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Abstract: COVID-19 vaccination, both in healthy individuals and those with comorbid medical disorders, has proven
highly effective in mitigating critical disease progression and mortality rates. Nevertheless, although rare, induction
of autoantibodies and new-onset autoimmune conditions in apparently healthy individuals receiving COVID-19 vac-
cination have been documented. These autoimmune phenomena can be broadly classified into organ-specific auto-
immune disorders (e.g., subacute thyroiditis (SAT)) and systemic autoimmune disorders, with many being generally
transient (e.g., vaccine-induced thrombotic thrombocytopenia (VITT)) and others causing chronic disability (e.g.,
systemic vasculitis). Recent studies have highlighted significant associations between COVID-19 vaccine-associated
autoimmunity and human leukocyte antigen (HLA) loci. For example, HLA class | alleles such as HLA-B*35 and
HLA-C*04 have been associated with COVID-19 vaccine-induced SAT, while HLA class Il alleles, including HLA-
DRB1*11:04, HLA-DQA1*05:01, HLA-DQB1%02:01, and HLA-DPB1*17:01, have been linked to VITT. This review
synthesizes the reported associations between classical HLA loci and COVID-19 vaccine-induced autoimmunity,
providing insights into potential mechanisms and clinical implications.
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Introduction ous Al diseases, including alopecia areata,
psoriasis, rheumatoid arthritis, autoimmune

Vaccination is a cornerstone of infectious dis- glomerulonephritis, and autoimmune hepatitis

ease control, with COVID-19 vaccines signifi-
cantly reducing morbidity and mortality world-
wide [1]. These vaccines utilize three princi-
pal technological platforms: replication-incom-
petent adenoviral vectors (e.g., Johnson &
Johnson and AstraZeneca), messenger RNA
(mRNA) (e.g., Moderna and Pfizer vaccines),
and inactivated virus (e.g., Sinopharm and
Sinovac).

While the efficacy and safety of COVID-19 vac-
cines are well documented, post-vaccination
immune-related complications, including the
development of autoimmune (Al) manifesta-
tions, have been reported in a small number of
healthy individuals as well as in those with pre-
existing Al conditions [2]. Al responses may
range from the transient production of auto-
antibodies (AutoAbs) without clinical manifes-
tations to an increased risk of developing vari-

[3, 4].

The mechanisms underlying AutoAbs induction
and Al phenomena in a small subset of indivi-
duals, as opposed to others, remain unclear.
Since antigen presentation and T-cell activation
are central to initiating autoantibody production
[5] and tissue infiltration by autoreactive cyto-
toxic T lymphocytes (CTL) [6, 7], polymorphisms
in human leukocyte antigen (HLA) molecules
may partly explain inter-individual variation in
vaccine responses. Across various ethnic po-
pulations, several investigations have docu-
mented associations between HLA alleles and
vaccine-induced Al conditions, such as sub-
acute thyroiditis (SAT) [8, 9], type 1 diabetes
mellitus (T1DM) [10], and polymyalgia rheumat-
ica (PMR) [11]. HLA variations have also been
recognized as an important factor of COVID-19
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vaccine immunogenicity, influencing both pro-
tective adaptive immune reactions and sy-
stemic inflammatory adverse effects such as
fever, chills, and fatigue [12-14]. In addition to
HLA genetic predisposition, non-genetic factors
such as older age [15], frailty [16], and comor-
bidities [17] may further modulate immune
responses triggered by COVID-19 vaccines,
thereby contributing to variability in the risk of
developing Al phenomena.

This review synthesizes the reported associa-
tions between classical HLA loci and COVID-
19 vaccine-induced autoimmunity, providing
insights into potential mechanisms and clinical
implications.

Overview of HLA genes and molecules

HLA gene loci fall into three main classes, each
with distinct features. HLA class | region (HLA-I)
includes three classical genes coding for HLA-I
alpha (x)-chain (HLA-A, HLA-B, and HLA-C).
HLA-I molecules acquire cytoplasmic peptides
generated via the breakdown of intracellular
proteins by the proteasome. The complex of
transporter associated with protein processing
(TAP) subsequently facilitates HLA-l/peptide
complex translocation into the endoplasmic
reticulum. After glycosylation within the Golgi
apparatus, these complexes are migrated to
the cell membrane, enabling CTL to recognize
displayed peptides. CTL epitopes are typically
short peptides of 8-11 residues. The class Il
(HLA-II) region includes three classical genes
coding for HLA-l o and beta (B) chain (DR, DP,
and DQ). These molecules acquire peptides
from exogenous pathways and present them
on the surface of myeloid dendritic cells (DCs),
the principal innate professional antigen-pre-
senting cells, thereby allowing naive CD4* T
lymphocytes to recognize these peptides. This
interaction drives their activation into several
subpopulations of T helper (Th) lymphocytes,
including follicular Th lymphocytes, Thl lym-
phocytes, Th2 lymphocytes, Thl7 lymphocyt-
es, and regulatory T lymphocytes (Tregs). CD4*
T-cell epitopes are typically long peptides of
13-20 residues.The class 1l region encodes
proteins implicated in immune regulation and
complement pathways.

Because these genes are complex and extre-
mely polymorphic with over 35,000 alleles doc-
umented until now [18], they appear to be the
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most important factor in the susceptibility to Al
disorders [19-21] and other side effects [14]
after COVID-19 vaccination. Vaccines, including
those for influenza, Bacille Calmette-Guérin,
and hepatitis B (HBV) can also trigger Al condi-
tions through interactions with HLA molecules
[11, 22-24]. HLA-I and Il genes, along with non-
HLA immunogenetic determinants, contribute
to the modulation of both CTL and antibody (Ab)
responses triggered by vaccines against influ-
enza, HBV, and SARS-CoV-2 [25-28]. Another
important feature of the HLA system is the
transmission on haplotypes. Different loci of
the HLA-I and Il regions, though located in dis-
tinct genomic regions, are inherited together
more often than random chance would sug-
gest, except for the HLA-DP loci. Significant
linkage disequilibrium (LD) was observed ac-
ross all HLA loci, with notable linkage in con-
served haplotypes, particularly between the B
and C loci in HLA-I, and the DRB1 and DQB1
loci in HLA-II, likely due to their close genomic
proximity. Research has revealed correlations
between DR-DQ haplotypes and immune re-
sponses after the second dose of various vac-
cines. In particular, HLA-II haplotypes are cru-
cial for presenting vaccine epitopes and influ-
encing immune responses, including cytokine
production, across diverse racial and ethnic
groups [29, 30].

HLA-peptide binding groove contains multiple
distinct pockets or cavities (generally six or
more) that are preferentially located in the
B-pleated sheet forming the floor of the groove,
interacting with specific amino acid (aa) side
chains from peptides. Because these pockets
are lined by aa residues, which differ from one
HLA molecule to another, they appear to be the
most important factor in the specificity of pep-
tide binding.

HLA variation and COVID-19 vaccine response

All currently licensed COVID-19 vaccines are
designed to target the spike (S) glycoprotein, a
critical component that facilitates the transfer
of the SARS-CoV-2 viral genome inside alveolar
epithelial cells. These vaccines induce protec-
tive immunity, mainly via neutralizing antibod-
ies (nAbs) that play an important role in reduc-
ing SARS-CoV-2 infection severity and mortality
[31]. However, some subjects, particularly un-
infected individuals with comorbidities, fail to
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Figure 1. The Role of HLA alleles in immune responses to COVID-19 vaccination. A. Higher nAb levels are associ-
ated with the HLA alleles A*02:01 and B*40:01, while DRB1*15:01 and DQB1*06:02 are associated with higher
IFN-y production, indicating a stronger Th1-mediated immune response. B. Lower nAb levels are linked to alleles
such as A*33:03 and B*08:01. Specific HLA haplotypes, including A*24:02-B*18:01-C*07:01-DRB1%11:04, are
associated with lower antibody titers. COVID-19: Coronavirus Disease 2019; HLA: Human Leukocyte Antigen; CTL:
Cytotoxic T Lymphocyte; nAb: Neutralizing Antibodies; SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus

2; IFN-y: Interferon-Gamma; Th1: T helper 1.

achieve sustained protective titers of nAbs
after SARS-CoV-2 vaccination, necessitating
booster doses [32]. Moreover, 5-10% of immu-
nologically competent subjects do not achieve
protective levels of anti-HB surface Abs (= 10
mlU/mL) following standard HBV immuniza-
tion regimens [33]. Genetic differences in HLA
genes and haplotypes significantly contribute
to interindividual variability in immune respons-
es elicited by vaccines [12, 34-37]. This section
summarizes the immunogenetic correlations
between HLA alleles and haplotypes and the
variability in immune reactions to COVID-19
vaccines in apparently healthy people and
patients with Al diseases.

HLA alleles and COVID-19 vaccine response in
apparently healthy people

An expanding body of research is currently
exploring the influence of HLA-I and HLA-II
alleles on Ab and T cell responses to COVID-19
vaccinations in apparently healthy individuals
across diverse populations. Specifically, certain
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HLA-I alleles, including A*33:03, B*08:01,
B*18:01, B*35:01, B*58:01, and C*07:01, as
well as the HLA-II allele DRB1*01:01, have
been associated with lower levels of nAbs
against S protein [25, 38-40]. Conversely,
other HLA-I alleles, such as A*02:01, A*03:
01, and B*40:01, along with HLA-II alleles
DRB1*03:01, DRB1*07:01, DQB1*06:02, and
DQA1*03:03, have been correlated with higher
nAbs levels following the administration of two
doses of vaccination [12, 25, 37, 40-42] (Figure
1). Additionally, after a single vaccine dose,
the DRB1*04:04 allele has been correlated
with reduced levels of S-specific IgG Abs, par-
ticularly in subjects with a documented past
exposure to infection with SARS-CoV-2 virus
[41]. This finding underscores the complexity
of immune response, suggesting that previous
SARS-CoV-2 infection may influence genetic
impact on vaccine efficacy. Nevertheless, such
associations have not been replicated in other
studies, suggesting that IgG anti-S Ab levels are
influenced by individual characteristics unre-
lated to the HLA context [43, 44].
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Several studies have also linked HLA varia-
tions to differences in Ab response against
other vaccines. For example, within the classi-
cal HLA-I genes, the HLA-B*45:01 allele is
associated with enhanced anti-rubella Ab pro-
duction following two vaccine doses, whereas
the HLA-B*27:05 allele has been linked to
lower 1gG titers [35]. Among HLA-II alleles,
DPA1*02:01 exhibits a relationship with re-
duced IgG responses against rubella, whereas
DPB1*04:01 is linked to elevated Ab levels
after two doses [35]. In addition, HLA-B*7 and
HLA-B*51 alleles have been identified as con-
tributors to seropositivity after a single dose of
measles vaccination, while the HLA-B*8, HLA-
B*13, and HLA-B*44 alleles have been impli-
cated in IgG seronegativity following a single
dose of the measles vaccine [45].

A significant correlation between HLA gen-
es and SARS-CoV-2-specific interferon-gamma
(IFN-y) production, a marker of Thl-mediated
immunity, among healthy subjects following
COVID-19 vaccination has been explored. No-
tably, the allelic frequencies of DRB1*15:01
and DQB1*06:02 have significantly correlated
with IFN-y release following COVID-19 vaccina-
tion [441, 46]. In the same way, the HLA-A loci
have been correlated to IFN-y secretion follow-
ing other vaccines. Ovsyannikova et al. show-
ed that HLA-A*02:01, A*24:02, and A*68:01
alleles are strongly associated with IFN-y pro-
duction in white healthy subjects following the
rubella vaccine [47]. In agreement, another
study suggests that higher levels of IFN-y were
associated with the HLA-A*31:01 allele in
schoolchildren after the second administration
of the mumps, measles, and rubella (MMR)
vaccine [48]. Thus, the genetic variation in HLA
alleles may account for individual differences
in the IFN-y response to COVID-19 vaccination.

Genetic variations of HLA-I and HLA-II alleles
may also have an impact on COVID-19 out-
comes. HLA-DQB1*06 allele is linked to de-
creased susceptibility to breakthrough infec-
tions following vaccination [12]. Indeed, HLA-
B*35:01 and HLA-DRB1*01:01 alleles are cor-
related with reduced duration of COVID-19 [39].

HLA haplotypes and COVID-19 vaccine re-
sponse in apparently healthy people

Associations between Ab responses and
HLA haplotypes have been reported following
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COVID-19 vaccination in healthy subjects. For
instance, the high haplotype frequency of
A*24:02-B*18:01-C*07:01-DRB1*11:04 has
been shown to correlate with reduced anti-S
Ab levels post-vaccination [38]. Moreover, the
DRB1*13:02-DQB1*06:04-DQA1*01:02 haplo-
type is strongly implicated in protecting ag-
ainst seronegativity following the first dose
of the vaccine. However, among seropositive
individuals, this haplotype has also been linked
to an elevated risk of symptomatic COVID-19,
suggesting that the DRB1*13:02 allele may
contribute to severe disease outcomes [13].
This variability in Ab responses, influenced by
HLA haplotypes, is also observed in respon-
se to other viral vaccines. Notably, Nishida
et al. showed that the HLA-DRB1*04:05-
DQB1*04:01 haplotype is linked to decreased
Ab responses to the HVB vaccines [49].
However, no significant correlation was ob-
served between HLA haplotypes and Ab
responses to the mumps vaccine [50].

Polymorphism of antigen processing and CO-
VID-19 vaccine response

Synthesis of HLA-I and HLA-II molecules into
functional complex with antigenic peptides
requires the coordination of multiple steps,
including antigen processing, peptide trans-
port, loading into the HLA peptide-binding
groove, and subsequent expression of HLA/
peptide complex on the cell surface. COVID-19
vaccine-induced immune responses could be
influenced by polymorphisms and expression
levels of genes implicated in antigen process-
ing and presentation pathways. First, the esti-
mated expression levels of the TAP2 and the
proteasome subunit beta type-9 (PSMB9) in
CD16"* neutrophils have been strongly linked to
a lack of Ab response following COVID-19 vac-
cination [13]. Similarly, homozygosity for the
TAP allele has been significantly linked to se-
ronegativity after the measles vaccine [51].
These results suggest that variations in antigen
processing gene expression may contribute to
impaired Ab responses triggered by COVID-19
vaccines. Furthermore, the high variability in
aa residues within the pockets of the HLA pep-
tide-binding groove can partly account for in-
ter-individual variations in COVID-19 vaccine-
induced immune responses. A recent study
involving 100,298 individuals in the United
Kingdom found two genetic correlations: the
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DRB1*13:02 allele and a substitution of argi-
nine by glycine at aa position 71 in the HLA-
DRB1 pocket 4, with Ab levels after either the
first or second dose of SARS-CoV-2 vaccination
[13].

HLA alleles and COVID-19 vaccine response in
patients with Al diseases

Individuals with Al disorders face increased
susceptibility to COVID-19 and reduced vaccine
efficacy due to disease-induced immunosup-
pression and immunomodulatory treatments,
with genetic factors like HLA alleles potentially
playing a role in modulating immune responses
to vaccination. In Japanese individuals with
rheumatoid arthritis (RA), HLA-DRB1*15:01
and HLA-DQB1*06:02 alleles have been relat-
ed to higher concentrations of nAbs against
SARS-CoV-2 post-vaccination, suggesting that
some genetic backgrounds may enhance vac-
cine-induced immunity [42]. However, no simi-
lar association was found between DRB1*15
and the development of multiple sclerosis fol-
lowing COVID-19 vaccination [52].

Non-HLA genetic polymorphisms and CO-
VID-19 vaccine response

The association between cytokine genes and
IgG Ab responses to the S protein in healthy
individuals following COVID-19 vaccination has
been studied. Scola et al. [53] found that poly-
morphisms in specific cytokine genes influen-
ce Ab response levels to the BNT162b2 vac-
cine. In particular, 105 days after receiving the
recombinant RNA vaccination, a significant cor-
relation was observed between elevated anti-S
Ab concentrations and the interleukin-1 recep-
tor 1 (IL-1R1) gene rs2234650. Additionally,
individuals with higher post-vaccination SARS-
CoV-2 Ab levels more frequently exhibit the
IL4 rs2243250 CT genotype. There is also evi-
dence suggesting a link between vaccine-
induced immunity and polymorphisms in cyto-
kines and HLA genes. For example, genetic
factors such as the DRB1*07 allele, single
nucleotide polymorphisms (SNPs) within the
IL-2 and IL-4 cytokine genes, and the IL-12B
gene indel mutations have been independently
linked to HBV vaccine unresponsiveness [26].
Additionally, two variants in the gene of IL-2,
rs2069762, and rs2069763, have been linked
to increased Ab production and enhanced T
cell reactions after vaccination against mea-
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sles [54]. Conversely, rs1800871, rs1800872,
and rs1800890 in the IL-10 gene are linked
to decreased Ab responses following measles
vaccination.

Al disorders attributed to COVID-19 vaccines

Several Al conditions have been observed in
apparently healthy recipients following COVID-
19 vaccination, with females being twice as
likely as males to develop these disorders.
These Al phenomena can generally be subdi-
vided into two groups: organ-specific and sys-
temic Al disorders.

Organ-specific conditions observed in recipi-
ents of the COVID-19 vaccine include mainly Al
hepatitis (AIH) [55, 56], TADM [57-59], Al he-
molytic anemia (AIHA) [60-62], atypical hemo-
lytic uremic syndrome [63], IgA nephropathy
[64-67], and bullous pemphigoid (BP) [3]. The
relationship between COVID-19 vaccination
and the clinical manifestations of these disor-
ders is more conflicting. There is some evi-
dence that the onset of BP in vaccinated
females has been associated with COVID-19
vaccination, suggesting that gender may influ-
ence disease susceptibility [3]. This finding is
further supported by Tomayko et al., who re-
ported that women aged 40 years and older
may be at higher risk of vaccine-associated BP
[68]. Contrary to this, some studies have failed
to replicate these findings and refuted any
association between several Al disorders such
as acute AlH and T1DM, and mRNA COVID-19
vaccines [69, 70]. Consistent with these find-
ings, a Swedish case-control study found no
significant link between T1DM and several vac-
cines, including those for tetanus, smallpox,
rubella, mumps, and pertussis [71].

Systemic Al disorders following COVID-19 vac-
cines may be transient, such as immune th-
rombocytopenic purpura [72, 73] and vaccine-
induced thrombotic thrombocytopenia (VITT)
[74-76]), or they can lead to chronic disabilities,
including systemic lupus erythematosus (SLE)
[77-79], RA [80-82], antiphospholipid syndro-
me (APS) [83, 84], anti-neutrophil cytoplas-
mic AutoAbs (ANCA)-related systemic vasculitis
(AAV) [85-87], and giant cell arteritis (GCA)
[88, 89]. A case-control study utilizing data
from the Korea Disease Control and Prevention
Agency investigated the effects of mMRNA SARS-
CoV-2 vaccines on connective Al diseases [3].
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Analyzing 4,629,401 vaccinated individuals
and 4,629,402 controls revealed no significant
increased risk of most connective Al disorders
following mRNA vaccination. However, a 1.16-
fold elevated risk of developing SLE was ob-
served in association with COVID-19 vaccina-
tion [3]. While most COVID-19 vaccines appear
safe for individuals with pre-existing SLE, re-
ports indicate occasional disease flare-ups fol-
lowing immunization [90]. Additionally, reduced
IgG Ab production and IFNy levels have been
documented in these patients, likely attribut-
able to the frequent administration of immuno-
suppressive and immunomodulatory therapies
and the underlying condition [91, 92].

COVID-19 vaccines have also been shown to
primarily alter the function of the nervous
system and the neuromuscular junction, with
reported conditions including Guillain-Barré
syndrome [93-95], myasthenia gravis [96],
multiple sclerosis [97-99], optic neuritis [100],
acute disseminated encephalomyelitis [101],
acute transverse myelitis [102], and aseptic
meningitis [103].

AutoAbs induced by COVID-19 vaccines

Al conditions can be identified and monitored
effectively by analyzing AutoAbs in conjunction
with clinical symptoms. Like other viral infec-
tions, SARS-CoV-2 has been widely identified as
a potential inducer of the de novo development
of AutoAbs [104], including nuclear AutoAbs
(ANA) [105], antiphospholipid Abs [106], and
type | interferon (IFN-1) Abs [106]. COVID-19
vaccination has also been implicated in autoAb
production, both in healthy subjects and those
with pre-existing Al diseases.

Pathogenic IgG AutoAbs targeting the complex
of platelet-bound factor 4 (PF4) chemokine/
polyanion were generated in subjects vaccinat-
ed with Johnson & Johnson or AstraZeneca
COVID-19 vaccines [107-109]. It is suggested
that PF4/polyanion complex can act as an au-
toantigen, potentially stimulating autoreactive
T cells or impairing the negative selection of
Tregs [5]. In addition, low levels of non-patho-
genic 1gG AutoAbs have been observed in
healthcare workers [74], implying that some
individuals may already have an altered im-
mune tolerance due to prior sensitization. The

21

induction of these AutoAbs following COVID-
19 vaccination was analysed in 831 Dutch
healthcare workers who received mRNA and
recombinant adenovirus SARS-CoV-2 vaccines
[110]. The levels of PF4 AutoAbs remained con-
sistent among individuals who received either
recombinant or mRNA COVID-19, suggesting
that both vaccine types have a non-significant
impact on PF4 antibodies levels in healthy
populations.

Induction of ANA AutoAbs prior to vaccine
administration at 3 and 12 months post-SARS-
CoV-2 immunisation was assessed in 155 med-
ical staff and clinicians immunized with mRNA
vaccines [111]. ANA, AutoAbs against smooth
muscle, citrullinated protein antibodies, ANCA
antibodies, and anti-phospholipid antibodies
were tested. During the study period, 28.57%
of individuals developed de nove ANA following
COVID-19 vaccination. Among these, ANA posi-
tivity appeared to increase with the administra-
tion of additional SARS-CoV-2 vaccine doses:
7.79% were positive after two doses, while 16
subjects (20.78%) were positive after three
doses.

Previous studies have documented transient
emergence of AutoAbs in clinically healthy indi-
viduals following several vaccinations. Marti-
nuc et al. screened for several AutoAbs, inclu-
ding ANA, anticardiolipin/anti-B2-glycoprotein |
(@aCL/B2-GPI), and anti-extractable nuclear anti-
gens Abs pre- and post-vaccination in 85 indi-
viduals who received three doses of HVB vac-
cine [112]. While no systemic rise in autoAb
levels occurred, transient low-to-moderate
aCL/B2-GPI positivity emerged in three partici-
pants at 1 month, resolving by 6 months; one
individual showed progressive anti-B2-GPI ele-
vation without clinical symptoms. Another stu-
dy in 92 healthcare workers receiving non-adju-
vanted influenza vaccines revealed that 15%
and 13% developed new or elevated AutoAbs at
1 and 6 months post-vaccination, respectively
[113]. Persistent elevations (8% of participants)
included progressive IgM aCL or IgA 32-GPI in
two cases, while 11 exhibited transient Ab
spikes. Neither cohort displayed Al disease
manifestations during follow-up, underscoring
that vaccine-triggered AutoAbs rarely correlate
with pathology in non-predisposed popula-
tions.
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HLA variation and COVID-19 vaccine-induced
autoimmunity

SARS-CoV-2 vaccination has been hypothe-
sized to trigger inflammatory and Al respons-
es, particularly in individuals with specific HLA
genes and haplotypes. In this section, an over-
view of the HLA loci associated with Al condi-
tions reported following SARS-CoV-2 vaccines
is presented (Table 1).

HLA and organ-specific Al disorders following
SARS-CoV-2 vaccination

HLA and COVID-19 vaccine-induced AlH

AlH is an Al liver disease primarily mediated by
CD4* T helper (Th) subsets [114], affecting
approximately 1 in every 100,000 individuals
annually worldwide [115]. About 35 patients
with AIH have been documented worldwide in
several ethnic groups after receiving various
types of vaccines against SARS-CoV-2 [116].
The involvement of Th subsets in AIH patho-
genesis is consistent with the strong genetic
associations observed at HLA class Il loci,
particularly HLA-DRB1 [117-120]. Specifically,
DRB1*04:04/05 alleles have been positively
associated with AlH in populations from Me-
xico, Japan, and Argentina, while DRB1*03:
01/04:01 alleles are linked to AlH type 1 in
North American and European groups [121,
122]. Recently, lzagirre et al. [123] reported
that Spanish patients who developed AIH fol-
lowing SARS-CoV-2 vaccination carried DRB1*
03:01 and DRB1*04 alleles, suggesting that
vaccine-triggered AIH may arise in individuals
with the same immunogenetic background that
predisposes to idiopathic AIH. Furthermore,
DRB1 loci have also been correlated to the
prognosis of AIH. Notably, Ueno et al. [124] doc-
umented a severe case of AlH triggered by
SARS-CoV-2 vaccination, with HLA-DRB1 test-
ing confirming the presence of DRB1*04, a
genetic factor predisposing individuals to AlH.
However, Ghielmetti et al. [125] failed to repli-
cate these findings and instead reported the
presence of DRB1*01:01 and DRB1*11:01
alleles in a critical case of Al-like hepatitis fol-
lowing mMRNA SARS-CoV-2 vaccine. Interesting-
ly, DRB1*11:01 may confer a protective effect
against primary biliary cholangitis (PBC) [126].
These findings suggest that certain HLA-DR
molecules may present hepatic autoantigens
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or vaccine-derived peptides that mimic liver
proteins, thereby promoting CD4* T cell activa-
tion and differentiation into different subsets
of Th cells. Th1 cells induce liver damage by
activating CTLs, while Th2 cells promote Auto-
Abs production by autoreactive B cells.

HLA and COVID-19 vaccine-induced myocardi-
tis

COVID-19 vaccine-induced myocarditis (VIM)
has now been recognized as an uncommon Al
disorder [127, 128], particularly affecting young
adult men [128]. Experimental models support
the role of HLA in myocarditis susceptibility, as
non-obese diabetic transgenic mice expressing
HLA-DQ8 spontaneously develop myocarditis
[129]. VIM has been associated with HLA-
DRB1*14:01 and HLA-DRB1*15:03 alleles in
the lIsraeli population [130]. These patients
typically present with a benign and self-resolv-
ing form of VIM [131]. These data suggest that
HLA alleles may influence both VIM suscep-
tibility and progression. In agreement, another
study suggests that HLA alleles may contribute
to variability in disease course. In fact, the HLA-
DQB1*03:03 allele is overrepresented in sub-
jects with myocarditis without cardiac dysfunc-
tion compared to healthy controls [132]. HLA
alleles have also been associated with other
forms of myocarditis. Notably, the HLA-C*07:01
allele has been linked to increased susceptibil-
ity to clozapine-related myocarditis in subjects
with schizophrenia [133]. Interestingly, a tran-
sient increase in the levels of neutralizing
IL-1RA AutoAbs has been observed in these
patients, suggesting a potential role in disease
onset [134-136]. Thus, these findings suggest
that the interaction between HLA class Il mole-
cules and IL-1RA AutoAbs may influence VIM
susceptibility and onset. However, the precise
relationship between HLA alleles and IL-1RA
AutoAbs remains unclear.

Beyond HLA genes, variations in HLA-I ligands
have been associated with VIM susceptibility.
Tsang et al. reported that killer cell immuno-
globulin like receptor (KIR)2DS3 + /KIR2DL5B/
KIR2DS4del + /KIR2DS5 haplotype correlated
with an increased risk of acute VIM among
Chinese adolescent [137], implicating natural
Killer (NK) lymphocytes in its pathogenesis.
Disruption of HLA-I molecules and KIR interac-
tion can enhance NK cell-mediated cytotoxicity,
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Table 1. Reported cases of COVID-19 vaccine-induced autoimmunity and HLA

Type of vaccine HLA Disease Population Reference
Viral vector; mRNA DRB1*03:01, DRB1*04 Vaccine-induced autoimmune Four cases (Spain) Izagirre et al. [123]
hepatitis
mMRNA (three doses) DRB1*04 Steroid-refractory autoimmune One patient (Japan) Ueno et al. [124]
hepatitis after COVID-19 vaccination
mRNA DRB1*01:01, DRB1*11:01 Severe vaccine-induced autoim- One Caucasian patient Ghielmetti et al. [125]
mune hepatitis
mRNA DRB1*14:01, DRB1*15:03 Vaccine-Induced Myocarditis 29 patients and 300 healthy con-  Aharon et al. [130]
trols (Israel)
ChAdOx1 nCoV-19 DRB1*11; DPB1*17:01, Vaccine-induced thrombotic throm-  One patient (Denmark); Sixteen Talbgll Sgrensen et al.
vaccine DQA1*05:01, DQB1*02:01, and  bocytopenia patients (Italy) [144], Petito et al. [141]
DRB1*11:04
mRNA; Inactive vaccine B*35, C*04; A*11-B*35-C*04 Vaccine-induced subacute thyroid- 14 patients, 100 healthy controls Sendur et al. [151],
(CoronaVac) haplotype; A*01, A*03:01, A*11 itis (Turkey); 27 patients, 362 healthy  Sahin et al. [20],
donors (Turkey); Two cases (Poland) Stasiak et al. [155]
ChAdOx1 nCoV-19; DR4, DRB1*09:01 Vaccine-induced ANCA-related sys- 2 cases (Taiwan); 1 case (Japan) Loo et al. [19],
mRNA-1273 (Moderna) temic vasculitis Kawamura et al. [21]
DRB1*15:02 Vaccine-induced glomerulonephritis 1 case (Japan) Nagai et al. [182]
m-RNA; viral vector DRB1*04 Vaccine-induced giant cell arteritis 12 patients (France) Liozon et al. [187]
m-RNA DRB1*04:04 Vaccine-induced polymyalgia rheu- 1 case (Japan) Yokote et al. [190]
matica
m-RNA; viral vector DRB1*03:01, DRB1*04, Vaccine-induced antisynthetase 23 patients (Spain) Garcia-Bravo et al. [197]
DRB1*11:01 syndrome
m-RNA DRB1*04:05:01-DQB1*04:01:01; Vaccine induced-insulin-dependent 1 case (Japan); 1 case (Japan); 1 Sasaki et al. [59], Yano
DRB1*09:01-DQB1*03:03; diabetes mellitus case (Japan) et al. [57], Sato et al.
DRB1*13:02:01-DQB1*06:04:01 [168]
m-RNA DRB1*15:02, DRB1*04:05 Vaccine-induced systemic lupus 2 cases (Japan) Sakai and co-workers
erythematosus [200]
m-RNA B*51 Behcet’s Disease-associated panu- 1 case (Taiwan) Lin et al. [204]

veitis after COVID-19 vaccination
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potentially contributing to myocardial damage.
In parallel, increased levels of CD57* NK lym-
phocytes have been observed in male indivi-
duals with VIM [137]. Interestingly, increased
IL-18 levels were also reported in a male pa-
tient with VIM [138]. IL-18 might be responsible
for KIR downregulation on NK cells, thereby
enhancing NK cell activity without directly alter-
ing HLA-1 expression levels [139].

HLA and VITT

VITT is an immune-mediated thrombotic disor-
der, potentially triggered by AutoAbs targeting
PF4 and polyanion (P) complex following ad-
enovirus-based COVID-19 vaccination. This dis-
order predominantly affects young women in
their second and fifth decades of life [140].
The mechanisms underlying the production of
these AutoAbs remain unclear, likely arising
from a complex interplay between environmen-
tal and genetic determinants.

Polymorphisms in HLA-II alleles are associat-
ed with VITT. An observational case-control
study conducted in Italy, involving sixteen sub-
jects with VITT following adenoviral COVID-19
vaccination, demonstrated an elevated alle-
lic frequency of DQA1*05:01, DQB1*02:01,
DRB1*11:04, and DPB1*17:01 compared to
controls subjects [141]. Notably, PF4-derived
peptide containing specific residues (Glu28
and Ala32) demonstrates a strong binding
affinity for the HLA-Il DRB1*11:04 molecule
[141], highlighting its relevance in antigen
presentation to Th lymphocytes and thymus-
dependent Ab responses. This epitope also
corresponds to the residues on PF4 that are
recognized by VITT anti-PF4 AutoAbs, further
implicating its role in the pathogenesis of VITT
[142, 143]. In the same way, Talbgll Sgrensen
and workers reported a rare case of severe
VITT following adenovirus-based vaccination.
HLA-II testing revealed the presence of the
DQB1*03/05; DRB1*01/11; and DPB1*02:
01/04:01 alleles [144]. HLA-DRB1*11 has
been previously associated with other Al disor-
ders that result in thrombosis among Cauca-
sian populations in several European studies.
Notably, HLA-DRB1*11 has consistently been
linked to a higher risk of acquired thrombocy-
topenic thrombotic purpura (TTP) [145, 146].
Furthermore, HLA-DRB1*11 is closely associ-
ated with DRB3*01:01, which has been recog-
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nized as a potential trigger of heparin-induc-
ed thrombocytopenia (HIT) [147]. Additionally,
another study suggested an association be-
tween the rs6903608 variant, located within
the HLA-Il locus, and the DQB1*05:03 allele in
acquired TTP [148].

Despite the fact that the association between
HLA-DR-DQ haplotypes and VITT has not report-
ed, it is notable that DRB1*11:04 is an LD with
DQA1*05:01 in European population. Indeed,
the DRB1*03:01-DQB1*02:01 haplotype has
been shown to be associated with the develop-
ment of PF4/heparin Abs in individuals with HIT
[149].

Thus, these findings indicate that VITT may
share a similar feature with these coagulopa-
thies Al conditions, potentially involving an-
tigen presentation of PF4-derived peptide by
HLA-II molecules.

HLA and COVID-19 vaccine-induced SAT

SAT induced by COVID-19 vaccination repre-
sents an Al and inflammatory thyroid disorder
that may emerge following immunization.

SAT is linked to certain HLA alleles. In 2021,
the relationship between vaccine-induced SAT
and HLA-B*35 was initially documented th-
rough a study conducted on individuals expe-
rienced SAT in Poland [150]. This association
has since been confirmed across various eth-
nic populations, including those in Turkey [20,
151], Japan [152], and Ireland [153]. A case-
control study conducted in Turkey, involving 14
subjects with COVID-19 vaccine-induced SAT
and 100 healthy controls, revealed that 93% of
the patients carried B*35 and C*04 alleles.
Moreover, homozygosity for these alleles has
been associated with thyrotoxicosis and a
severe inflammatory response [151]. LD analy-
sis by Sahin et al. demonstrated that the A*11-
B*35-C*04 haplotype is strongly linked to vac-
cine-induced SAT in the Turkish population [20].
Given the substantial genetic LD between the
C*04 and B*35 alleles [154], the C*04 allele
alone cannot be regarded as an independent
immunogenetic predisposing factor for vac-
cine-induced SAT. In addition to the establish-
ed relationship between the B*35 allele and
COVID-19 vaccine-induced SAT, several cases
have also involved class | HLA-A alleles, includ-
ing A*01 [151], A*03:01 [155] and A*11 [20].
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HLA-B*35 was additionally identified as being
linked to SAT following influenza vaccination
in subjects from various ethnic populations [8,
9]. The C*04 and B*35 alleles, belong to the
HLA-I region, are known for their role in pre-
senting antigens that trigger T-cell-mediated
immune reactions against thyroid autoantigens
in SAT.

The proposed mechanism explaining the re-
lationship between vaccine-induced SAT and
B*35 allele involves exposure to vaccine adju-
vants. This hypothesis is supported by the
observed association between SAT and several
inactivated and subunit vaccines [156-159].

HLA and COVID-19 vaccine-induced T1DM

T1DM induced by COVID-19 vaccination repre-
sents an Al disorder that may emerge following
immunization [160-163]. It is associated with
specific HLA alleles and haplotypes. Notably,
HLA-DRB1*04:05:01-DQB1*04:01:01 [59] and
HLA-DRB1*09:01-DQB1*03:03 [57, 164] have
been associated with the onset of TLDM follow-
ing COVID-19 vaccination. Both HLA haplotypes
are well-established genetic factors involved
in TIDM susceptibility in East Asian popula-
tions [165-167]. The recurrence of the same
HLA haplotypes following other vaccines, such
as influenza vaccination [10], strongly suggests
that both influenza and SARS-CoV-2 vaccines
are not inherently diabetogenic but rather act
as non-specific immune triggers in patients
with pre-existing HLA genetic susceptibility.

It is noteworthy that the inclusion of HLA-
DRB1%13:02:01-DQB1*06:04 as a potential
risk haplotype for TADM onset following COVID-
19 vaccination [168] warrants caution. This
haplotype is generally considered neutral or
only weakly associated with TADM [169]. Mo-
reover, it is too early to deduce from a single
patient that this haplotype significantly affects
T1DM susceptibility after COVID-19 vaccination
[170]. Further studies with larger cohorts are
required to confirm this association.

Thus, SARS-CoV-2 vaccination could trigger
T1DM onset in patients carrying a pre-existing
HLA genetic predisposition.

HLA and systemic Al diseases following CO-
VID-19 vaccination

Recently, numerous reports and studies have
attempted to link the occurrence of non-organ-
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specific or systemic Al conditions, which can
affect multiple organs and systems, and spe-
cific HLA alleles or haplotypes in vaccinated
individuals. These disorders include systemic
vasculitis and connective tissue diseases.
Below is a compilation of selected COVID-19
vaccination-induced systemic Al diseases, al-
ong with suggested HLA allele associations at
both the individual and population levels.

HLA and COVID-19-induced systemic vasculitis

Systemic vasculitis constitutes a spectrum of
conditions marked by intense systemic inflam-
mation affecting the vascular system. Follow-
ing vaccination against SARS-CoV-2, rare but
severe systemic vasculitis has been document-
ed. These include ANCA-related systemic vas-
culitis (AAV) [85, 87, 171], cryoglobulinemic
vasculitis [172], IgA vasculitis [173], hypocom-
plementemic urticarial vasculitis [174], anti-
glomerular basement membrane (GBM) dis-
ease [175], polyarteritis nodosa [176] and GCA
[177-179]. The role of HLA alleles in suscepti-
bility to these conditions has been explored in
several studies across diverse ethnic popula-
tions.

In AAV, the most notable association was found
in the DR locus [19, 21], which aligns with a pre-
viously reported correlation between myeloper-
oxidase-ANCA and DRB1*09:01 in a Japanese
population [180] as well as DR4 in a Dutch
population [181]. The HLA-DRB1*09:01 variant
is commonly found in East Asian cohorts, yet it
is infrequent in European populations.

Nagai et al. [182] documented a case of
anti-GBM glomerulonephritis after vaccination
against SARS-CoV-2 in Japan. HLA class Il test-
ing revealed the presence of the DRB1*15:02
allele. Nevertheless, the DRB1*15:01 allele is
strongly associated with anti-GBM disorder in
various ethnic populations [183-185].

GCA is characterized by chronic granulomat-
ous inflammation, primarily involving Th1 cells.
These cells predominantly produce IFN-y, whi-
ch is crucial for macrophage stimulation and
enhances the expression of HLA-II in synovial
fibroblasts [186]. A case-series study involv-
ing sixteen subjects with COVID-19 vaccine-
induced GCA in France showed that 54% of
the individuals were positive for the DRB1*04
allele [187]. This finding aligns with previous
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reports identifying HLA-DRB1 04 as a major
immunogenetic risk factor for GCA [188].
However, Che et al. [189] failed to replicate
this finding and instead reported a correlation
between HLA-DRB1*16:02 and an increased
susceptibility to bilateral ischemic optic neu-
ropathy from GCA following vaccination against
SARS-CoV-2 in South Korea. While this sug-
gests a potential role for DRB1 16:02 in dis-
ease susceptibility, conclusions drawn from a
single patient must be interpreted cautiously,
as further validation is required to establish its
relevance to vaccine-induced GCA.

HLA and polymyalgia rheumatica following
SARS-CoV-2 vaccination

PMR is a rare inflammatory rheumatic condi-
tion primarily affecting elderly patients, caus-
ing muscle pain and stiffness, particularly in
the hips and shoulders. The coexistence of
PMR and GCA may result from gene-environ-
ment interactions. Associations between cer-
tain HLA-II alleles and PMR have been explored
in both isolated cases of the condition and in
its co-occurrence with GCA.

Yokote et al. [190] performed HLA analysis in
a 71-year-old woman who developed isolated
PMR ten days following the first dose of mMRNA
COVID-19 vaccine. The authors identified the
DRB1*04:04 allele, which was also found in
the case described by Perez and Maravi after
a seasonal influenza vaccine [191]. The allelic
frequency of DRB1*04:04 ranges from 0.012
to 0.028 in East Asian individuals [192]. Addi-
tionally, Jarrot et al. [193] identified an incre-
ased phenotypic frequency of the DRB1*04:01
in 20% of PMR/GCA subjects following SARS-
CoV-2 vaccination, highlighting a genetic sus-
ceptibility previously observed in GCA [188]
and PMR [194]. This allele may play a crucial
role in the immuno-pathogenesis of these con-
ditions. Notably, individuals with isolated PMR
who carry DRB1*04 alleles, especially DRB1*
04:01, have shown a higher frequency of dis-
ease relapses [195]. This allele is considered a
genetic risk factor for PMR but does not directly
cause the disease. Therefore, it is hypothesized
that older individuals with a predisposition to
the DRB1*04 allele may have an increased
susceptibility to the development of vaccine-
induced PMR, potentially due to the strong
immunological response triggered by the mRNA
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vaccine against SARS-CoV-2. Moreover, the
allelic distribution of DRB1*13:01 has been
found to be more common in PMR patients
compared to those with GCA [193]. Liozon et al.
documented a significant positive association
between PMR and DRB1*13:01 allele in older
subjects with PMR/CGA-induced by influenza
vaccination [11]. Further case studies incor-
porating both HLA typing and SARS-CoV-2 Ab
titers are necessary to explore the association
between DRB1 and PMR/GCA after vaccination
against SARS-CoV-2. Such research is essen-
tial for identifying individuals at higher risk for
this rare condition.

HLA and antisynthetase syndrome following
COVID-19 vaccination

Antisynthetase syndrome (ASS) is a rare in-
flammatory myopathy associated with anti-
RNA-synthetase AutoAbs, with Jo-1 being the
most well-known. The condition is character-
ized by a range of symptoms, including intersti-
tial lung disease, inflammatory arthritis with-
out joint deformities, fever, mechanic’s hands,
Raynaud’s phenomenon, and myositis.

Recent case studies have documented the
emergence of ASS related to immunisation
against COVID-19 [187, 196, 197]. The role of
pathogenic high-affinity AutoAbs against RNA-
synthetases in COVID-19 vaccine-induced ASS
suggests an interaction between B and Th lym-
phocytes. Moreover, Th lymphocyte stimula-
tion requires T-cell receptor engagement with
the HLA-RNA synthetase peptide complex, indi-
cating that HLA-Il molecules may be genetic
predisposition factors for ASS. This hypothesis
has shown promise, with investigations identi-
fying DRB1*11:01, DRB1*04, and DRB1*03:01
alleles as genetic susceptibility factors in in-
dividuals with COVID-19 vaccine-induced ASS
[197]. Similarly, Sugimoto et al. documented a
rare case of dermatomyositis with melanoma
differentiation-associated gene 5 (MDA5) Abs
following COVID-19 vaccination, where HLA-II
testing revealed the presence of the DRB1*04:
05 variant [198].

The DRB1*03:01-B1*08:01 haplotype was
also found in a patient with dermatomyositis
who experienced clinical worsening following
COVID-19 vaccination [197]. Similar findings
were observed in several other investigations.
In a comprehensive case-control analysis, the
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B1*08:01-DRB1*03:01 haplotype has been
identified as a significant immuno-genetic
risk factor for ASS in Spanish individuals of
European ancestry [199]. This finding is fur-
ther supported by the observation that HLA-
DRB1*03:01 allele is significantly correlated
with positivity for anti-Jo-1 Abs, with a frequen-
cy of 31.80% in individuals positive for anti-Jo-1
Abs compared to 15.50% in those negative for
anti-Jo-1 Abs.

HLA and SLE following COVID-19 vaccination

Vaccine-induced SLE is a rare side effect oc-
curring after several vaccines, including SARS-
CoV-2 and HBV vaccines. The onset of this
complication involves both genetic and environ-
mental factors. In fact, Sakai et al. [200] report-
ed two cases of SLE induced by mRNA-based
COVID-19 vaccine in Japan. Laboratory findings
revealed specific HLA-I alleles, including HLA-A
(*11:01, *24:02, *24:20) and HLA-B (*52:01,
*55:02, B*46:01), and HLA-II alleles HLA-DRB1
(*04:05, *15:02), HLA-DPB1 (*04:01, *05:01,
*09:01), and HLA-DQB1 (*04:01, *06:01). The
HLA-DRB1*15:02 allele is a well-established
genetic factor involved in SLE susceptibility
among Southeast Asian populations [201], re-
inforcing its potential role in vaccine-induced
SLE. This case adds to the growing evidence
linking vaccine-induced SLE to specific HLA
alleles. Similarly, Santoro et al. [202] reported
a rare case of HBV vaccine-induced lupus ne-
phritis, where HLA typing revealed the presen-
ce of HLA-A*24:03/25:05, -B*18:25, -DRB1*
11:02/11:32, -DQA1*05:05, and -DQB1*03:
01. Further investigation through large cohort
studies is needed to establish a link between
vaccine-induced SLE and specific HLA alleles
[203].

HLA and COVID-19 vaccine-induced Behcet’s
disease

Behcet's disorder (BD), an autoinflammatory
syndrome, is marked by recurring ulcerations in
the oral cavity and genital regions, skin lesions,
and inflammatory eye disorders, with a notable
association with genetic factors, especially the
HLA-B*51 allele.

Recently, Lin et al. [204] reported a rare case of
BD-associated panuveitis in a young Taiwanese
male after receiving the initial dose of mRNA
COVID-19 vaccine. HLA-I testing confirmed the
presence of the B*51 allele, a well-established
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risk factor for both BD and its ocular complica-
tions, including posterior uveitis and visual
impairment [205]. This finding aligns with pre-
vious evidence linking HLA-B*51 to the patho-
genesis of BD and its severe ocular manifesta-
tions. On the other hand, Tagini et al. [206]
were unable to replicate this finding and docu-
mented a case of MRNA vaccine-induced BD in
a young Caucasian female who lacked the HLA-
B*51 allele. Interestingly, the absence of this
allele corresponds with the mucocutaneous
form of BD, which is more commonly seen in
younger women [207]. Further insights into the
role of specific HLA alleles in BD pathogenes-
is have emerged from studies conducted in
Thailand. These investigations underscore the
significance of the HLA-B*51:01 allele subtype
as a critical immunogenetic marker linked to
posterior uveitis and visual impairment [208].
Additionally, the HLA-A*26:01 has been identi-
fied as a contributing risk factor in individuals
who are negative for B*51, highlighting the
complexity of genetic contributions to BD sus-
ceptibility [208]. The allelic distribution of B*51
varies significantly across different ethnic gr-
oups and populations. For instance, it is strong-
ly associated with populations across regions
historically linked by the ancient Silk Road,
including Turkey, North Africa, and East Asia,
where BD is more prevalent [209].

Thus, it is too early to establish conclusive evi-
dence regarding the implication of B*51 allele
and B5 antigen in the development of vaccine-
induced BD.

Mechanisms of COVID-19 vaccine-induced Al
disorders

COVID-19 vaccine-induced Al disorders result
from a complex interplay of pathways and
events that allow autoreactivity to manifest
and cause self-sustaining tissue damage. Me-
chanisms include HLA gene predisposition,
modification of autoantigen structure (e.g., via
post-translational modifications and exposure
of cryptic epitopes), antigen mimicry, and ac-
quisition of adjuvant properties by disease-spe-
cific autoantigens.

HLA gene predisposition

Vaccines are identified by the immune compo-
nents as external antigens and interact with
T-cell or B-cell receptors, thereby initiating an
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Table 2. Possible mechanisms for involvement of HLA in COVID-19 vaccine-induced autoimmunity

Mechanism Description

Example (s)

Alteration of self peptide

Certain HLA-Il molecules may present cryptic anti-  Anti-PF4/P antibodies in

structure gens, either activating self-reactive Th lymphocytes VITT
or failing to properly engage Treg lymphocytes.

Postranslational modifications HLA alleles have a high affinity for modified

of self antigens

Hyperphosphorylated

peptides, especially if the modification alters the IL-1RA in Vaccine Induced

peptide’s fit in the HLA binding groove. The presen- Myocarditis
tation of these modified peptides differs from the
normal presentation of unmodified self-peptides.

Molecular mimicry

self-tissues.

HLA molecules present peptides that mimic self- Molecular mimicry between
antigens, leading to immune responses against

spike epitopes of MRNA
vaccines and self-epitopes

adaptive immune response. Nevertheless, the
mechanism linking HLA genes to autoimmunity
triggered by COVID-19 vaccines remains incom-
pletely understood, with several hypotheses
proposed to clarify this relationship (Table 2).

First, polymorphisms in HLA alleles may in-
fluence the clinical progression of vaccine-
induced Al. As discussed above, homozygosity
for HLA-C*04 and -B*35 alleles could be asso-
ciated with poorer outcomes in vaccine-induced
SAT [151].

Second, variations in the peptide-binding
grooves of HLA molecules may modulate
COVID-19 vaccine-induced autoimmunity. The
HLA peptide-binding groove comprises several
distinct pockets that form the floor of the groove
and interact with specific aa side chains from
peptides. Variations in the aa composition of
the HLA-A binding cavity B and the HLA-DR
binding cavities P4, P7, and P9 could affect
antigen presentation in VIM [130].

Third, LD between a disease-associated HLA
allele and a nearby genomic element within the
same haplotype that actually causes the dis-
ease, rather than the HLA molecule itself, may
account for these associations. For instance, in
T1DM, the observed association with HLA-DQ/
DR alleles is attributed to mutations in the in-
sulin gene promoter, which is in LD with HLA-II
loci [210]. Similarly, SLE shows a strong asso-
ciation with complement C4 gene deletions,
which impair immune complex clearance. The-
se deletions are situated within the HLA-III
region and are in LD with HLA-DR3/DR2 haplo-
types [211, 212].

While immune reactivity to self-antigens in
COVID-19 vaccine-induced autoimmunity is of-
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ten attributed to HLA-restricted antigen pre-
sentation, it is worth noting that the actual
responsible antigen may originate from a differ-
ent locus within the haplotype or be linked
through LD.

Modification of autoantigen structure

Several potential mechanisms may alter anti-
gen processing and expose cryptic epitopes.
The vaccine or its components (e.g., polyanion
(P)) may covalently bind to an endogenous pep-
tide (e.g., PF4) to form a cryptic antigen com-
plex [5, 213]. In this model, the cryptic antigen
complex acts as an altered self-peptide, poten-
tially activating self-reactive T helper lympho-
cytes or failing to properly engage regulatory T
lymphocytes due to the abnormal presentation
of epitopes by HLA-Il molecules. This process
results in the development of Ab responses
specifically targeting the vaccine (e.g., anti-
PF4/P antibodies in VITT). Another potential
mechanism involves IL-1RA hyperphosphory-
lation, which has been related to VIM [134].
Protein phosphorylation is crucial for the physi-
ological function of numerous proteins, and an
increased risk of VIM has been established in
75% of subjects with neutralizing antibodies
against IL-1RA [134], especially those carrying
the HLA-Il DRB1*14:01/15:03 alleles [130].

Antigen mimicry

Antigen mimicry has frequently been propos-
ed as a potential initiator of Al diseases. Al
responses associated with COVID-19 vaccines
may result from cross-reactivity or molecular
mimicry between spike epitopes of the mRNA
vaccines and self-epitopes in certain ethnic
populations [104]. This phenomenon is also
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involved in hepatitis B vaccine induced-multi-
ple sclerosis [214].

Adjuvants

Adjuvants can trigger Al symptoms in geneti-
cally susceptible individuals. Work by Shoen-
feld and colleagues provided important initial
support for this concept [215]. They describ-
ed the autoimmune/inflammatory syndrome
induced by adjuvants (ASIA), which may occur
following exposure to immune-stimulatory ad-
juvants. Several case reports and small case
series have documented ASIA-like presenta-
tions after COVID-19 vaccination, including
polymyalgia rheumatica and SAT [216, 217].
However, further studies are required to con-
firm the role of adjuvants in the development
of COVID-19 vaccine-induced Al disorders.

Clinical implications and future research

A clinical assessment, including a detailed vac-
cination history and evaluation of comorbidi-
ties, is essential for all individuals meeting the
diagnostic criteria for Al diseases. Given the
consequent underestimation of post-COVID-19
vaccine-induced Al disorders, heightened vigi-
lance and systematic documentation are war-
ranted in clinical practice. In addition, a thor-
ough risk-benefit evaluation should be con-
ducted before administering further vaccina-
tions or boosters to subjects with pre-existing
Al diseases who are in clinical remission.

Two primary approaches are used to study the
relationship between HLA genes and Al diseas-
es. The first involves population studies, com-
paring the distribution, frequency, and varia-
tion of HLA loci within and across different
human populations with those of healthy con-
trols. Notably, three case-control studies have
demonstrated significant associations between
HLA-I [151] and HLA-II alleles [130, 141] and
Al conditions induced by COVID-19 vaccines.
The second approach focuses on family stud-
ies, investigating whether affected relatives
exhibit a higher frequency of shared HLA haplo-
types than would be expected based on gener-
al genetic inheritance patterns. However, to
date, no family studies have been conducted to
investigate associations between HLA haplo-
types or HLA homozygosity and COVID-19 vac-
cine-induced Al. This highlights a gap in current
knowledge and underscores the need for future

29

investigations into familial clustering and HLA-
related genetic susceptibility in this context.

Several technologies are available for HLA typ-
ing, each with distinct advantages and limita-
tions. Commonly used methods include oligo-
nucleotide-based hybridization arrays (SSO),
polymerase chain reaction (PCR)-driven primer
systems (SSP), dideoxy chain-termination se-
quencing (SBT), and next-generation sequenc-
ing (NGS). However, the presence of an HLA
allele or haplotype does not always correspond
to its functional expression at the cell surface.
Thus, future studies should clarify the relation-
ship between HLA expression and Al diseases
induced by SARS-CoV-2 vaccines.

More questions than answers

Susceptibility conferred by HLA in COVID-19
vaccine-induced autoimmunity exhibits ethnic
specificity. Several key questions, however,
remain unanswered. Firstly, the precise mecha-
nisms underlying susceptibility to such autoim-
munity remain elusive, necessitating further
investigation into the specific interactions be-
tween HLA molecules and autoantigens impli-
cated in vaccine-induced Al. Additionally, the
high polymorphism of HLA genes poses signifi-
cant challenges in determining how particular
alleles influence disease susceptibility, severi-
ty, and progression. Although HLA molecules
are crucial for T cell activation, the specific pep-
tides presented in Al contexts have not been
fully characterized. Moreover, while HLA alleles
predispose individuals to Al diseases, environ-
mental parameters also contribute to disease
development.

While a significant number of these correla-
tions are found within HLA-I and 1l loci, large-
scale genomic analyses employing SNP mark-
ers have revealed that, beyond these HLA loci,
the entire HLA region contains numerous SNPs
associated with various disorders or traits.
Notably, as much as 90% of genetic variants
linked to Al conditions have been mapped to
noncoding regions of the genome [218]. As a
result, it is plausible that disease-related ele-
ments may be distributed not just within HLA
loci, but also throughout the broader HLA re-
gion. A key regulatory element within the non-
coding regions of the HLA is microRNA (miRNA),
which plays an important role in gene expres-
sion modulation. An analysis of functional ele-
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ments within these regions identified 113
microRNAs (miRNAs), including mmu-miR-721
(has-miR-Chr8:96), which is transcribed from
an intronic region of the HLA-DRB1 gene.
Consequently, has-miR-Chr8:96, a microRNA
specific to myocarditis, has shown potential as
a marker for acute myocarditis [219]. Thus, a
comprehensive understanding of disease pa-
thogenesis requires thorough exploration of
the interplay between HLA genetics, noncoding
RNAs (miRNAs or long noncoding RNAs) and
environmental triggers, including infections,
diet, and lifestyle factors. Further research in
these areas is essential for advancing our
understanding of COVID-19 vaccine-induced
autoimmunity and informing strategies for its
prevention and management.
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