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Abstract: Substantial uncertainty exists as to whether combining multiple disease-associated single nucleotide 
polymorphisms (SNPs) into a genotype risk score (GRS) can improve the ability to predict the risk of disease in a 
clinically relevant way. We calculated the ability of a simple count GRS to predict the risk of a dichotomous outcome 
under both multiplicative and additive models of combined effects. We then compared the results of these simula-
tions with the observed results of published GRS measured within multiple epidemiologic cohorts. If the combined 
effect of each disease-associated SNP included in a GRS is multiplicative on the risk scale, then a count GRS score 
should be useful for risk prediction with as few as 10-20 SNPs. Adding additional SNPs to the GRS under this model 
dramatically improves risk prediction. By contrast, if the combined effect of each SNP included in a GRS is linearly 
additive on the risk scale, a simple count GRS is unlikely to provide clinically useful risk prediction. Adding addi-
tional SNPs to the GRS under this model does not improve risk prediction. The combined effect of SNPs included 
in several published GRS measured in several well-phenotyped epidemiologic cohort studies appears to be more 
consistent with a linearly additive effect. A simple count GRS is unlikely to be clinically useful for predicting the risk 
of a dichotomous outcome. Alternative methods for constructing GRS that attempt to identify and include SNPs that 
demonstrate multiplicative gene-gene or gene-environment interactive effects are needed. 

Keywords: Genotype risk score (GRS), risk prediction, multiple disease-associated single nucleotide polymor-
phisms, simple count GRS, multiplicative or additive on risk scale, simulations, dichotomous outcomes

Introduction

Multiple single nucleotide polymorphisms (SN- 
Ps) have been associated with complex diseas-
es such as obesity, cancer, diabetes, or cardio-
vascular diseases. Genetic polymorphisms 
associated with such complex diseases have 
been investigated in studies generally focused 
on a priori selected candidate genes. Advances 
in genomic technologies have made it possible 
to genotype and evaluate many SNPs through-
out the human genome to identify novel sus-
ceptibility genes. The genetic risk score (GRS) 
approach has frequently been used to aggre-
gate the contribution of multiple SNPS (combin-
ing genetic information) and to test for improved 
performance in predicting incidence of disease. 
However, conflicting results have been 
obtained. Several studies showed that informa-
tion about multiple SNPs combined into a GRS 
was associated with complex diseases such as 

obesity, type 2 diabetes, coronary heart dis-
ease, etc [1-3]. However, other studies have 
shown that the usage of GRS methods did not 
improve risk prediction [4-7].

Recent simulation studies have demonstrated 
some interesting features of genetic profiles 
that explain why the predictive value of a larger 
number of multiple weak susceptibility variants 
may be difficult to improve [8, 9]. Most simula-
tion studies assume multiplicative risk effects 
and suggest that 10 or 20 SNPs with marginal 
effects should be useful in risk prediction 
[8-10]. However, published results of the predic-
tive ability of genotype risk score derived from 
epidemiologic data have been disappointing. 
This simulation study aims to further evaluate 
the benefit of analyzing multiple genetic poly-
morphisms with a small marginal risk effect 
using genetic risk scores for risk prediction of 
complex diseases. 
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Methods

Modeling strategy

The modeling procedure has been published in 
detail elsewhere [11, 12], but is briefly summa-
rized here. The strategy for modeling has three 
steps: (1) modeling the genetic profiles of all 
subjects, (2) calculating the disease risks asso-
ciated with the genetic profiles, and (3) defining 
the disease status of all subjects. In order to 
construct the genetic profiles, we assumed that 
all genotypes and allele proportions were in 
Hardy-Weinberg equilibrium, and genes were 
generated to be independent (no linkage dis-
equilibrium). We constructed the genetic pro-
files by randomly assigning the genotypes of 
each genetic variant to all individuals, so that 
the genotype distributions are in line with the 
specified genotype frequencies. Our interest is 
to determine the risk of disease for each sub-
ject associated with GRS. The cumulative 
genetic information is obtained by summing the 
number of risk alleles for each individual in 
order to evaluate the aggregated genetic effect 
on risk prediction [2, 4, 13]. We considered two 
types of risk effects models (“additive effects 
model” and “multiplicative effects model”) in 
determining each individual’s risk of disease. 
The additive effects model assume that the 
combined effect of each SNP included in a GRS 
is linearly additive on the risk scale while the 

mation on genetic profiles, disease rates and 
disease status for 100,000 subjects for both 
additive risk effects and multiplicative risk 
effects models. Each SNP assumes 50% fre-
quency of heterogeneity and 25% increased 
relative risk (RR) for each additional genetic 
variant of dichotomous disease (RRGRS=1.25). 
For both effects models, GRSi and mGRS are 
defined to be the number of risk alleles and the 
mean value of GRS for ith subject, respectively.  
RRi is the relative risk for each subject while 
RRmGRS is the relative risk associated with the 
mean of GRS. For additive risk score model, the 
relative risks for each subject are calculated by 

RRi = 1 + (RRGRS - 1) × GRSi 

and then the disease risk rate for each subject, 
Xi, is calculated as follows: 
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where Xpop is the assumed population disease 
rate (20%). The disease rate under multiplica-
tive effects models is calculated by
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The disease rate is the ratio of individual’s rela-
tive risk associated with GRS of each subject 
over the relative risk associated with the mean 
value of GRS. 

Figure 1. The distribution of GRSs for four different genetic profiles of 10 
SNPs, 20 SNPs, 50 SNPs, and 100 SNPs.

multiplicative effects model 
indicate that the combined 
effect is log-linearly additive 
(multiplicative) on the risk 
scale. For assigning disease 
status, we assumed that sub-
jects with high disease risks 
are more likely to be assigned 
to the group that will develop 
disease than those with lower 
risk. A disease status was 
generated by comparing the 
disease risk of each subject 
to a randomly drawn value 
between 0 and 1 from a uni-
form distribution.

Simulation setting

We simulated four different 
data sets of SNPs, 10, 20, 50, 
and 100, which include infor-
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Results

Genetic profiles of 10 SNPs, 20 SNPs, 50 SNPs 
and 100 SNPs with genotype frequency of 50% 
resulted in a mean number of risk genotype in 
the simulation data of 5, 10, 25 and 50, respec-
tively. The genetic risk score was created easily 
by summing the risk alleles from each genetic 
variant. As seen in Figure 1, the observed range 
of the number of risk genotypes was 0 to 10 
when the data has 10 SNPs, 2 to 18 for 20 
SNPs, 12 to 38 for 50 SNPs, and 33 to 70 for 
100 SNPs. All genetic variants involved in the 
genetic profiles had the same relative risk and 
risk genotype frequencies. The x-axis indicates 
the number of GRS in the genetic profiles, and 
the y-axis indicates the percentage of subjects 
in the simulated population. We investigated 
the disease rates over genetic risk scores. As 
expected, the disease rates rise as the GRS 
increase. The increment is somewhat larger in 
the multiplicative risk models than additive risk 
models (Figure 2). The odds ratios per GRS 
were investigated for four different genetic pro-

files and two effects models of additive and 
multiplicative risks. The odds ratios increased 
in the multiplicative effects as the size of genet-
ic profiles increased while the odds ratios 
slightly decreased in the additive effects model. 
We also examined the relative risks of quintiles 
of GRS for both risk models. A distinct trend 
was observed in the relative risks over quintiles 
of GRS for the multiplicative effects model. 
That is, with advancing quintiles of GRS, the 
relative risks increased. For comparison with 
risk effects model, we found that multiplicative 
effects models show higher relative risks compar- 
ed to additive effects models. The marked 
increase in the relative risks was shown in the 
multiplicative effects model as the number of 
SNPs increase. For the multiplicative effects 
models, fifth quintile, the relative was 2.3 for 
10 SNPs and 15.5 for 100 SNPs. However, the 
relative risks for quintiles slightly decreased as 
the number of SNPs increased in the additive 
effects model. The area under ROC curve (AUC) 
of genetic profiles ranged from 0.6353 for 10 
SNPs, 0.6804 for 20 SNPs, 0.7867 for 50 

Figure 2. Plot of GRS frequencies and disease rates over GRS. (A) for additive risk effects models, (B) for multiplica-
tive risk effects models.

Figure 3. The ROC curves of four different genotype profiles for additive and multiplicative effects models. 
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SNPs, and 0.8787 for 100 SNPs in the multipli-
cative effects models while the AUC went from 
0.5706 for 10 SNPs to 0.5317 for 100 SNPs, 
which indicates a slight decrease as the num-
ber of SNPs increases. Figure 3 shows the ROC 
curves for four different genotype profiles for 
both risk effects models. Table 1 includes the 
odds ratios of GRS, relative risk associated 
with GRS, and AUC for each genetic profile. 
Based on our results, we conclude that: (1) GRS 
under the additive model is not useful for pre-
dicting dichotomous outcomes. Adding addi-
tional SNPs to the GRS provides very little addi-
tional information and therefore is also not 
likely to be clinically useful, (2) By contrast, GRS 
under the multiplicative model can be useful 
for predicting dichotomous outcomes. Adding 
additional SNPs to the multiplicative GRS does 
provide additional information. Good prediction 
of dichotomous outcomes can be obtained with 
as few as 10-20 SNPS, each with small effects 
(RR < 1.2) under the multiplicative model (con-
sistent with other simulation studies), (3) Avai- 
lable GRS data in published cohorts is much 
more consistent with an additive model than a 
multiplicative model. This is similar to the com-
bined effects of other non-genetic risk factors 
(e.g. the combined effect of elevated LDL cho-
lesterol and hypertension is very close to linear 

additive effects, instead of multiplicative). It is 
supported by three lines of evidence: Logistic 
Model RR per increase in GRS, Area under ROC 
curve, and RR of increasing quantiles (e.g. quin-
tiles), and (4) Therefore, for GRS to be clinically 
useful for predicting dichotomous outcomes, 
alternative non-parametric statistical models 
are needed to identify a group of SNPS whose 
combined effect is closer to multiplicative than 
additive (adding all SNPs may create too much 
noise and obscure the combined effects of the 
more important SNPs, i.e. those whose com-
bined effects are multiplicative). This may be a 
preferred strategy and provide more powerful 
predictive information than simply including all 
disease-associated SNPS in a simple count 
GRS.

Discussion

Epidemiologic studies that have used genetic 
risk scores for cardiovascular disease have 
found some evidence of increased prediction 
[5, 14]. There is debate over whether variants 
of a relatively small number of genes, each with 
weak or modest individual effects, account for 
a large proportion of common diseases in the 
population, or whether a large number of rare 
variants with large effects underlie genetic sus-
ceptibility to these diseases. It is not clear how 

Table 1. A comparison table between additive GRS and multiplicative GRS, including odds ratios of 
GRS, RRs of quintiles for GRS, and areas under the curves (AUC) for all four different genotype pro-
files in both additive and multiplicative effects models

GRS type GRS statistics
Generated data type (Number of SNPs)

SNP = 10 SNP = 20 SNP = 50 SNP = 100
Additive OR per GRS 1.174 1.093 1.054 1.021

(95% CI) (1.138, 1.212) (1.070, 1.117) (1.040, 1.068) (1.012, 1.030)
RR of Q5/Q1 1.5540 1.5842 1.3488 1.2133
RR of Q4/Q1 1.4748 1.3465 1.2099 1.1136
RR of Q3/Q1 1.3201 1.3003 1.2037 1.0776
RR of Q2/Q1 1.1978 1.1584 1.1019 1.0166

AUC 0.5706 0.5579 0.5502 0.5317
(95% CI) (0.557, 0.584) (0.544, 0.572) (0.536, 0.564) (0.518, 0.546)

Multiplicative OR per GRS 1.381 1.370 1.444 1.481
(95% CI) (1.338, 1.426) (1.338, 1.402) (1.419, 1.470) (1.458, 1.505)

RR of Q5/Q1 2.3004 3.6599 7.4452 15.5278
RR of Q4/Q1 1.9313 2.3655 4.1164 7.6389
RR of Q3/Q1 1.5751 2.0965 2.7192 4.2037
RR of Q2/Q1 1.3262 1.4873 1.7877 2.0370

AUC 0.6354 0.6804 0.7867 0.8787
(95% CI) (0.623, 0.648) (0.668, 0.693) (0.777, 0.797) (0.872, 0.886)
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many genes are necessary to account for an 
appreciable population-attributable fraction of 
these diseases. Yang and his colleague [9] esti-
mated the number of disease susceptibility 
genes needed to account for varying popula-
tion attributable fractions of a common com-
plex disease. They concluded that only less 
than 20 genes are usually needed to explain 
50% of the burden of a disease in the popula-
tion if the predisposing genotypes are common 
(≥ 25%), even if the individual risk ratios are 
relatively small (RR = 1.2-1.5). Our results are 
consistent with Yang et al. (2005).  

During the last decades, epidemiological and 
laboratory studies have supported solid evi-
dence that significant gene-gene as well as 
gene-environment interactions underlie chron-
ic complex diseases. Thus, in the epidemiologic 
literature on complex chronic diseases (cancer, 
diabetes, cardiovascular diseases, etc), both 
gene-gene and gene-environmental interaction 
figure prominently. However, although there is a 
clear linkage between lifestyle and genetic 
background, a thorough understanding of the 
underlying mechanisms and how these com-
plex and chronic diseases are triggered and 
progress is only just beginning to emerge. That 
is, the complex interplay between genes and 
environment in chronic diseases is generally 
not well understood. Behavioral and environ-
mental factors such as cigarette smoking and 
alcohol consumption would be useful to include 
in risk prediction. If research aims to reduce 
the burden of complex disease, research priori-
ties should include the identification and devel-
opment of novel biomarkers, providing an easy 
in-vitro diagnostic approach for phenotype 
classification of the patients. An important 
approach toward this goal will be the integra-
tion of omics data, requiring huge investments 
in bioinformatics and systems biology [15]. 

Several empirical studies have considered 
whether multiple genetic variants will afford 
better risk prediction to identify individuals that 
are at higher risk. Most of those studies assu- 
med multiplicative gene effects on risk scale 
(additive gene action on the log risk scale) and 
those studies found that risk alleles underlying 
complex genetic diseases have small marginal 
effects, with most genotype relative risks in the 
range of 1.1 to 2.0. Based on empirical studies, 
the additive effects models offers a better fit in 
risk prediction modeling using multiple poly-

morphisms than multiplicative effect models 
[4-8, 16, 17]. Most epidemiologic studies have 
used a parametric model of logistic regression 
models for risk prediction. However, since the 
logistic models are in nature a log additive (mul-
tiplicative) over the risk scale, they do not fit the 
multigenic studies that might better fit linearly 
additive effects over the risk. Alternative meth-
ods for constructing GRS that attempt to iden-
tify and include SNPs that demonstrate multi-
plicative gene-gene or gene-environment inter-
active effects are needed. Recursive partition-
ing methods can be a potential alternative to 
overcome the limitation of current logistic mod-
els to identify risk prediction [18-21].
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