 
are uncommon, and only 18 families have been 
identified worldwide, as well as a single case of 
a male patient in Italy, leading to a subsequent 
need for further studies with more significant 
populations to solidify the effect of pathogenic 
variants of CDK4 on the development of heredi-
tary melanoma [9, 24].

CDK4 and CDK6 are physiologically needed to 
transition to the S-phase of the cell cycle from 
the G1-phase by phosphorylating retinoblasto-
ma protein (RB) [9]. To date, only one specific 
locus with specific pathogenic variants in CDK4 
has been found: Arg24, in exon 2, codon 24 
[24]. There, three pathogenic variants were 
identified. The arginine can be interchanged for 
either cysteine (Arg24Cys), histidine (Arg24His), 
or leucine (Arg24Leu with only one described 
case) [9]. This eliminates the binding domain of 
p16INKA4, leading to reduced p16INK4A inhi-
bition of CDK4 kinase activity, subsequently 

Figure 1. Physiological pathways of genes with possible pathogenic high-penetrance variants associated with  
hereditary melanoma. ACD: adrenocortical dysplasia; ATM: ataxia telangiectasia-mutated signaling pathway; BAP1: 
BRCA1-associated protein-1; CDK4: cyclin-dependent kinase 4; CDK6: cyclin-dependent kinase 6; CDKN2A: cyclin-
dependent kinase inhibitor 2 a; IP3R3: receptor for inositol 1,4,5-trisphosphate; p14ARF: p14 alternate reading 
frame; p16INKA4: p16 inhibitor of cyclin-dependent kinase 4; p53: tumor protein 53; POT1: protection of telomeres 
1; TERF2IP: telomeric repeat binding factor 2 interacting protein.
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deregulating CDK4, resulting in uncontrolled 
continuation of the cell cycle [18, 24].

As a result, patients carrying pathogenic CDK4 
variants were susceptible to an earlier onset of 
malignant melanoma with a median age of 39 
years at the time of diagnosis, and a lifetime 
risk of 74% among the studied individuals [9].

The implications of pathogenic CDK4 variants 
are, due to the same pathway, similar to the 
ones of CDKN2A. Pathogenic CDK4 gene vari-
ants are associated with a higher risk of cuta-
neous melanoma, pancreatic cancer, multiple 
primary melanomas, and atypical nevi [18, 23]. 
Pathogenic CDK4 variations are also associat-
ed with the development of FAMMM syndrome 
[13].

phate (IP3R3 receptor), which is part of the 
apoptosis mechanism through intracellular cal-
cium release [25].

Patients harboring pathogenic BAP1 variants 
can show specific lesions with distinct morphol-
ogy, immunohistochemistry, and early onset in 
young adults [9, 25]. These so-called BAPomas, 
or melanocytic BAP1-mutated atypical intra- 
dermal tumors (MBAIT), atypical Spitzoid nevi,  
or nowadays, BAP1-inactivated melanocytic 
tumors (BIMT) are similar to Spitzoid tumors, 
yet do not fulfill all given criteria and usually can 
be seen as skin-colored to pink nodules and 
papules, varying in size by up to one cm in 
diameter [9, 25].

BAP1 variants are associated with a tumor syn-
drome named BAP1-tumor predisposition syn-

Figure 2. Established melanoma susceptibility genes with high and medium-
penetrance variants and their most closely related genes. Utilizing the Gene-
Mania framework (Version 3.5.2) in Cytoscape (Version 3.8.2), we generated 
a network analysis based on the established hereditary melanoma suscep-
tibility genes, usually bearing high-and medium-penetrance pathogenic vari-
ants. These are shown in red. The most closely related genes are shown 
in gray. Genes were visually grouped according to molecular function. ACD: 
adrenocortical dysplasia; BAP1: BRCA1-associated protein-1; CDK4: cyclin-
dependent kinase 4; CDKN2A: cyclin-dependent kinase inhibitor 2 a; MC1R: 
melanocortin 1 receptor gene; MITF: microphthalmia-associated transcrip-
tion factor; POT1: protection of telomeres 1; SLC45A2: solute carrier family 
45 member 2; TERF2IP: telomeric repeat binding factor 2 interacting pro-
tein; TERT: telomerase reverse transcriptase.

BAP1 (BRCA1-associated pro-
tein-1): BAP1 is a high-pene-
trance gene found on chromo-
some 3p21 [8, 9]. Studies 
have found that pathogenic 
variations are responsible for 
only up to 1% of cutaneous 
melanoma (CM), but up to 4% 
of uveal melanoma cases 
(UM, also known as ocular 
melanoma) [25].

Its encoded protein is a deu-
biquitinating enzyme found  
in the nucleus, mitochondria, 
and cytosol of the cells [26]. It 
is mainly a transcription-regu-
lating tumor suppressor—as 
part of the ubiquitin-protea-
some complex. It also partici-
pates in regulating the cell 
cycle, apoptosis, and gluco-
neogenesis [27].

As a result, pathogenic vari-
ants can lead to decreased 
DNA repair mechanisms via 
the ataxia telangiectasia-mu- 
tated (ATM) signaling path- 
way, proliferation through un- 
controlled cell cycles, and 
eventually, tumorigenesis [25, 
27]. BAP1 also plays a role  
in regulating the receptor  
for inositol 1,4,5-trisphos-
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drome (BAP1-TPDS), which is dominated by 
mesothelioma and uveal melanoma [23, 27]. 
Other types of cancer are associated with 
pathogenic BAP1 variants. These show varying 
frequencies depending on the cancer subtype, 
thus concluding that in this case, cancer devel-
opment might depend on a broader array of 
genetic or epigenetic factors. These further 
associated cancers include cutaneous mela-
noma, basal cell carcinoma, mesothelioma, 
clear cell renal cell carcinoma, cholangiocarci-
noma, and possibly additional unknown tumor 
types [23, 27].

POT1 (Protection of telomeres 1): POT1 is a 
high-penetrance gene on chromosome 7 with 
rare pathogenic variants [8, 28]. The gene itself 
codes for the POT1 protein, one of six proteins 
forming the shelterin complex. The complex 
regulates and protects the single-stranded 
DNA telomere regions at the end of each chro-
mosome from degradation and chromosomic 
fusion [29].

Most pathogenic variants have a negative 
effect on the binding sites—called oligonu- 
cleotide/oligosaccharide-binding fold domains 
(OB fold domains)—needed to adhere the shel-
terin complex to the single-stranded DNA [9].

Germline POT1 variants lead to an autosomal 
dominantly inherited syndrome consisting of 
several tumor types, predominantly angiosar-
coma and superficially spreading melanoma, 
but also malignant glioma, anaplastic astrocy-
toma, thyroid cancer, and colorectal cancer [8, 
29, 30]. As driver mutations, somatic POT1 
mutations are often found in chronic lympho-
cytic leukemia (CLL) [29].

TERF2IP (Telomeric repeat binding factor 2 
interacting protein) and ACD (Adrenocortical 
dysplasia): ACD and TERF2IP, otherwise known 
as adrenocortical dysplasia protein homolog, 
are both classified as genes with rare patho-
genic high-penetrance variants. Together with 
POT1, they form a gene group with protein prod-
ucts needed to assemble the shelterin com-
plex, thus regulating the telomeric end of the 
linear chromosomes [8].

ACD contains a POT1 protein binding domain 
and is therefore involved in preventing an early 
degradation of the single-stranded DNA by 
adhering the shelterin complex to the DNA [9].

TERF2IP has a contrary effect on DNA regula-
tion by preventing excessive elongation of the 
telomeric region. For pathogenic TERF2IP vari-
ants, early melanoma onset as young as 15 
years of age has been described [9]. Generally, 
an early onset and multiple primary melano-
mas, are typical for pathogenic ACD and 
TERF2IP variants [8].

Associated cancers, other than superficial 
spreading melanoma and lentigo maligna mela-
noma, are breast cancer, ovarian cancer, cervi-
cal cancer, uterine cancer, thyroid cancer, colon 
cancer, lung cancer, renal cancer, urinary can-
cer, prostate cancer, esophageal cancer, lym-
phoma, leukemia, and possibly others [8, 30].

Genes with medium-penetrance variants

Historically, there has been a general percep-
tion that there is a clear distinction between 
hereditary tumors with singular high-pene- 
trance pathogenic variants and spontaneous 
somatic mutations. Several studies, including 
Lu et al. (2014), have shown that there is an 
underlying polygenic inheritance even for spon-
taneous tumors, including non-hereditary mel-
anoma [31]. Genes with medium-penetrance 
variants might be a part of this polygenic in- 
heritance, not by causing cancer development 
directly, but in a combination reaching a thresh-
old that could lead to tumorigenesis. Further- 
more, medium-and low-penetrance gene vari-
ants are much more common than their high-
penetrance counterparts [9].

TERT (Telomerase reverse transcriptase): TERT 
is a medium-penetrance gene on chromosome 
5p15 [8, 9, 27]. There have only been a few 
findings of hereditary pathogenic variants, 
mainly in the promoter region of TERT. In con-
trast, up to 70% of somatic mutations in this 
gene lead to tumorigenesis [9, 30].

It is thought that genes protecting and regulat-
ing telomeric regions contribute to approxi-
mately 1% of hereditary melanoma cases [27]. 
TERT is a part of these genes. The combined 
protein product of TERT and TERC (telomerase 
RNA component) is the telomerase reverse 
transcriptase as part of the telomerase com-
plex. This complex is needed to manage the 
length of the telomeric regions at each end of 
the chromosome to prevent early replicative 
senescence [9, 30].
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Pathogenic variants in TERT and TERC lead to 
disproportional elongation of the telomeric 
region, thus increasing melanoma and various 
cancer risks. They are also distinctly associat-
ed with superficial spreading and nodular mela-
noma [32]. 

Other associated cancers include breast, bron-
chial, ovarian, bladder, and renal cell cancer 
[30]. In addition to TERT and TERC, the two 
genes OBFC1 and RTEL1 are also discussed  
in the spectrum of telomere regulation and 
increased cancer risk [32].

MC1R (Melanocortin 1 receptor gene): MC1R is 
a medium-penetrance gene found on chromo-
some 16. Usually, the inheritance shows an 
autosomal recessive pattern; however, a domi-
nant-negative effect on wild type alleles has 
also been described. It has been shown that 
inheriting any single pathogenic variant in 
MC1R can lead to a 28% higher risk of develop-
ing melanoma [9].

A common feature shared by MC1R, MITF 
(microphthalmia-associated transcription fac-
tor) and SLC45A2 (solute carrier family 45 
member 2) is that they are all part of a wider 
gene subgroup affecting tanning ability and 
skin pigmentation [9].

As its name indicates, MC1R encodes the mel-
anocortin-1 receptor, which is a G protein-cou-
pled receptor, triggering a signaling cascade 
when activated through the binding of α-me- 
lanocyte stimulating hormone (α-MSH) or UV 
radiation [9, 30]. This cascade runs via adenyl-
ate cyclase, increasing intracellular cAMP lev-
els, microphthalmia-associated transcription 
factor (MITF), and tyrosinase. At the cellular 
level, this leads to the growth of melanocytes 
as well as melanization by shifting the produc-
tion to darker UVB-ray-protecting eumelanin 
instead of brighter non-UVB-protecting pheo- 
melanin. Other effects include dendrite for- 
mation, the development of the specific den-
dritic shape of melanocytes, which is needed to 
distribute melanins to neighboring keratino-
cytes, and roles in DNA repair [9].

Variants can lead to a reduced receptor density 
on the cells, thus also leading to a specific phe-
notype with the traits of red hair, fair skin, freck-
les, reduced tanning ability, and consequently, 
an increased risk of melanoma due to UV sen- 
sitivity [30]. There are two types of variants.  

R alleles are highly affiliated with the red hair 
color (RHC) phenotype, with which r alleles are 
less strongly associated [9].

A reduced tanning ability would be the simplest 
explanation for increased tumor rates. However, 
Caucasian patients with darker skin pigmenta-
tion have a higher melanoma risk when inherit-
ing a pathogenic MC1R variant than their red 
hair colored counterparts. This leads to the 
conclusion that skin pigmentation processes 
are not the only drivers in this scenario, but also 
other regulatory mechanisms in the cell that 
are mediated by MC1R [9].

In addition to the upper body, which is usually a 
primary site of melanoma, it has been observed 
that the upper extremities are an affected site 
if pathogenic MC1R variants are present [30]. 
In addition, pathogenic variants of MC1R have 
been found to predispose to congenital me- 
lanocytic nevi, subsequently leading to an 
increased risk of melanoma as a complication 
[33].

MITF (Microphthalmia-associated transcription 
factor): MITF is a gene found on chromosome 3 
with a single medium-penetrance pathogenic 
variant, p.E318K [8, 9]. Approximately 1% of 
Europeans have inherited this variant, which is 
believed to increase melanoma susceptibility 
by 3 to 5-fold or 8 to 31-fold if the family anam-
nesis is positive for pancreatic or renal cell can-
cer, respectively [30].

MITF is a part of the Myc proto-oncogene group 
and a key gene in the regulation and growth of 
melanocytes. The same-named protein prod-
uct is believed to be a transcription factor for 
37 genes in this cell type [9, 30]. MITF and 
other transcription factors are regulated by 
small-ubiquitin-like modifier proteins (SUMO) 
[9].

Research has shown that a specific pathogenic 
variant, MITF p.E318K, which leads to the sub-
stitution of glutamic acid with lysine at position 
318, reduces the ability to bind to SUMO pro-
teins, thus increasing cell cycle activities such 
as differentiation, proliferation, and survival of 
the melanocytic cells, making it a gain-of-func-
tion mutation [30]. The risk of melanoma is 
increased because the variant has a regulatory 
effect on 17 of the 37 genes regulated by MITF 
[9].
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A specific phenotypic observation for the MITF 
p.E318K variant is non-blue eye color, darker 
hair, yet fair skin [9, 30]. Familial atypical mul-
tiple mole-melanoma (FAMMM) and an elevat-
ed number of nevi are also associated with this 
variant [13].

Next to malignant melanoma, which may be 
nodular, amelanotic, and more thickened than 
usual, the pathogenic MITF variant is also asso-
ciated with renal cell cancer, as MITF also acti-
vates hypoxia-inducible factor 1A (HIF1A) [30].

SLC45A2 (Solute carrier family 45, member 2): 
SLC45A2 is a gene found on chromosome 5 
with medium-penetrance variants linked to 
cutaneous melanoma (CM) [9].

With seven exons, the gene codes for a 530 
amino acid protein membrane-associated 
transporter of the melanosome—cellular organ-
elles for the production of melanins [3, 34]. 
This transporter is thought to regulate, process, 
and transport proteins needed in the melano-
some, for example, tyrosinase [9].

In addition to findings in regards to hereditary 
melanoma, SLC45A2 variants also frequently 
undergo research in terms of general skin pig-
mentation and oculocutaneous albinism [35].

In various cases, the cutaneous melanoma-
associated variant rs16891982 (p.L374F) has 
been associated with a protective role against 
the disease. Furthermore, the variant is associ-
ated with a phenotype of olive up to darker skin 
color, yet it also maintains its protective role for 
persons with fair skin coloration. The variant  
is found mostly in Southern Europe, with a 
decreasing gradient towards Northern Europe 

[9]. This finding is in discussion as other 
SLC45A2 variants have been proposed as mel-
anoma risk factors [34, 36, 37].

Affected genes in melanoma-subordinate syn-
dromes

Pathogenic variants in melanoma-associated 
genes can predispose not only to melanoma, 
but also to a variety of specific cancers, which 
often derive from a specific tumor cluster and 
thus can be defined as a mixed cancer syn-
drome (MCS) or melanoma tumor syndrome [1]. 
These syndromes can manifest themselves as 
melanoma-dominant, with pathogenic variants 
in CDKN2A, CDK4, BAP1, MITF, and POT1, or  
as melanoma-subordinate syndromes. Table 1 
provides a summary of the latter [18].

Candidate genes

Only a few genes with high-penetrance variants 
associated with malignant melanoma have 
been identified, leading to the presumption 
that most cases of hereditary melanoma carry 
various low-risk gene alterations and other 
genetic modifiers [9].

Aside from the high-and medium-penetrance 
variants in the established genes described 
above, several genome-wide association stud-
ies (GWAS), for example mentioned in the study 
of Landi et al. (2020), have found a high num-
ber of loci associated with melanoma and its 
phenotypic associations such as pigmentation, 
tanning ability, and nevus count [9, 38]. Af- 
fected genes can also participate in DNA re- 
pair or regulation of the telomeric regions [38, 
39]. Table 2 provides an overview of candidate 

Table 1. Melanoma-subordinate syndromes
Syndrome name Main pathology Affected genes Reference
Werner syndrome Accelerated aging WRN [57, 58]

BRCA1- and BRCA2-associated hereditary breast and 
ovarian cancer syndrome (HBOC)

Breast and ovarian cancer BRCA1, BRCA2 [59]

PTEN hamartoma tumor syndrome (PHTS) with its 
subform Cowden syndrome

Hamartoma, macrocephaly, gastrointestinal pol-
yposis, lipoma, intellectual disabilities, disorders of 
the autism spectrum and increased cancer risk

PTEN [18, 60]

Lynch syndrome
Alternatively, hereditary non-polyposis colorectal cancer 
syndrome (HNPCC)

Colorectal, endometrial, and ovarian cancer MLH1, MSH2, 
MSH6, PMS2, 
EPCAM

[57, 61]

Li-Fraumeni syndrome (LFS)
Alternatively, sarcoma, breast, leukemia, and adrenal 
gland syndrome (SBLA)

Adrenocortical carcinoma, breast cancer, central 
nervous system tumors, osteosarcoma, soft-tissue 
sarcoma

TP53 [57, 62]

Xeroderma pigmentosum Non-melanoma skin cancers XPA, XPB, XPC, XPD, 
XPF, XPG, POLH

[18, 63]



Melanoma susceptibility update

78	 Int J Mol Epidemiol Genet 2021;12(5):71-89

genes that can harbor single or multiple low-
penetrance germline variants associated with 
melanoma and its risk factors. These candi-
date genes were also visually displayed as a 
gene network analysis in Figure 3.

Polygenic risk scores (PRS)

Several genome-wide association studies 
(GWAS) have identified thousands of possible 
pathogenic loci with low susceptibility to mela-
noma. This can lead to possible embedding of 
polygenic risk scores with their weighted sum 
of low-risk variants into clinical application to 
improve risk prediction [40, 41]. Several poly-
genic risk scores have been developed for mel-
anoma, which show increased sensitivity com-
pared to regular phenotypic risk scores com-
prising of skin, eye and hair color, freckle and 
nevi number, environmental factors, and mono-
genetic predisposition. So far, these proposed 
polygenic risk scores are made up of 11-204 
SNVs, with most of the scores containing 
between 11 and 45 examined SNV locations 
[42].

Noteworthy PRS findings due to their high odds 
ratios (OR) for high-risk groups were published 
by Potjer et al. (2021) and Bakshi et al. (2021), 
with maximum OR values of 5.70 and 3.66, 
respectively [43, 44]. The PRS was significantly 
higher in patients with multiple primary mela-
nomas (MPM) than in those with single primary 
melanomas (SPM). However, PRS values were 
slightly, although not significantly lower in fami-
lies with a higher than average cancer burden, 
probably due to the possible presence of a 
more dominant, still unidentified, family-specif-
ic single pathogenic variant [44]. Graff et al. 
(2021) also found a link between melanoma 
and cancer of the oral cavity and pharynx, while 
analyzing several cancer PRS and their possi-
ble pleiotropy [45].

PRS for skin cancers are not currently in clinical 
use, although some show equally good sensitiv-
ity rates as polygenic risk scores for prostate, 
lung, or breast cancer, which are commonly 
included in regular gene panel testing [40, 42]. 
It has to be mentioned that until now, GWAS  
for melanoma have only been conducted in 

Table 2. Melanoma susceptibility candidate genes
Affected mechanism or  
pathology

Candidate genes Reference

Pigmentation and tanning ability ADAM15, AGR3, ASIP, CDKAL1, CYP1B1, DSTYK, FOXD3, GBA, GPR98, HDGFL1, 
IRF4, KIAA0930, MAFF, MCF2L, MED13L, MFSD12, MSC, MX2, OCA2, HERC2, 
PLA2G6, PPARGC1B, RP11-383H13.1, SOX6, TYR, TYRP1, ZBTB7B

[8, 9, 38, 39, 42]

Nevus count AGR3, AKAP12, ASAP1, ATM, CASP8, CBWD1, CDH1, CYP1B1, DTNB, DTNBP1, 
FNM1, FTO, GDI2, HDAC4, HDGFL1, IRF4, IRX6, KIAA0930, KIAA1239, KLF4, MAFF, 
MFSD12, MKLN1, MSC, MTAP, OBFC1, PARP1, PLA2G6, PPARGC1B, RAPGEF1, 
RP11-383H13.1, SOX6, SYNE2, TFAP2B, TMEM38B (intergenic), TP53, ZFP36L1

[9, 38, 39]

Dysplastic nevi CDK6, XRCC1 [64]

Epidermal development CASP8 [42]

DNA repair ATM, ERCC2, ERCC4, PARP1 [9, 39, 42, 65]

Telomere length and maintenance CLMPT1L, MPHOSPH6, OBFC1, RETL1, TERT, TINF2 [38, 42, 66]

Cell-cycle progression ATM, CCND1, CDK10 [42]

Uveal melanoma ATM, BRCA1, BRCA2, CHEK2, CLPTM1L, CTNNA1, MDB4, MLH1, MSH3, MSH6, 
PALB2, PMS1, SMARCE1, TDP1, TP53

[26, 67-71]

Single primary melanomas (SPM) CYP1B1 [72]

Multiple primary melanomas (MPM) MGMT (protective), PIK3CA, SPI1 (protective) [72-74]

Melanoma (not further specified) ACD, ACTRT3, ADTRP, AHNAK, AKAP12, APOBEC3A/3B, ARHGEF40, ARNT/SETDB1, 
ATM, BACH2, BRCA2, BRD9, BRIP1, CASP8, CBWD1, CCND1, CDC91L1, CDH23, 
CDKAL1, CDKN2B, CTSK, DLG2, DNAJB4, DOT1L, EBF3, EZH2, FABP2, FAM160B2, 
FAT3, FTO, FZD4, GATA2, GNA11, GOLM1, HAL, HERC2, HLA-DQB2, IKZF2, IL1RN, 
IRF/EXOC2, LASS2ANXA9, LMO3, LMO7, MAP3K1, MARK3, MCL1, MET, MGMT, 
MSH2, MTAP, MTH7B, MX2, MXI1, NEK11, NGLY1, NIPAL3, OCA2, PAH, PALB2, 
PARP1, PIGU, PLA2G6, POLE, PPFIBP2, PRKDC, PROSER2, PRSS23, PTPN14, 
RAD50, RAD51B, RAPGEF5, RASA3, RB1, RP11-256L6.3, RREB1, SDHA, SLC24A5, 
SLCO4C1, STK11, TMEM135, TMEM136, TMEM163, TYR, TYRP1, WRN, XRCC3

[8, 9, 36, 39, 42, 
54, 65, 72, 75-97]

Copy number variation (CNV)-associated susceptibility: ACBD3, ACDK3, AK055856, 
ANGPT1, BC032899, BC039356, CABC1, CDC42BPA, CDKN2A, CLP-36, CXCR4, 
E2F1, GBE1, GCNT2, IDH1, ITPKB, HIST1H1B, KIAA1296, LIN9, MIXL1, PARP1, 
PDE5A, PDLIM1, PSEN2, SORBS1, SPOPL, STUM, ZNF517

[98-100]
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Western populations and that participating 
patient numbers were limited [42]. In this con-
text, Zhang et al. (2020) predicted that consid-
erably increasing sample numbers could lead 
to a 40% reduction in missing hereditability of 
GWAS and at the same time, improve PRS qual-
ity [41]. Another effort to advance research in 
the field of low-penetrance variant risk predic-
tion is found in the “Cancer PRSweb” project,  
a database systematically collecting publicly 
available PRS data and currently evaluating it 
against the biobanks of Michigan Genomics 
Initiative and UK Biobank [46].

Gene interactions

The epistasis of gene variants can affect mela-
noma susceptibility. It has been found that pa- 
thogenic MC1R variants have a direct positive 

E318K variant require additional genetic risk 
factors and a high PRS may represent these. 
They hypothesized that this might also be true 
for other medium-penetrance variants [44].

Constitutional epigenetics

As a newer field in genetics, epigenetic altera-
tions have been widely researched with regard 
to somatic melanoma mutations. In the last few 
years, there has also been an effort to prove a 
statistical association between constitutional 
epigenetic changes associated with hereditary 
melanoma, either with or without present pa- 
thogenic DNA variants [49]. The focus of these 
studies was mostly on hypo- and hypermethyl-
ation. Other mechanisms of epigenetic change 
may include chromatin remodeling, histone 
modifications and regulation by non-coding 
RNAs [12, 50-52].

Figure 3. Melanoma susceptibility candidate genes grouped by molecu-
lar function. We used the ClueGO framework (Version 2.5.8) in Cytoscape 
(Version 3.8.2) to visualize a gene network analysis of melanoma suscep-
tibility candidate genes [101, 102]. Colors represent affiliations to gene 
groups with similar molecular functions. The node size and leading GO 
term were based on the gene quantity per term. GO term fusion was ap-
plied.

effect on the penetrance of 
pathogenic CDK2NA variants. 
There have been other results 
on epistatic interactions bet- 
ween SLC45A2 and VDR (vita-
min D receptor), MC1R and TYR 
(tyrosinase), as well as TERF1 
(telomeric repeat binding factor 
1) and AFAP1L2 (actin filament 
associated protein 1 like 2), with 
the last-mentioned pair further 
confirming a connection bet- 
ween telomere length and mela-
noma risk [9, 39]. Sangalli et  
al. (2017) discovered a sex-spe-
cific genetic interaction. Men 
who carry the RNASEL rs486- 
907 A allele, as well as the C 
allele of miR-146a rs2910164, 
have a higher risk of develop- 
ing malignant melanoma [47]. 
Wu et al. (2018) suggested two 
clusters with five and 17 genes, 
respectively, leading to an in- 
creased melanoma risk due to 
their epistatic interactions al- 
though their findings need fur-
ther statistical validation [48]. 
Furthermore, while doing a stu- 
dy on a polygenic risk score 
(PRS) for a Dutch population, 
Potjer et al. (2020) discovered, 
that in order to develop melano-
ma, carriers of the MITF p.
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The most recent genome-wide association 
study (GWAS) by Salgado et al. (2020) did not 
find any support for heritable epimutations as a 
cause of familial melanoma. However, they 
studied a small group, which spanned only five 
families from the Netherlands where melano-
ma occurred throughout the ancestral tree 
[52]. In addition, no specific promoter methyla-
tion events were found by Boru et al. (2019) 
regarding uveal melanoma in melanoma-prone 
families or by Hyland et al. (2013) for the pro-
moter region of LINE-1 (long interspersed 
nuclear element-1) in cutaneous melanoma 
[49, 50].

In contrast, several other studies have shown 
significant changes in methylation patterns in 
peripheral blood cells, as surrogate cells, and 
subsequently proposed a possible link between 
epigenetic alterations and the risk of melano-
ma [11, 12]. Pergoli et al. (2014) studied periph-
eral blood mononuclear cells (PBMCs) as non-
tumor substitution cells. They suggested a pos-
sible link between germline (constitutional) 
epimutations and the risk of cutaneous mela-
noma, although they could not exclude the 
roles of environmental factors and somatic epi-
mutations. They observed that controls carry-
ing dysplastic nevi were more likely to show 
decreased methylation levels of TNF-α and 
hTERT. Cutaneous melanoma itself was associ-
ated with increased methylation of the TNF-α 
promoter and the transposable element ALU. 
Increased methylation of CDKN2A/p16 and 
MLH1 in PBMCs was found to be associated 
with cutaneous melanoma [12]. Cappetta et al. 
(2015) discovered a statistically viable link 
between DNA hypomethylation in leukocytes, 

melanoma, and breast cancer [53]. Hyland et 
al. (2014) found statistical evidence that con-
stitutional hypomethylation and increased ex- 
pression of TNFRSF10C in blood DNA might be 
associated with cutaneous melanoma. Their 
study included CDKN2A variant positive and 
negative cases [11]. In contrast to Pergoli et al., 
there was no evidence that constitutional epi-
genetic changes in CDKN2A might play a role in 
cutaneous melanoma susceptibility, however, 
interestingly TNFRSF10C hypomethylation only 
occurred in CDKN2A pathogenic variant-free 
probands [11]. The first epigenome-wide asso-
ciation study (EWAS) related to melanoma risk 
factors was performed by Roos et al. (2017), 
who showed that several differentially methyl-
ated regions are associated with a higher ne- 
vus count and melanoma risk. The top-ranked 
regions involved strong enhancers in melano-
cyte biology such as RAF1 and CTC1. In cis, dif-
ferentially methylated regions in known GWAS 
SNVs, for example, in PLA2G6 and NID1 were 
associated with increased nevus count, and in 
MC1R, MX2, and TERT/CLPTM1L with melano-
ma risk [54]. The epigenetic findings from the 
studies mentioned above are shown in Table 3 
and Figure 4.

Overall epigenetic research in melanoma has 
advanced more towards markers for detec- 
tion and management of malignant melanoma. 
However, for treatment prognosis, Cortellini et 
al. (2018) showed that patients with a variety of 
hereditary cancers, including melanoma, had a 
significantly better response to treatment, an 
increased time to treatment failure, and a bet-
ter overall survival rate [55].

Table 3. Constitutional epigenetic changes of specific genes and melanoma susceptibility

Study Gene methylation associated with  
melanoma risk factors

Gene methylation associated with cutaneous 
melanoma Reference

Pergoli et al. (2014) DYSPLASTIC NEVI
Positive: ALU 
Negative (protective): hTERT, TNF-α

Positive: CDKN2A/p16, MLH1, TNF-α and with lower nevi 
count (<20), ICAM-1 and ALU can also be associated 
with cutaneous melanoma
Negative (protective): CDK4, yet positively associated 
with higher nevi count (>20)

[12]

Hyland et al. (2014) - Hypomethylation of TNFRSF10C (occurred only in pro-
bands without CDKN2A pathogenic variants)

[11]

Cappetta et al. (2015) - Widespread non-gene specific DNA hypomethylation in 
leukocytes (also valid for breast cancer)

[53]

Roos et al. (2017) HIGH NEVUS COUNT
Hypermethylation: ARRDC1, FAM107B, KCNN4
Hypomethylation: CTC1, GABRB3
Unspecified DNA methylation changes: NID1, 
PLA2G6, RAF1, STUM, ZSWIM2

DNA methylation changes in ACTRT3, ANXA9, ARNT, 
ASIP, ATM, CASP8, CDC91L1, DKN2A, CLPTM1L, CTSK, 
DOCK3, EYS, FTO, LASS2, MC1R, MCL1, MX2, NR, 
PARP1, PLA2G6, SETDB1, SLC45A2, TERT, TET2, TYR

[54]
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Discussion

In analyzing scientific work, mostly from the last 
five years, this review aimed to collect and sum-
marize all available up-to-date knowledge on 
genetic and epigenetic pathomechanisms of 
melanoma susceptibility.

Findings and recommendations indicate that 
the scientific achievements of the previous 
years can be used in two ways; either to reduce 
mortality rates through better genetic and thus 
clinical screening for this cancer type, or, sec-
ond, to increase chances of better treatment 
outcome through personalized medicine, rely-
ing on genetic and epigenetic markers.

We expected to find genome-wide association 
studies resulting in the discovery of several 
high-or medium-penetrance germline variants. 
However, research has shown that malignant 
melanoma is a cancer that is most likely to 
develop not only due to high-penetrance vari-
ants but also due to polygenic inheritance pat-
terns, leaving no clear division between the 
hereditary and sporadic development of tu- 
mors [9, 31]. As a result, there were noticea- 
ble early changes in genetic testing. Previously, 

only a few single genes were tested clinically. 
Today, polygenic risk scores (PRS) for malignant 
melanoma are in development, showing equally 
good sensitivity rates to those for prostate, 
lung, or breast cancer, which are commonly 
included in regular gene panel testing. These 
polygenic risk scores contain, in addition to 
high-penetrance variants, a wide array of pa- 
thogenic low-and medium-penetrance germline 
variants that are being tested [31, 40, 42]. To 
make polygenic risk scores for melanoma via-
ble for clinical use, larger biobanking, studies 
on wider and higher variety of populations, and 
validation of risk prediction reliability are nec-
essary [42].

Genetic testing for melanoma risk could be 
especially beneficial to teenagers and young 
adults, as intensified screening can detect le- 
sions early [7, 56]. In addition, a negative test 
result after genetic testing can provide partial 
relief to especially anxious family members [1].

Unsurprisingly, several pathogenic variants in- 
crease susceptibility to melanoma in fair-skin- 
ned patients. Despite this, specific germline 
variants, which are associated with increased 
melanoma risk, have been found in patients 

Figure 4. Constitutional epigenetic changes of specific genes associated with melanoma and its risk factors.  
Me: methyl group.
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with a darker skin type [9]. Generally, risk group 
patients harboring pathogenic germline altera-
tions should undergo more frequent dermato-
logical check-ups, as better treatment out-
comes often follow early lesion detection. It is  
a common motivation to support intensified 
genetic testing, as this could be a method to 
increase the productive years of affected indi-
viduals and possibly lower the financial burden 
on healthcare systems.

Limitations to findings in studies on melanoma 
susceptibility are the few studies, small popula-
tion sizes, and the lack of ethnic diversity. 
Studies are mostly undertaken in Western 
countries of the Northern Hemisphere, as well 
as in Australia. 

In conclusion, further studies with larger popu-
lations and a wider variety of ethnicities and 
diverse geographical areas are recommended. 
It would also be advisable to endeavor this in 
the form of partnerships between several insti-
tutions to create bigger datasets, thus hope-
fully finding additional genetic patterns with 
increased accuracy. As previously mentioned, 
this could lead to improved prediction of mela-
noma susceptibility, which is most likely appli-
cable through advanced polygenic risk scores. 
The use of advanced risk scores, consisting of 
PRS, genetic, epigenetic, and phenotypic risk 
factors, could be favorable, especially for coun-
tries that lack infrastructure for satisfactory 
melanoma screening programs [40].
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