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Abstract: COVID-19 vaccination, both in healthy individuals and those with comorbid medical disorders, has proven 
highly effective in mitigating critical disease progression and mortality rates. Nevertheless, although rare, induction 
of autoantibodies and new-onset autoimmune conditions in apparently healthy individuals receiving COVID-19 vac-
cination have been documented. These autoimmune phenomena can be broadly classified into organ-specific auto-
immune disorders (e.g., subacute thyroiditis (SAT)) and systemic autoimmune disorders, with many being generally 
transient (e.g., vaccine-induced thrombotic thrombocytopenia (VITT)) and others causing chronic disability (e.g., 
systemic vasculitis). Recent studies have highlighted significant associations between COVID-19 vaccine-associated 
autoimmunity and human leukocyte antigen (HLA) loci. For example, HLA class I alleles such as HLA-B*35 and 
HLA-C*04 have been associated with COVID-19 vaccine-induced SAT, while HLA class II alleles, including HLA-
DRB1*11:04, HLA-DQA1*05:01, HLA-DQB1*02:01, and HLA-DPB1*17:01, have been linked to VITT. This review 
synthesizes the reported associations between classical HLA loci and COVID-19 vaccine-induced autoimmunity, 
providing insights into potential mechanisms and clinical implications.
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Introduction

Vaccination is a cornerstone of infectious dis-
ease control, with COVID-19 vaccines signifi-
cantly reducing morbidity and mortality world-
wide [1]. These vaccines utilize three princi- 
pal technological platforms: replication-incom-
petent adenoviral vectors (e.g., Johnson & 
Johnson and AstraZeneca), messenger RNA 
(mRNA) (e.g., Moderna and Pfizer vaccines), 
and inactivated virus (e.g., Sinopharm and 
Sinovac).

While the efficacy and safety of COVID-19 vac-
cines are well documented, post-vaccination 
immune-related complications, including the 
development of autoimmune (AI) manifesta-
tions, have been reported in a small number of 
healthy individuals as well as in those with pre-
existing AI conditions [2]. AI responses may 
range from the transient production of auto- 
antibodies (AutoAbs) without clinical manifes-
tations to an increased risk of developing vari-

ous AI diseases, including alopecia areata,  
psoriasis, rheumatoid arthritis, autoimmune 
glomerulonephritis, and autoimmune hepatitis 
[3, 4]. 

The mechanisms underlying AutoAbs induction 
and AI phenomena in a small subset of indivi- 
duals, as opposed to others, remain unclear. 
Since antigen presentation and T-cell activation 
are central to initiating autoantibody production 
[5] and tissue infiltration by autoreactive cyto-
toxic T lymphocytes (CTL) [6, 7], polymorphisms 
in human leukocyte antigen (HLA) molecules 
may partly explain inter-individual variation in 
vaccine responses. Across various ethnic po- 
pulations, several investigations have docu-
mented associations between HLA alleles and 
vaccine-induced AI conditions, such as sub-
acute thyroiditis (SAT) [8, 9], type 1 diabetes 
mellitus (T1DM) [10], and polymyalgia rheumat-
ica (PMR) [11]. HLA variations have also been 
recognized as an important factor of COVID-19 
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vaccine immunogenicity, influencing both pro-
tective adaptive immune reactions and sy- 
stemic inflammatory adverse effects such as 
fever, chills, and fatigue [12-14]. In addition to 
HLA genetic predisposition, non-genetic factors 
such as older age [15], frailty [16], and comor-
bidities [17] may further modulate immune 
responses triggered by COVID-19 vaccines, 
thereby contributing to variability in the risk of 
developing AI phenomena.

This review synthesizes the reported associa-
tions between classical HLA loci and COVID- 
19 vaccine-induced autoimmunity, providing 
insights into potential mechanisms and clinical 
implications.

Overview of HLA genes and molecules

HLA gene loci fall into three main classes, each 
with distinct features. HLA class I region (HLA-I) 
includes three classical genes coding for HLA-I 
alpha (α)-chain (HLA-A, HLA-B, and HLA-C). 
HLA-I molecules acquire cytoplasmic peptides 
generated via the breakdown of intracellular 
proteins by the proteasome. The complex of 
transporter associated with protein processing 
(TAP) subsequently facilitates HLA-I/peptide 
complex translocation into the endoplasmic 
reticulum. After glycosylation within the Golgi 
apparatus, these complexes are migrated to 
the cell membrane, enabling CTL to recognize 
displayed peptides. CTL epitopes are typically 
short peptides of 8-11 residues. The class II 
(HLA-II) region includes three classical genes 
coding for HLA-I α and beta (β) chain (DR, DP, 
and DQ). These molecules acquire peptides 
from exogenous pathways and present them  
on the surface of myeloid dendritic cells (DCs), 
the principal innate professional antigen-pre-
senting cells, thereby allowing naïve CD4+ T 
lymphocytes to recognize these peptides. This 
interaction drives their activation into several 
subpopulations of T helper (Th) lymphocytes, 
including follicular Th lymphocytes, Th1 lym-
phocytes, Th2 lymphocytes, Th17 lymphocyt- 
es, and regulatory T lymphocytes (Tregs). CD4+ 
T-cell epitopes are typically long peptides of 
13-20 residues.The class III region encodes 
proteins implicated in immune regulation and 
complement pathways. 

Because these genes are complex and extre- 
mely polymorphic with over 35,000 alleles doc-
umented until now [18], they appear to be the 

most important factor in the susceptibility to AI 
disorders [19-21] and other side effects [14] 
after COVID-19 vaccination. Vaccines, including 
those for influenza, Bacille Calmette-Guérin, 
and hepatitis B (HBV) can also trigger AI condi-
tions through interactions with HLA molecules 
[11, 22-24]. HLA-I and II genes, along with non-
HLA immunogenetic determinants, contribute 
to the modulation of both CTL and antibody (Ab) 
responses triggered by vaccines against influ-
enza, HBV, and SARS-CoV-2 [25-28]. Another 
important feature of the HLA system is the 
transmission on haplotypes. Different loci of 
the HLA-I and II regions, though located in dis-
tinct genomic regions, are inherited together 
more often than random chance would sug-
gest, except for the HLA-DP loci. Significant 
linkage disequilibrium (LD) was observed ac- 
ross all HLA loci, with notable linkage in con-
served haplotypes, particularly between the B 
and C loci in HLA-I, and the DRB1 and DQB1 
loci in HLA-II, likely due to their close genomic 
proximity. Research has revealed correlations 
between DR-DQ haplotypes and immune re- 
sponses after the second dose of various vac-
cines. In particular, HLA-II haplotypes are cru-
cial for presenting vaccine epitopes and influ-
encing immune responses, including cytokine 
production, across diverse racial and ethnic 
groups [29, 30]. 

HLA-peptide binding groove contains multiple 
distinct pockets or cavities (generally six or 
more) that are preferentially located in the 
β-pleated sheet forming the floor of the groove, 
interacting with specific amino acid (aa) side 
chains from peptides. Because these pockets 
are lined by aa residues, which differ from one 
HLA molecule to another, they appear to be the 
most important factor in the specificity of pep-
tide binding. 

HLA variation and COVID-19 vaccine response 

All currently licensed COVID-19 vaccines are 
designed to target the spike (S) glycoprotein, a 
critical component that facilitates the transfer 
of the SARS-CoV-2 viral genome inside alveolar 
epithelial cells. These vaccines induce protec-
tive immunity, mainly via neutralizing antibod-
ies (nAbs) that play an important role in reduc-
ing SARS-CoV-2 infection severity and mortality 
[31]. However, some subjects, particularly un- 
infected individuals with comorbidities, fail to 
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achieve sustained protective titers of nAbs 
after SARS-CoV-2 vaccination, necessitating 
booster doses [32]. Moreover, 5-10% of immu-
nologically competent subjects do not achieve 
protective levels of anti-HB surface Abs (≥ 10 
mIU/mL) following standard HBV immuniza- 
tion regimens [33]. Genetic differences in HLA 
genes and haplotypes significantly contribute 
to interindividual variability in immune respons-
es elicited by vaccines [12, 34-37]. This section 
summarizes the immunogenetic correlations 
between HLA alleles and haplotypes and the 
variability in immune reactions to COVID-19 
vaccines in apparently healthy people and 
patients with AI diseases.

HLA alleles and COVID-19 vaccine response in 
apparently healthy people 

An expanding body of research is currently 
exploring the influence of HLA-I and HLA-II 
alleles on Ab and T cell responses to COVID-19 
vaccinations in apparently healthy individuals 
across diverse populations. Specifically, certain 

HLA-I alleles, including A*33:03, B*08:01, 
B*18:01, B*35:01, B*58:01, and C*07:01, as 
well as the HLA-II allele DRB1*01:01, have 
been associated with lower levels of nAbs 
against S protein [25, 38-40]. Conversely,  
other HLA-I alleles, such as A*02:01, A*03: 
01, and B*40:01, along with HLA-II alleles 
DRB1*03:01, DRB1*07:01, DQB1*06:02, and 
DQA1*03:03, have been correlated with higher 
nAbs levels following the administration of two 
doses of vaccination [12, 25, 37, 40-42] (Figure 
1). Additionally, after a single vaccine dose, 
the DRB1*04:04 allele has been correlated 
with reduced levels of S-specific IgG Abs, par-
ticularly in subjects with a documented past 
exposure to infection with SARS-CoV-2 virus 
[41]. This finding underscores the complexity  
of immune response, suggesting that previous 
SARS-CoV-2 infection may influence genetic 
impact on vaccine efficacy. Nevertheless, such 
associations have not been replicated in other 
studies, suggesting that IgG anti-S Ab levels are 
influenced by individual characteristics unre-
lated to the HLA context [43, 44].

Figure 1. The Role of HLA alleles in immune responses to COVID-19 vaccination. A. Higher nAb levels are associ-
ated with the HLA alleles A*02:01 and B*40:01, while DRB1*15:01 and DQB1*06:02 are associated with higher 
IFN-γ production, indicating a stronger Th1-mediated immune response. B. Lower nAb levels are linked to alleles 
such as A*33:03 and B*08:01. Specific HLA haplotypes, including A*24:02-B*18:01-C*07:01-DRB1*11:04, are 
associated with lower antibody titers. COVID-19: Coronavirus Disease 2019; HLA: Human Leukocyte Antigen; CTL: 
Cytotoxic T Lymphocyte; nAb: Neutralizing Antibodies; SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 
2; IFN-γ: Interferon-Gamma; Th1: T helper 1.
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Several studies have also linked HLA varia- 
tions to differences in Ab response against 
other vaccines. For example, within the classi-
cal HLA-I genes, the HLA-B*45:01 allele is 
associated with enhanced anti-rubella Ab pro-
duction following two vaccine doses, whereas 
the HLA-B*27:05 allele has been linked to 
lower IgG titers [35]. Among HLA-II alleles, 
DPA1*02:01 exhibits a relationship with re- 
duced IgG responses against rubella, whereas 
DPB1*04:01 is linked to elevated Ab levels 
after two doses [35]. In addition, HLA-B*7 and 
HLA-B*51 alleles have been identified as con-
tributors to seropositivity after a single dose of 
measles vaccination, while the HLA-B*8, HLA-
B*13, and HLA-B*44 alleles have been impli-
cated in IgG seronegativity following a single 
dose of the measles vaccine [45]. 

A significant correlation between HLA gen- 
es and SARS-CoV-2-specific interferon-gamma 
(IFN-γ) production, a marker of Th1-mediated 
immunity, among healthy subjects following 
COVID-19 vaccination has been explored. No- 
tably, the allelic frequencies of DRB1*15:01 
and DQB1*06:02 have significantly correlated 
with IFN-γ release following COVID-19 vaccina-
tion [41, 46]. In the same way, the HLA-A loci 
have been correlated to IFN-γ secretion follow-
ing other vaccines. Ovsyannikova et al. show- 
ed that HLA-A*02:01, A*24:02, and A*68:01 
alleles are strongly associated with IFN-γ pro-
duction in white healthy subjects following the 
rubella vaccine [47]. In agreement, another 
study suggests that higher levels of IFN-γ were 
associated with the HLA-A*31:01 allele in 
schoolchildren after the second administration 
of the mumps, measles, and rubella (MMR) 
vaccine [48]. Thus, the genetic variation in HLA 
alleles may account for individual differences  
in the IFN-γ response to COVID-19 vaccination.

Genetic variations of HLA-I and HLA-II alleles 
may also have an impact on COVID-19 out-
comes. HLA-DQB1*06 allele is linked to de- 
creased susceptibility to breakthrough infec-
tions following vaccination [12]. Indeed, HLA-
B*35:01 and HLA-DRB1*01:01 alleles are cor-
related with reduced duration of COVID-19 [39].

HLA haplotypes and COVID-19 vaccine re-
sponse in apparently healthy people 

Associations between Ab responses and  
HLA haplotypes have been reported following 

COVID-19 vaccination in healthy subjects. For 
instance, the high haplotype frequency of 
A*24:02-B*18:01-C*07:01-DRB1*11:04 has 
been shown to correlate with reduced anti-S  
Ab levels post-vaccination [38]. Moreover, the 
DRB1*13:02-DQB1*06:04-DQA1*01:02 haplo-
type is strongly implicated in protecting ag- 
ainst seronegativity following the first dose  
of the vaccine. However, among seropositive 
individuals, this haplotype has also been linked 
to an elevated risk of symptomatic COVID-19, 
suggesting that the DRB1*13:02 allele may 
contribute to severe disease outcomes [13]. 
This variability in Ab responses, influenced by 
HLA haplotypes, is also observed in respon- 
se to other viral vaccines. Notably, Nishida  
et al. showed that the HLA-DRB1*04:05-
DQB1*04:01 haplotype is linked to decreased 
Ab responses to the HVB vaccines [49]. 
However, no significant correlation was ob- 
served between HLA haplotypes and Ab 
responses to the mumps vaccine [50]. 

Polymorphism of antigen processing and CO-
VID-19 vaccine response 

Synthesis of HLA-I and HLA-II molecules into 
functional complex with antigenic peptides 
requires the coordination of multiple steps, 
including antigen processing, peptide trans-
port, loading into the HLA peptide-binding 
groove, and subsequent expression of HLA/
peptide complex on the cell surface. COVID-19 
vaccine-induced immune responses could be 
influenced by polymorphisms and expression 
levels of genes implicated in antigen process-
ing and presentation pathways. First, the esti-
mated expression levels of the TAP2 and the 
proteasome subunit beta type-9 (PSMB9) in 
CD16+ neutrophils have been strongly linked to 
a lack of Ab response following COVID-19 vac-
cination [13]. Similarly, homozygosity for the 
TAP allele has been significantly linked to se- 
ronegativity after the measles vaccine [51]. 
These results suggest that variations in antigen 
processing gene expression may contribute to 
impaired Ab responses triggered by COVID-19 
vaccines. Furthermore, the high variability in  
aa residues within the pockets of the HLA pep-
tide-binding groove can partly account for in- 
ter-individual variations in COVID-19 vaccine-
induced immune responses. A recent study 
involving 100,298 individuals in the United 
Kingdom found two genetic correlations: the 
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DRB1*13:02 allele and a substitution of argi-
nine by glycine at aa position 71 in the HLA-
DRβ1 pocket 4, with Ab levels after either the 
first or second dose of SARS-CoV-2 vaccination 
[13]. 

HLA alleles and COVID-19 vaccine response in 
patients with AI diseases

Individuals with AI disorders face increased 
susceptibility to COVID-19 and reduced vaccine 
efficacy due to disease-induced immunosup-
pression and immunomodulatory treatments, 
with genetic factors like HLA alleles potentially 
playing a role in modulating immune responses 
to vaccination. In Japanese individuals with 
rheumatoid arthritis (RA), HLA-DRB1*15:01 
and HLA-DQB1*06:02 alleles have been relat-
ed to higher concentrations of nAbs against 
SARS-CoV-2 post-vaccination, suggesting that 
some genetic backgrounds may enhance vac-
cine-induced immunity [42]. However, no simi-
lar association was found between DRB1*15 
and the development of multiple sclerosis fol-
lowing COVID-19 vaccination [52].

Non-HLA genetic polymorphisms and CO-
VID-19 vaccine response 

The association between cytokine genes and 
IgG Ab responses to the S protein in healthy 
individuals following COVID-19 vaccination has 
been studied. Scola et al. [53] found that poly-
morphisms in specific cytokine genes influen- 
ce Ab response levels to the BNT162b2 vac-
cine. In particular, 105 days after receiving the 
recombinant RNA vaccination, a significant cor-
relation was observed between elevated anti-S 
Ab concentrations and the interleukin-1 recep-
tor 1 (IL-1R1) gene rs2234650. Additionally, 
individuals with higher post-vaccination SARS-
CoV-2 Ab levels more frequently exhibit the  
IL4 rs2243250 CT genotype. There is also evi-
dence suggesting a link between vaccine-
induced immunity and polymorphisms in cyto-
kines and HLA genes. For example, genetic 
factors such as the DRB1*07 allele, single 
nucleotide polymorphisms (SNPs) within the 
IL-2 and IL-4 cytokine genes, and the IL-12B 
gene indel mutations have been independently 
linked to HBV vaccine unresponsiveness [26]. 
Additionally, two variants in the gene of IL-2, 
rs2069762, and rs2069763, have been linked 
to increased Ab production and enhanced T  
cell reactions after vaccination against mea-

sles [54]. Conversely, rs1800871, rs1800872, 
and rs1800890 in the IL-10 gene are linked  
to decreased Ab responses following measles 
vaccination.

AI disorders attributed to COVID-19 vaccines 

Several AI conditions have been observed in 
apparently healthy recipients following COVID-
19 vaccination, with females being twice as 
likely as males to develop these disorders. 
These AI phenomena can generally be subdi-
vided into two groups: organ-specific and sys-
temic AI disorders. 

Organ-specific conditions observed in recipi-
ents of the COVID-19 vaccine include mainly AI 
hepatitis (AIH) [55, 56], T1DM [57-59], AI he- 
molytic anemia (AIHA) [60-62], atypical hemo-
lytic uremic syndrome [63], IgA nephropathy 
[64-67], and bullous pemphigoid (BP) [3]. The 
relationship between COVID-19 vaccination 
and the clinical manifestations of these disor-
ders is more conflicting. There is some evi-
dence that the onset of BP in vaccinated 
females has been associated with COVID-19 
vaccination, suggesting that gender may influ-
ence disease susceptibility [3]. This finding is 
further supported by Tomayko et al., who re- 
ported that women aged 40 years and older 
may be at higher risk of vaccine-associated BP 
[68]. Contrary to this, some studies have failed 
to replicate these findings and refuted any 
association between several AI disorders such 
as acute AIH and T1DM, and mRNA COVID-19 
vaccines [69, 70]. Consistent with these find-
ings, a Swedish case-control study found no 
significant link between T1DM and several vac-
cines, including those for tetanus, smallpox, 
rubella, mumps, and pertussis [71].

Systemic AI disorders following COVID-19 vac-
cines may be transient, such as immune th- 
rombocytopenic purpura [72, 73] and vaccine-
induced thrombotic thrombocytopenia (VITT) 
[74-76]), or they can lead to chronic disabilities, 
including systemic lupus erythematosus (SLE) 
[77-79], RA [80-82], antiphospholipid syndro- 
me (APS) [83, 84], anti-neutrophil cytoplas- 
mic AutoAbs (ANCA)-related systemic vasculitis 
(AAV) [85-87], and giant cell arteritis (GCA)  
[88, 89]. A case-control study utilizing data 
from the Korea Disease Control and Prevention 
Agency investigated the effects of mRNA SARS-
CoV-2 vaccines on connective AI diseases [3]. 
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Analyzing 4,629,401 vaccinated individuals 
and 4,629,402 controls revealed no significant 
increased risk of most connective AI disorders 
following mRNA vaccination. However, a 1.16-
fold elevated risk of developing SLE was ob- 
served in association with COVID-19 vaccina-
tion [3]. While most COVID-19 vaccines appear 
safe for individuals with pre-existing SLE, re- 
ports indicate occasional disease flare-ups fol-
lowing immunization [90]. Additionally, reduced 
IgG Ab production and IFNγ levels have been 
documented in these patients, likely attribut-
able to the frequent administration of immuno-
suppressive and immunomodulatory therapies 
and the underlying condition [91, 92].

COVID-19 vaccines have also been shown to 
primarily alter the function of the nervous  
system and the neuromuscular junction, with 
reported conditions including Guillain-Barré 
syndrome [93-95], myasthenia gravis [96],  
multiple sclerosis [97-99], optic neuritis [100], 
acute disseminated encephalomyelitis [101], 
acute transverse myelitis [102], and aseptic 
meningitis [103]. 

AutoAbs induced by COVID-19 vaccines

AI conditions can be identified and monitored 
effectively by analyzing AutoAbs in conjunction 
with clinical symptoms. Like other viral infec-
tions, SARS-CoV-2 has been widely identified as 
a potential inducer of the de novo development 
of AutoAbs [104], including nuclear AutoAbs 
(ANA) [105], antiphospholipid Abs [106], and 
type I interferon (IFN-I) Abs [106]. COVID-19 
vaccination has also been implicated in autoAb 
production, both in healthy subjects and those 
with pre-existing AI diseases. 

Pathogenic IgG AutoAbs targeting the complex 
of platelet-bound factor 4 (PF4) chemokine/
polyanion were generated in subjects vaccinat-
ed with Johnson & Johnson or AstraZeneca 
COVID-19 vaccines [107-109]. It is suggested 
that PF4/polyanion complex can act as an au- 
toantigen, potentially stimulating autoreactive 
T cells or impairing the negative selection of 
Tregs [5]. In addition, low levels of non-patho-
genic IgG AutoAbs have been observed in 
healthcare workers [74], implying that some 
individuals may already have an altered im- 
mune tolerance due to prior sensitization. The 

induction of these AutoAbs following COVID- 
19 vaccination was analysed in 831 Dutch 
healthcare workers who received mRNA and 
recombinant adenovirus SARS-CoV-2 vaccines 
[110]. The levels of PF4 AutoAbs remained con-
sistent among individuals who received either 
recombinant or mRNA COVID-19, suggesting 
that both vaccine types have a non-significant 
impact on PF4 antibodies levels in healthy 
populations. 

Induction of ANA AutoAbs prior to vaccine 
administration at 3 and 12 months post-SARS-
CoV-2 immunisation was assessed in 155 med-
ical staff and clinicians immunized with mRNA 
vaccines [111]. ANA, AutoAbs against smooth 
muscle, citrullinated protein antibodies, ANCA 
antibodies, and anti-phospholipid antibodies 
were tested. During the study period, 28.57% 
of individuals developed de nove ANA following 
COVID-19 vaccination. Among these, ANA posi-
tivity appeared to increase with the administra-
tion of additional SARS-CoV-2 vaccine doses: 
7.79% were positive after two doses, while 16 
subjects (20.78%) were positive after three 
doses. 

Previous studies have documented transient 
emergence of AutoAbs in clinically healthy indi-
viduals following several vaccinations. Marti- 
nuc et al. screened for several AutoAbs, inclu- 
ding ANA, anticardiolipin/anti-β2-glycoprotein I 
(aCL/β2-GPI), and anti-extractable nuclear anti-
gens Abs pre- and post-vaccination in 85 indi-
viduals who received three doses of HVB vac-
cine [112]. While no systemic rise in autoAb 
levels occurred, transient low-to-moderate 
aCL/β2-GPI positivity emerged in three partici-
pants at 1 month, resolving by 6 months; one 
individual showed progressive anti-β2-GPI ele-
vation without clinical symptoms. Another stu- 
dy in 92 healthcare workers receiving non-adju-
vanted influenza vaccines revealed that 15% 
and 13% developed new or elevated AutoAbs at 
1 and 6 months post-vaccination, respectively 
[113]. Persistent elevations (8% of participants) 
included progressive IgM aCL or IgA β2-GPI in 
two cases, while 11 exhibited transient Ab 
spikes. Neither cohort displayed AI disease 
manifestations during follow-up, underscoring 
that vaccine-triggered AutoAbs rarely correlate 
with pathology in non-predisposed popula- 
tions.
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HLA variation and COVID-19 vaccine-induced 
autoimmunity 

SARS-CoV-2 vaccination has been hypothe-
sized to trigger inflammatory and AI respons- 
es, particularly in individuals with specific HLA 
genes and haplotypes. In this section, an over-
view of the HLA loci associated with AI condi-
tions reported following SARS-CoV-2 vaccines 
is presented (Table 1).

HLA and organ-specific AI disorders following 
SARS-CoV-2 vaccination

HLA and COVID-19 vaccine-induced AIH 

AIH is an AI liver disease primarily mediated by 
CD4+ T helper (Th) subsets [114], affecting 
approximately 1 in every 100,000 individuals 
annually worldwide [115]. About 35 patients 
with AIH have been documented worldwide in 
several ethnic groups after receiving various 
types of vaccines against SARS-CoV-2 [116]. 
The involvement of Th subsets in AIH patho- 
genesis is consistent with the strong genetic 
associations observed at HLA class II loci,  
particularly HLA-DRB1 [117-120]. Specifically, 
DRB1*04:04/05 alleles have been positively 
associated with AIH in populations from Me- 
xico, Japan, and Argentina, while DRB1*03: 
01/04:01 alleles are linked to AIH type 1 in 
North American and European groups [121, 
122]. Recently, Izagirre et al. [123] reported 
that Spanish patients who developed AIH fol-
lowing SARS-CoV-2 vaccination carried DRB1* 
03:01 and DRB1*04 alleles, suggesting that 
vaccine-triggered AIH may arise in individuals 
with the same immunogenetic background that 
predisposes to idiopathic AIH. Furthermore, 
DRB1 loci have also been correlated to the 
prognosis of AIH. Notably, Ueno et al. [124] doc-
umented a severe case of AIH triggered by 
SARS-CoV-2 vaccination, with HLA-DRB1 test-
ing confirming the presence of DRB1*04, a 
genetic factor predisposing individuals to AIH. 
However, Ghielmetti et al. [125] failed to repli-
cate these findings and instead reported the 
presence of DRB1*01:01 and DRB1*11:01 
alleles in a critical case of AI-like hepatitis fol-
lowing mRNA SARS-CoV-2 vaccine. Interesting- 
ly, DRB1*11:01 may confer a protective effect 
against primary biliary cholangitis (PBC) [126]. 
These findings suggest that certain HLA-DR 
molecules may present hepatic autoantigens 

or vaccine-derived peptides that mimic liver 
proteins, thereby promoting CD4+ T cell activa-
tion and differentiation into different subsets  
of Th cells. Th1 cells induce liver damage by 
activating CTLs, while Th2 cells promote Auto- 
Abs production by autoreactive B cells. 

HLA and COVID-19 vaccine-induced myocardi-
tis 

COVID-19 vaccine-induced myocarditis (VIM) 
has now been recognized as an uncommon AI 
disorder [127, 128], particularly affecting young 
adult men [128]. Experimental models support 
the role of HLA in myocarditis susceptibility, as 
non-obese diabetic transgenic mice expressing 
HLA-DQ8 spontaneously develop myocarditis 
[129]. VIM has been associated with HLA-
DRB1*14:01 and HLA-DRB1*15:03 alleles in 
the Israeli population [130]. These patients 
typically present with a benign and self-resolv-
ing form of VIM [131]. These data suggest that 
HLA alleles may influence both VIM suscep- 
tibility and progression. In agreement, another 
study suggests that HLA alleles may contribute 
to variability in disease course. In fact, the HLA-
DQB1*03:03 allele is overrepresented in sub-
jects with myocarditis without cardiac dysfunc-
tion compared to healthy controls [132]. HLA 
alleles have also been associated with other 
forms of myocarditis. Notably, the HLA-C*07:01 
allele has been linked to increased susceptibil-
ity to clozapine-related myocarditis in subjects 
with schizophrenia [133]. Interestingly, a tran-
sient increase in the levels of neutralizing 
IL-1RA AutoAbs has been observed in these 
patients, suggesting a potential role in disease 
onset [134-136]. Thus, these findings suggest 
that the interaction between HLA class II mole-
cules and IL-1RA AutoAbs may influence VIM 
susceptibility and onset. However, the precise 
relationship between HLA alleles and IL-1RA 
AutoAbs remains unclear. 

Beyond HLA genes, variations in HLA-I ligands 
have been associated with VIM susceptibility. 
Tsang et al. reported that killer cell immuno-
globulin like receptor (KIR)2DS3 + /KIR2DL5B/
KIR2DS4del + /KIR2DS5 haplotype correlated 
with an increased risk of acute VIM among 
Chinese adolescent [137], implicating natural 
killer (NK) lymphocytes in its pathogenesis. 
Disruption of HLA-I molecules and KIR interac-
tion can enhance NK cell-mediated cytotoxicity, 
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Table 1. Reported cases of COVID-19 vaccine-induced autoimmunity and HLA
Type of vaccine HLA Disease Population Reference
Viral vector; mRNA DRB1*03:01, DRB1*04 Vaccine-induced autoimmune 

hepatitis
Four cases (Spain) Izagirre et al. [123]

mRNA (three doses) DRB1*04 Steroid-refractory autoimmune 
hepatitis after COVID-19 vaccination

One patient (Japan) Ueno et al. [124]

mRNA DRB1*01:01, DRB1*11:01 Severe vaccine-induced autoim-
mune hepatitis

One Caucasian patient Ghielmetti et al. [125]

mRNA DRB1*14:01, DRB1*15:03 Vaccine-Induced Myocarditis 29 patients and 300 healthy con-
trols (Israel)

Aharon et al. [130]

ChAdOx1 nCoV-19 
vaccine

DRB1*11; DPB1*17:01, 
DQA1*05:01, DQB1*02:01, and 
DRB1*11:04

Vaccine-induced thrombotic throm-
bocytopenia

One patient (Denmark); Sixteen 
patients (Italy)

Tølbøll Sørensen et al. 
[144], Petito et al. [141]

mRNA; Inactive vaccine 
(CoronaVac)

B*35, C*04; A*11-B*35-C*04 
haplotype; A*01, A*03:01, A*11

Vaccine-induced subacute thyroid-
itis

14 patients, 100 healthy controls 
(Turkey); 27 patients, 362 healthy 
donors (Turkey); Two cases (Poland)

Şendur et al. [151], 
Sahin et al. [20],  
Stasiak et al. [155]

ChAdOx1 nCoV-19; 
mRNA-1273 (Moderna)

DR4, DRB1*09:01 Vaccine-induced ANCA-related sys-
temic vasculitis

2 cases (Taiwan); 1 case (Japan) Loo et al. [19],  
Kawamura et al. [21]

DRB1*15:02 Vaccine-induced glomerulonephritis 1 case (Japan) Nagai et al. [182]
m-RNA; viral vector DRB1*04 Vaccine-induced giant cell arteritis 12 patients (France) Liozon et al. [187]
m-RNA DRB1*04:04 Vaccine-induced polymyalgia rheu-

matica
1 case (Japan) Yokote et al. [190]

m-RNA; viral vector DRB1*03:01, DRB1*04, 
DRB1*11:01

Vaccine-induced antisynthetase 
syndrome

23 patients (Spain) García-Bravo et al. [197]

m-RNA DRB1*04:05:01-DQB1*04:01:01;
DRB1*09:01-DQB1*03:03; 
DRB1*13:02:01-DQB1*06:04:01

Vaccine induced-insulin-dependent 
diabetes mellitus

1 case (Japan); 1 case (Japan); 1 
case (Japan)

Sasaki et al. [59], Yano 
et al. [57], Sato et al. 
[168]

m-RNA DRB1*15:02, DRB1*04:05 Vaccine-induced systemic lupus 
erythematosus

2 cases (Japan) Sakai and co-workers 
[200]

m-RNA B*51 Behçet’s Disease-associated panu-
veitis after COVID-19 vaccination

1 case (Taiwan) Lin et al. [204]
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potentially contributing to myocardial damage. 
In parallel, increased levels of CD57+ NK lym-
phocytes have been observed in male indivi- 
duals with VIM [137]. Interestingly, increased 
IL-18 levels were also reported in a male pa- 
tient with VIM [138]. IL-18 might be responsible 
for KIR downregulation on NK cells, thereby 
enhancing NK cell activity without directly alter-
ing HLA-I expression levels [139].

HLA and VITT

VITT is an immune-mediated thrombotic disor-
der, potentially triggered by AutoAbs targeting 
PF4 and polyanion (P) complex following ad- 
enovirus-based COVID-19 vaccination. This dis-
order predominantly affects young women in 
their second and fifth decades of life [140].  
The mechanisms underlying the production of 
these AutoAbs remain unclear, likely arising 
from a complex interplay between environmen-
tal and genetic determinants.

Polymorphisms in HLA-II alleles are associat- 
ed with VITT. An observational case-control 
study conducted in Italy, involving sixteen sub-
jects with VITT following adenoviral COVID-19 
vaccination, demonstrated an elevated alle- 
lic frequency of DQA1*05:01, DQB1*02:01, 
DRB1*11:04, and DPB1*17:01 compared to 
controls subjects [141]. Notably, PF4-derived 
peptide containing specific residues (Glu28 
and Ala32) demonstrates a strong binding 
affinity for the HLA-II DRB1*11:04 molecule 
[141], highlighting its relevance in antigen  
presentation to Th lymphocytes and thymus-
dependent Ab responses. This epitope also  
corresponds to the residues on PF4 that are 
recognized by VITT anti-PF4 AutoAbs, further 
implicating its role in the pathogenesis of VITT 
[142, 143]. In the same way, Tølbøll Sørensen 
and workers reported a rare case of severe 
VITT following adenovirus-based vaccination. 
HLA-II testing revealed the presence of the 
DQB1*03/05; DRB1*01/11; and DPB1*02: 
01/04:01 alleles [144]. HLA-DRB1*11 has 
been previously associated with other AI disor-
ders that result in thrombosis among Cauca- 
sian populations in several European studies. 
Notably, HLA-DRB1*11 has consistently been 
linked to a higher risk of acquired thrombocy- 
topenic thrombotic purpura (TTP) [145, 146]. 
Furthermore, HLA-DRB1*11 is closely associ-
ated with DRB3*01:01, which has been recog-

nized as a potential trigger of heparin-induc- 
ed thrombocytopenia (HIT) [147]. Additionally, 
another study suggested an association be- 
tween the rs6903608 variant, located within 
the HLA-II locus, and the DQB1*05:03 allele in 
acquired TTP [148]. 

Despite the fact that the association between 
HLA-DR-DQ haplotypes and VITT has not report-
ed, it is notable that DRB1*11:04 is an LD with 
DQA1*05:01 in European population. Indeed, 
the DRB1*03:01-DQB1*02:01 haplotype has 
been shown to be associated with the develop-
ment of PF4/heparin Abs in individuals with HIT 
[149]. 

Thus, these findings indicate that VITT may 
share a similar feature with these coagulopa-
thies AI conditions, potentially involving an- 
tigen presentation of PF4-derived peptide by 
HLA-II molecules. 

HLA and COVID-19 vaccine-induced SAT

SAT induced by COVID-19 vaccination repre-
sents an AI and inflammatory thyroid disorder 
that may emerge following immunization. 

SAT is linked to certain HLA alleles. In 2021, 
the relationship between vaccine-induced SAT 
and HLA-B*35 was initially documented th- 
rough a study conducted on individuals expe- 
rienced SAT in Poland [150]. This association 
has since been confirmed across various eth- 
nic populations, including those in Turkey [20, 
151], Japan [152], and Ireland [153]. A case-
control study conducted in Turkey, involving 14 
subjects with COVID-19 vaccine-induced SAT 
and 100 healthy controls, revealed that 93% of 
the patients carried B*35 and C*04 alleles. 
Moreover, homozygosity for these alleles has 
been associated with thyrotoxicosis and a 
severe inflammatory response [151]. LD analy-
sis by Sahin et al. demonstrated that the A*11-
B*35-C*04 haplotype is strongly linked to vac-
cine-induced SAT in the Turkish population [20]. 
Given the substantial genetic LD between the 
C*04 and B*35 alleles [154], the C*04 allele 
alone cannot be regarded as an independent 
immunogenetic predisposing factor for vac-
cine-induced SAT. In addition to the establish- 
ed relationship between the B*35 allele and 
COVID-19 vaccine-induced SAT, several cases 
have also involved class I HLA-A alleles, includ-
ing A*01 [151], A*03:01 [155] and A*11 [20]. 
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HLA-B*35 was additionally identified as being 
linked to SAT following influenza vaccination  
in subjects from various ethnic populations [8, 
9]. The C*04 and B*35 alleles, belong to the 
HLA-I region, are known for their role in pre-
senting antigens that trigger T-cell-mediated 
immune reactions against thyroid autoantigens 
in SAT.

The proposed mechanism explaining the re- 
lationship between vaccine-induced SAT and 
B*35 allele involves exposure to vaccine adju-
vants. This hypothesis is supported by the 
observed association between SAT and several 
inactivated and subunit vaccines [156-159].

HLA and COVID-19 vaccine-induced T1DM

T1DM induced by COVID-19 vaccination repre-
sents an AI disorder that may emerge following 
immunization [160-163]. It is associated with 
specific HLA alleles and haplotypes. Notably, 
HLA-DRB1*04:05:01-DQB1*04:01:01 [59] and 
HLA-DRB1*09:01-DQB1*03:03 [57, 164] have 
been associated with the onset of T1DM follow-
ing COVID-19 vaccination. Both HLA haplotypes 
are well-established genetic factors involved  
in T1DM susceptibility in East Asian popula-
tions [165-167]. The recurrence of the same 
HLA haplotypes following other vaccines, such 
as influenza vaccination [10], strongly suggests 
that both influenza and SARS-CoV-2 vaccines 
are not inherently diabetogenic but rather act 
as non-specific immune triggers in patients 
with pre-existing HLA genetic susceptibility. 

It is noteworthy that the inclusion of HLA-
DRB1*13:02:01-DQB1*06:04 as a potential 
risk haplotype for T1DM onset following COVID-
19 vaccination [168] warrants caution. This 
haplotype is generally considered neutral or 
only weakly associated with T1DM [169]. Mo- 
reover, it is too early to deduce from a single 
patient that this haplotype significantly affects 
T1DM susceptibility after COVID-19 vaccination 
[170]. Further studies with larger cohorts are 
required to confirm this association. 

Thus, SARS-CoV-2 vaccination could trigger 
T1DM onset in patients carrying a pre-existing 
HLA genetic predisposition.

HLA and systemic AI diseases following CO-
VID-19 vaccination

Recently, numerous reports and studies have 
attempted to link the occurrence of non-organ-

specific or systemic AI conditions, which can 
affect multiple organs and systems, and spe-
cific HLA alleles or haplotypes in vaccinated 
individuals. These disorders include systemic 
vasculitis and connective tissue diseases. 
Below is a compilation of selected COVID-19 
vaccination-induced systemic AI diseases, al- 
ong with suggested HLA allele associations at 
both the individual and population levels.

HLA and COVID-19-induced systemic vasculitis

Systemic vasculitis constitutes a spectrum of 
conditions marked by intense systemic inflam-
mation affecting the vascular system. Follow- 
ing vaccination against SARS-CoV-2, rare but 
severe systemic vasculitis has been document-
ed. These include ANCA-related systemic vas-
culitis (AAV) [85, 87, 171], cryoglobulinemic 
vasculitis [172], IgA vasculitis [173], hypocom-
plementemic urticarial vasculitis [174], anti-
glomerular basement membrane (GBM) dis-
ease [175], polyarteritis nodosa [176] and GCA 
[177-179]. The role of HLA alleles in suscepti- 
bility to these conditions has been explored in 
several studies across diverse ethnic popula- 
tions. 

In AAV, the most notable association was found 
in the DR locus [19, 21], which aligns with a pre-
viously reported correlation between myeloper-
oxidase-ANCA and DRB1*09:01 in a Japanese 
population [180] as well as DR4 in a Dutch 
population [181]. The HLA-DRB1*09:01 variant 
is commonly found in East Asian cohorts, yet it 
is infrequent in European populations. 

Nagai et al. [182] documented a case of  
anti-GBM glomerulonephritis after vaccination 
against SARS-CoV-2 in Japan. HLA class II test-
ing revealed the presence of the DRB1*15:02 
allele. Nevertheless, the DRB1*15:01 allele is 
strongly associated with anti-GBM disorder in 
various ethnic populations [183-185].

GCA is characterized by chronic granulomat- 
ous inflammation, primarily involving Th1 cells. 
These cells predominantly produce IFN-γ, whi- 
ch is crucial for macrophage stimulation and 
enhances the expression of HLA-II in synovial 
fibroblasts [186]. A case-series study involv- 
ing sixteen subjects with COVID-19 vaccine-
induced GCA in France showed that 54% of  
the individuals were positive for the DRB1*04 
allele [187]. This finding aligns with previous 
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reports identifying HLA-DRB1 04 as a major 
immunogenetic risk factor for GCA [188]. 
However, Che et al. [189] failed to replicate  
this finding and instead reported a correlation 
between HLA-DRB1*16:02 and an increased 
susceptibility to bilateral ischemic optic neu-
ropathy from GCA following vaccination against 
SARS-CoV-2 in South Korea. While this sug-
gests a potential role for DRB1 16:02 in dis-
ease susceptibility, conclusions drawn from a 
single patient must be interpreted cautiously, 
as further validation is required to establish its 
relevance to vaccine-induced GCA.

HLA and polymyalgia rheumatica following 
SARS-CoV-2 vaccination

PMR is a rare inflammatory rheumatic condi-
tion primarily affecting elderly patients, caus- 
ing muscle pain and stiffness, particularly in 
the hips and shoulders. The coexistence of 
PMR and GCA may result from gene-environ-
ment interactions. Associations between cer-
tain HLA-II alleles and PMR have been explored 
in both isolated cases of the condition and in 
its co-occurrence with GCA.

Yokote et al. [190] performed HLA analysis in  
a 71-year-old woman who developed isolated 
PMR ten days following the first dose of mRNA 
COVID-19 vaccine. The authors identified the 
DRB1*04:04 allele, which was also found in 
the case described by Perez and Maravi after  
a seasonal influenza vaccine [191]. The allelic 
frequency of DRB1*04:04 ranges from 0.012 
to 0.028 in East Asian individuals [192]. Addi- 
tionally, Jarrot et al. [193] identified an incre- 
ased phenotypic frequency of the DRB1*04:01 
in 20% of PMR/GCA subjects following SARS-
CoV-2 vaccination, highlighting a genetic sus-
ceptibility previously observed in GCA [188] 
and PMR [194]. This allele may play a crucial 
role in the immuno-pathogenesis of these con-
ditions. Notably, individuals with isolated PMR 
who carry DRB1*04 alleles, especially DRB1* 
04:01, have shown a higher frequency of dis-
ease relapses [195]. This allele is considered a 
genetic risk factor for PMR but does not directly 
cause the disease. Therefore, it is hypothesized 
that older individuals with a predisposition to 
the DRB1*04 allele may have an increased 
susceptibility to the development of vaccine-
induced PMR, potentially due to the strong 
immunological response triggered by the mRNA 

vaccine against SARS-CoV-2. Moreover, the 
allelic distribution of DRB1*13:01 has been 
found to be more common in PMR patients 
compared to those with GCA [193]. Liozon et al. 
documented a significant positive association 
between PMR and DRB1*13:01 allele in older 
subjects with PMR/CGA-induced by influenza 
vaccination [11]. Further case studies incor- 
porating both HLA typing and SARS-CoV-2 Ab 
titers are necessary to explore the association 
between DRB1 and PMR/GCA after vaccination 
against SARS-CoV-2. Such research is essen-
tial for identifying individuals at higher risk for 
this rare condition. 

HLA and antisynthetase syndrome following 
COVID-19 vaccination

Antisynthetase syndrome (ASS) is a rare in- 
flammatory myopathy associated with anti-
RNA-synthetase AutoAbs, with Jo-1 being the 
most well-known. The condition is character-
ized by a range of symptoms, including intersti-
tial lung disease, inflammatory arthritis with- 
out joint deformities, fever, mechanic’s hands, 
Raynaud’s phenomenon, and myositis. 

Recent case studies have documented the 
emergence of ASS related to immunisation 
against COVID-19 [187, 196, 197]. The role of 
pathogenic high-affinity AutoAbs against RNA-
synthetases in COVID-19 vaccine-induced ASS 
suggests an interaction between B and Th lym-
phocytes. Moreover, Th lymphocyte stimula- 
tion requires T-cell receptor engagement with 
the HLA-RNA synthetase peptide complex, indi-
cating that HLA-II molecules may be genetic 
predisposition factors for ASS. This hypothesis 
has shown promise, with investigations identi-
fying DRB1*11:01, DRB1*04, and DRB1*03:01 
alleles as genetic susceptibility factors in in- 
dividuals with COVID-19 vaccine-induced ASS 
[197]. Similarly, Sugimoto et al. documented a 
rare case of dermatomyositis with melanoma 
differentiation-associated gene 5 (MDA5) Abs 
following COVID-19 vaccination, where HLA-II 
testing revealed the presence of the DRB1*04: 
05 variant [198]. 

The DRB1*03:01-B1*08:01 haplotype was 
also found in a patient with dermatomyositis 
who experienced clinical worsening following 
COVID-19 vaccination [197]. Similar findings 
were observed in several other investigations. 
In a comprehensive case-control analysis, the 



HLA and COVID-19 vaccine-induced autoimmunity

27	 Int J Mol Epidemiol Genet 2025;16(3):16-41

B1*08:01-DRB1*03:01 haplotype has been 
identified as a significant immuno-genetic  
risk factor for ASS in Spanish individuals of 
European ancestry [199]. This finding is fur- 
ther supported by the observation that HLA-
DRB1*03:01 allele is significantly correlated 
with positivity for anti-Jo-1 Abs, with a frequen-
cy of 31.80% in individuals positive for anti-Jo-1 
Abs compared to 15.50% in those negative for 
anti-Jo-1 Abs.

HLA and SLE following COVID-19 vaccination

Vaccine-induced SLE is a rare side effect oc- 
curring after several vaccines, including SARS-
CoV-2 and HBV vaccines. The onset of this  
complication involves both genetic and environ-
mental factors. In fact, Sakai et al. [200] report-
ed two cases of SLE induced by mRNA-based 
COVID-19 vaccine in Japan. Laboratory findings 
revealed specific HLA-I alleles, including HLA-A 
(*11:01, *24:02, *24:20) and HLA-B (*52:01, 
*55:02, B*46:01), and HLA-II alleles HLA-DRB1 
(*04:05, *15:02), HLA-DPB1 (*04:01, *05:01, 
*09:01), and HLA-DQB1 (*04:01, *06:01). The 
HLA-DRB1*15:02 allele is a well-established 
genetic factor involved in SLE susceptibility 
among Southeast Asian populations [201], re- 
inforcing its potential role in vaccine-induced 
SLE. This case adds to the growing evidence 
linking vaccine-induced SLE to specific HLA 
alleles. Similarly, Santoro et al. [202] reported  
a rare case of HBV vaccine-induced lupus ne- 
phritis, where HLA typing revealed the presen- 
ce of HLA-A*24:03/25:05, -B*18:25, -DRB1* 
11:02/11:32, -DQA1*05:05, and -DQB1*03: 
01. Further investigation through large cohort 
studies is needed to establish a link between 
vaccine-induced SLE and specific HLA alleles 
[203].

HLA and COVID-19 vaccine-induced Behçet’s 
disease 

Behçet’s disorder (BD), an autoinflammatory 
syndrome, is marked by recurring ulcerations in 
the oral cavity and genital regions, skin lesions, 
and inflammatory eye disorders, with a notable 
association with genetic factors, especially the 
HLA-B*51 allele. 

Recently, Lin et al. [204] reported a rare case of 
BD-associated panuveitis in a young Taiwanese 
male after receiving the initial dose of mRNA 
COVID-19 vaccine. HLA-I testing confirmed the 
presence of the B*51 allele, a well-established 

risk factor for both BD and its ocular complica-
tions, including posterior uveitis and visual 
impairment [205]. This finding aligns with pre- 
vious evidence linking HLA-B*51 to the patho-
genesis of BD and its severe ocular manifesta-
tions. On the other hand, Tagini et al. [206] 
were unable to replicate this finding and docu-
mented a case of mRNA vaccine-induced BD in 
a young Caucasian female who lacked the HLA-
B*51 allele. Interestingly, the absence of this 
allele corresponds with the mucocutaneous 
form of BD, which is more commonly seen in 
younger women [207]. Further insights into the 
role of specific HLA alleles in BD pathogenes- 
is have emerged from studies conducted in 
Thailand. These investigations underscore the 
significance of the HLA-B*51:01 allele subtype 
as a critical immunogenetic marker linked to 
posterior uveitis and visual impairment [208]. 
Additionally, the HLA-A*26:01 has been identi-
fied as a contributing risk factor in individuals 
who are negative for B*51, highlighting the 
complexity of genetic contributions to BD sus-
ceptibility [208]. The allelic distribution of B*51 
varies significantly across different ethnic gr- 
oups and populations. For instance, it is strong-
ly associated with populations across regions 
historically linked by the ancient Silk Road, 
including Turkey, North Africa, and East Asia, 
where BD is more prevalent [209]. 

Thus, it is too early to establish conclusive evi-
dence regarding the implication of B*51 allele 
and B5 antigen in the development of vaccine-
induced BD.

Mechanisms of COVID-19 vaccine-induced AI 
disorders

COVID-19 vaccine-induced AI disorders result 
from a complex interplay of pathways and 
events that allow autoreactivity to manifest  
and cause self-sustaining tissue damage. Me- 
chanisms include HLA gene predisposition, 
modification of autoantigen structure (e.g., via 
post-translational modifications and exposure 
of cryptic epitopes), antigen mimicry, and ac- 
quisition of adjuvant properties by disease-spe-
cific autoantigens.

HLA gene predisposition

Vaccines are identified by the immune compo-
nents as external antigens and interact with 
T-cell or B-cell receptors, thereby initiating an 
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adaptive immune response. Nevertheless, the 
mechanism linking HLA genes to autoimmunity 
triggered by COVID-19 vaccines remains incom-
pletely understood, with several hypotheses 
proposed to clarify this relationship (Table 2).

First, polymorphisms in HLA alleles may in- 
fluence the clinical progression of vaccine-
induced AI. As discussed above, homozygosity 
for HLA-C*04 and -B*35 alleles could be asso-
ciated with poorer outcomes in vaccine-induced 
SAT [151]. 

Second, variations in the peptide-binding 
grooves of HLA molecules may modulate 
COVID-19 vaccine-induced autoimmunity. The 
HLA peptide-binding groove comprises several 
distinct pockets that form the floor of the groove 
and interact with specific aa side chains from 
peptides. Variations in the aa composition of 
the HLA-A binding cavity B and the HLA-DR 
binding cavities P4, P7, and P9 could affect 
antigen presentation in VIM [130]. 

Third, LD between a disease-associated HLA 
allele and a nearby genomic element within the 
same haplotype that actually causes the dis-
ease, rather than the HLA molecule itself, may 
account for these associations. For instance, in 
T1DM, the observed association with HLA-DQ/
DR alleles is attributed to mutations in the in- 
sulin gene promoter, which is in LD with HLA-II 
loci [210]. Similarly, SLE shows a strong asso-
ciation with complement C4 gene deletions, 
which impair immune complex clearance. The- 
se deletions are situated within the HLA-III 
region and are in LD with HLA-DR3/DR2 haplo-
types [211, 212]. 

While immune reactivity to self-antigens in 
COVID-19 vaccine-induced autoimmunity is of- 

ten attributed to HLA-restricted antigen pre-
sentation, it is worth noting that the actual 
responsible antigen may originate from a differ-
ent locus within the haplotype or be linked 
through LD. 

Modification of autoantigen structure 

Several potential mechanisms may alter anti-
gen processing and expose cryptic epitopes. 
The vaccine or its components (e.g., polyanion 
(P)) may covalently bind to an endogenous pep-
tide (e.g., PF4) to form a cryptic antigen com-
plex [5, 213]. In this model, the cryptic antigen 
complex acts as an altered self-peptide, poten-
tially activating self-reactive T helper lympho-
cytes or failing to properly engage regulatory T 
lymphocytes due to the abnormal presentation 
of epitopes by HLA-II molecules. This process 
results in the development of Ab responses 
specifically targeting the vaccine (e.g., anti-
PF4/P antibodies in VITT). Another potential 
mechanism involves IL-1RA hyperphosphory- 
lation, which has been related to VIM [134]. 
Protein phosphorylation is crucial for the physi-
ological function of numerous proteins, and an 
increased risk of VIM has been established in 
75% of subjects with neutralizing antibodies 
against IL-1RA [134], especially those carrying 
the HLA-II DRB1*14:01/15:03 alleles [130].

Antigen mimicry

Antigen mimicry has frequently been propos- 
ed as a potential initiator of AI diseases. AI 
responses associated with COVID-19 vaccines 
may result from cross-reactivity or molecular 
mimicry between spike epitopes of the mRNA 
vaccines and self-epitopes in certain ethnic 
populations [104]. This phenomenon is also 

Table 2. Possible mechanisms for involvement of HLA in COVID-19 vaccine-induced autoimmunity
Mechanism Description Example (s)
Alteration of self peptide 
structure

Certain HLA-II molecules may present cryptic anti-
gens, either activating self-reactive Th lymphocytes 
or failing to properly engage Treg lymphocytes.

Anti-PF4/P antibodies in 
VITT

Postranslational modifications 
of self antigens

HLA alleles have a high affinity for modified 
peptides, especially if the modification alters the 
peptide’s fit in the HLA binding groove. The presen-
tation of these modified peptides differs from the 
normal presentation of unmodified self-peptides.

Hyperphosphorylated 
IL-1RA in Vaccine Induced 
Myocarditis

Molecular mimicry HLA molecules present peptides that mimic self-
antigens, leading to immune responses against 
self-tissues.

Molecular mimicry between 
spike epitopes of mRNA 
vaccines and self-epitopes
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involved in hepatitis B vaccine induced-multi- 
ple sclerosis [214].

Adjuvants

Adjuvants can trigger AI symptoms in geneti-
cally susceptible individuals. Work by Shoen- 
feld and colleagues provided important initial 
support for this concept [215]. They describ- 
ed the autoimmune/inflammatory syndrome 
induced by adjuvants (ASIA), which may occur 
following exposure to immune-stimulatory ad- 
juvants. Several case reports and small case 
series have documented ASIA-like presenta-
tions after COVID-19 vaccination, including 
polymyalgia rheumatica and SAT [216, 217]. 
However, further studies are required to con-
firm the role of adjuvants in the development  
of COVID-19 vaccine-induced AI disorders.

Clinical implications and future research

A clinical assessment, including a detailed vac-
cination history and evaluation of comorbidi-
ties, is essential for all individuals meeting the 
diagnostic criteria for AI diseases. Given the 
consequent underestimation of post-COVID-19 
vaccine-induced AI disorders, heightened vigi-
lance and systematic documentation are war-
ranted in clinical practice. In addition, a thor-
ough risk-benefit evaluation should be con- 
ducted before administering further vaccina-
tions or boosters to subjects with pre-existing 
AI diseases who are in clinical remission.

Two primary approaches are used to study the 
relationship between HLA genes and AI diseas-
es. The first involves population studies, com-
paring the distribution, frequency, and varia- 
tion of HLA loci within and across different 
human populations with those of healthy con-
trols. Notably, three case-control studies have 
demonstrated significant associations between 
HLA-I [151] and HLA-II alleles [130, 141] and  
AI conditions induced by COVID-19 vaccines. 
The second approach focuses on family stud-
ies, investigating whether affected relatives 
exhibit a higher frequency of shared HLA haplo-
types than would be expected based on gener-
al genetic inheritance patterns. However, to 
date, no family studies have been conducted to 
investigate associations between HLA haplo-
types or HLA homozygosity and COVID-19 vac-
cine-induced AI. This highlights a gap in current 
knowledge and underscores the need for future 

investigations into familial clustering and HLA-
related genetic susceptibility in this context.

Several technologies are available for HLA typ-
ing, each with distinct advantages and limita-
tions. Commonly used methods include oligo-
nucleotide-based hybridization arrays (SSO), 
polymerase chain reaction (PCR)-driven primer 
systems (SSP), dideoxy chain-termination se- 
quencing (SBT), and next-generation sequenc-
ing (NGS). However, the presence of an HLA 
allele or haplotype does not always correspond 
to its functional expression at the cell surface. 
Thus, future studies should clarify the relation-
ship between HLA expression and AI diseases 
induced by SARS-CoV-2 vaccines.

More questions than answers

Susceptibility conferred by HLA in COVID-19 
vaccine-induced autoimmunity exhibits ethnic 
specificity. Several key questions, however, 
remain unanswered. Firstly, the precise mecha-
nisms underlying susceptibility to such autoim-
munity remain elusive, necessitating further 
investigation into the specific interactions be- 
tween HLA molecules and autoantigens impli-
cated in vaccine-induced AI. Additionally, the 
high polymorphism of HLA genes poses signifi-
cant challenges in determining how particular 
alleles influence disease susceptibility, severi-
ty, and progression. Although HLA molecules 
are crucial for T cell activation, the specific pep-
tides presented in AI contexts have not been 
fully characterized. Moreover, while HLA alleles 
predispose individuals to AI diseases, environ-
mental parameters also contribute to disease 
development. 

While a significant number of these correla-
tions are found within HLA-I and II loci, large-
scale genomic analyses employing SNP mark-
ers have revealed that, beyond these HLA loci, 
the entire HLA region contains numerous SNPs 
associated with various disorders or traits. 
Notably, as much as 90% of genetic variants 
linked to AI conditions have been mapped to 
noncoding regions of the genome [218]. As a 
result, it is plausible that disease-related ele-
ments may be distributed not just within HLA 
loci, but also throughout the broader HLA re- 
gion. A key regulatory element within the non-
coding regions of the HLA is microRNA (miRNA), 
which plays an important role in gene expres-
sion modulation. An analysis of functional ele-
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ments within these regions identified 113 
microRNAs (miRNAs), including mmu-miR-721 
(has-miR-Chr8:96), which is transcribed from 
an intronic region of the HLA-DRB1 gene. 
Consequently, has-miR-Chr8:96, a microRNA 
specific to myocarditis, has shown potential as 
a marker for acute myocarditis [219]. Thus, a 
comprehensive understanding of disease pa- 
thogenesis requires thorough exploration of  
the interplay between HLA genetics, noncoding 
RNAs (miRNAs or long noncoding RNAs) and 
environmental triggers, including infections, 
diet, and lifestyle factors. Further research in 
these areas is essential for advancing our 
understanding of COVID-19 vaccine-induced 
autoimmunity and informing strategies for its 
prevention and management.
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