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Abstract: Membrane fusion is a universal event in all living organism. It is at the heart of intracellular organelle 
biogenesis and membrane traffic processes such as endocytosis and exocytosis, and is also used by enveloped vi-
ruses to enter hosting cells. Regarding the cellular mechanisms underlying membrane fusion, pioneering studies by 
Randy Schekman, James Rothman, Thomas C. Südhof and their colleagues have demonstrated the function of spe-
cific proteins and protein-protein interactions as essential fusogenic factor to initiate membrane fusion. Since then, 
function of lipids and protein-lipid interaction has also been identified as important players in membrane fusion. 
Based on that NSF (NEM-sensitive factor where NEM stands for N-ethyl-maleimide) and acyl-CoA are required for the 
membrane fusion of transporting vesicles with Golgi cisternae, it is further suggested that the transfer of the acyl 
chain to a molecule(s) is essential for membrane fusion. Among the previously identified fusogens, phosphatidic 
acid (PA) is found as an acyl chain recipient. Functionally, acylation of PA is required for tethering the membranes of 
Rab5a vesicles and early endosomes together during membrane fusion. As certain threshold of proximity between 
the donor and acceptor membrane is required to initiate membrane fusion, fusogenic factors beyond protein-protein 
and protein-lipid interaction need to be identified.
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Introduction

Membrane fusion is initiated when separate 
membrane vesicles or compartments are br- 
ought into close proximity. To allow initiation, 
two membranes must overcome two dominant 
forces: a repulsive hydration force arising from 
water tightly bound to the hydrophilic lipid head 
groups and an attractive hydrophobic force 
between the hydrocarbon interiors of the bilay-
ers [1-3]. Initiation of membrane fusion is then 
followed by hemifusion and formation of the 
fusion pore. The final stage of membrane fusion 
is triggered by expansion of the fusion pore [4]. 
To allow cells to function in a controlled and 
regulated manner, membrane fusion, which 
mediates exchange and trafficking among cel-
lular compartments, requires activity-depen-
dent and organized execution rather than being 
a random event. First of all, not all bilayer mem-
branes are chemically and functionally equal. 

Lipid composition may define the efficiency of 
distinct fusion process. It has been shown that, 
while the inverted cone-shaped LPCs supp- 
ress hemifusion, they facilitate fusion pore for-
mation. The cone-shaped PEs facilitate hemifu-
sion but inhibit fusion pore formation [4, 5]. 
Conceptually, random and spontaneous mem-
brane fusion is prevented by physical repulsion 
from hydration and charges when bilayer mem-
branes are in close distance to each other. It is 
accepted that the energy required to overcome 
the repulsion may come from the formation of 
protein complex across the to-be-fused mem-
branes. Molecular and biophysical studies have 
shown that a group of membrane bound SNARE 
(soluble NSF attachment protein receptor) pro-
teins possesses a conserved coiled-coil region 
that can mediate strong inter-molecular interac-
tion [6]. The formation of the inter-molecular 
bundle via physical association among the 
SNARE motifs triggers energy release to bring 
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membranes into close proximity. It is evident 
that the requirement for SNARE-mediated pro-
tein-protein interaction varies and may depend 
on lipid content and protein-lipid interaction. 
For example, bilayer with high PE/PS fuses 
more efficiently and requires less SNARE com-
plexes [7]. It is further proposed that the fusion 
site may possess unique molecular character-
istics including high density of SNAREs [8], lipid 
composition that facilitates membrane curva-
ture [9], and enrichment of protruding lipids 
[10].

Fatty acids and vesicle membrane fusion

The last two decades witnessed an explosion 
of knowledge on a number of factors involved in 
vesicle membrane fusion, including proteins, 
fatty acids, acyl-CoA esters and membrane lip-
ids. Arachidonic acid, a long-chain polyunsatu-
rated fatty acid (PUFA), has been demonstra- 
ted to be an effective fusogen. It can signifi-
cantly promote Ca2+-triggered fusion of isola- 
ted chromaffin granules [11], endosome-endo-
some fusion [12] and GTP-dependent fusion of 
microsomes [13]. Moreover, membrane-bound 
arachidonic acid can drive annexin II-mediated 
membrane fusion of the lamellar body with the 
plasma membrane during exocytosis [14].

How arachidonic acid promotes membrane 
fusion remains unclear. In neuronal cells, ara-
chidonic acids are capable of removing the 
inhibitory Munc18 protein from syntaxin in 
vitro, thus allowing the formation of the SNA- 
RE complex, which is composed of vesi- 
cle-associated membrane protein 2 (VAMP2), 
SNAP-25 (synaptosome associated protein-25), 
and syntaxin1 [15]. However, a later in vitro 
study shows that Munc18 still attaches to syn-
taxin1 after the arachidonic acid-stimulated 
formation of the SNARE complexes. Thus, the 
function of arachidonic acids in SNARE com-
plex formation needs further investigation. 

Fatty acyl-coenzyme A (CoA) esters are sub-
strates for β-oxidation, which is critical for syn-
thesis and remodeling of lipids and protein 
acylation reactions. One acyl-CoA, palmitoyl-
CoA, is found indispensable for the budding of 
transport vesicles from Golgi cisternae and 
fusion of transport vesicles with Golgi cisternae 
[16-18]. Vesicle transport is blocked by inhibi-
tor of long-chain acyl-CoA synthetase and a 
nonhydrolyzable analogue of palmitoyl-CoA, 
suggesting that fatty acid has to be activated 

by CoA to stimulate transport and that the  
acyl group has to be transferred to other 
molecules.

Many of the proteins that mediate synaptic  
vesicle fusion and trafficking are indicated as 
the recipients of the acyl groups [19, 20]. 
Palmitoyl groups are covalently linked to cyste-
ine residues of synaptotagmin, α-SNAP (so- 
luble Nethylmaleimide-sensitive-factor-attach- 
ment protein-α) and SNARE proteins Ykt6, 
VAMP and SNAP-25. Palmitoylation of these 
proteins may be required for anchoring them to 
membranes or sorting to particular membrane 
micro-domains such as lipid rafts. Palmitoyla- 
tion of Ykt6 has been suggested to regulate  
the rate of intracellular membrane flow and 
vesicle fusion in the secretory pathway [21]. 
However, the significance of palmitoylation of 
these proteins in vesicle membrane fusion is 
unclear. 

Phosphatidic acid (PA) is another fusogenic 
lipid that plays important roles in vesicle trans-
port. It is proposed that PA, with a very small 
negatively charged head group, induces nega-
tive membrane curvature at the inward mem-
brane curve [22]. Phospholipase D (PLD) hy- 
drolyzes membrane phosphatidylcholine to  
produce PA. The two isoforms of PLDs, PLD1 
and PLD2, are involved in vesicle trafficking 
during endocytosis and exocytosis [23, 24]. 
Depletion of PLD2 inhibits recycling of transfer-
rin receptors in HeLa cells [25]. Endocytic traf-
ficking and endosomal signaling of EGFR (epi-
dermal growth factor receptor) are also regu-
lated by PLD1 and its regulators, protein kinase 
Cα and RalA [26]. The role of PLD-derived PA 
has been shown to be required for key exocy-
totic processes in various cell types inclu- 
ding adipocytes [27], neuroendocrine cells 
[28], mast cells [29] and pancreatic beta-cells 
[30]. Another fusogenic lipid is diacylglycerol 
(DAG), which can be generated at the mem-
brane through the PA phosphatase activity of 
Pah1 [31, 32]. Cumulating evidence has sug-
gested that DAG increases the fusogeneicty of 
vacuoles [33]. These observations strongly 
suggest that lipid modifications are essential 
for various vesicle membrane fusion events.

Role of SNARE and SM (Sec1/Munc18-like) 
proteins in membrane fusion

SNARE proteins are receptors for SNAP and 
NSF. They belong to a family of membrane teth-



Mechanism of membrane fusion

252	 Int J Physiol Pathophysiol Pharmacol 2019;11(6):250-257

ered coiled-coil proteins that are required for 
vesicle membrane fusion. SNARE proteins  
have been shown to mediate fusion of lipid 
bilayers in assays using reconstituted lipo-
somes; therefore they are considered the best 
candidates for the cellular fusogens. It is pro-
posed that vesicle-associated v-SNARE pro-
teins syntaxin and SNAP-25 pair with cognate 
t-SNARE protein VAMP on the target membr- 
ane to form four-helix bundle (SNAREpin) that 
brings lipid bilayers into close proximity. The 
pairing starts at the N termini of the SNARE  
proteins and then proceeds in a zipper-like 
manner towards the C-terminal trans-mem-
brane regions, thereby enabling bridging of 
donor and acceptor membranes. SNARE inter-
actions may also increase their local concen-
tration to help SNARE assembly or convert 
SNAREs into a fusion competent form [34]. The 
resulting mechanical force might overcome the 
energy barrier and bring the lipid bilayers close 
enough for fusion to occur [35, 36].

Fusion assays using in vitro reconstituted lipid 
bilayers have lead the hypothesis that SNARE 
proteins are the minimal fusion machinery. It 
has been shown that when synaptic vesicle 
membrane protein VAMP2, a v-SNARE protein, 
and two plasma membrane t-SNARE proteins 
syntaxin1A and SNAP25 are reconstituted  
into phospholipids to form donor and acce- 
ptor vesicles, respectively, they are sufficient  
to promote specific fusion between the two 
types of vesicles [36]. However, it is also evi-
dent that, in addition to the known SNARE pro-
teins, many other proteins have permissive 
roles to allow vesicle fusion in vivo [3, 36]. In 
neuroendocrine cells, for instance, Munc-18 
(mammalian uncoordinated-18) protein, a me- 
mber of the SM protein family, has been shown 
to facilitate syntaxin trafficking to the cell sur-
face by interacting with syntaxin and preventing 
premature SNARE complex formation between 
syntaxin and SNAP-25 [37].

Although lines of evidence have been obtained 
using artificial membranes, ample studies also 
indicate that artificial membrane fusion will not 
necessarily be mediated by the same mecha-
nism used for fusion between biological mem-
branes. Recently, endosome-endosome fusion 
was successfully mimicked using reconstituted 
proteoliposomes with up to 17 recombinant 
proteins purified from bacteria [38]. These pro-

teins include Rab5, Rab5 effectors, SNARE pro-
teins and SNARE accessory factors, and other 
proteins that are currently known to be impor-
tant for vesicle fusion. They can promote fusion 
of proteoliposomes at physiologically meaning-
ful rate. However, they are not capable of pro-
moting efficient fusion between biological 
intact endosomes, suggesting that the SNARE 
proteins are not the fusogenic factors that are 
minimally required for membrane fusion [38]. 
In addition, high fusion rate can be reached 
with reconstituted proteoliposomes utilizing 
bacterially expressed proteins that essentially 
lack post-translational modifications, whereas 
many proteins that are involved in membrane 
fusion are post-translationally modified in vivo, 
such as the palmitoylation of synaptotagmin, 
α-SNAP and SNARE proteins Ykt6, VAMP and 
SNAP-25 [19-21], as well as the isoprenylation 
of Rab5 [39]. This further indicates that fusion 
of artificial lipid bilayers may be mechanis- 
tically different from the fusion of biological 
membranes.

The data from reconstitution assays also imply 
that some components critical to vesicle fusion 
are missing in the in vitro assay system and 
that these components are likely to function 
prior to SNARE-mediated cellular events [3, 
38]. Supportively, while arachidonic acid is 
essential for fusions between many kinds of 
vesicles including endosome-endosome fusion, 
it is not needed for artificial membrane fusion 
[12-14].

Novel function of the TIP30-Rab5a-Endo B1-
ACSL4 complex in regulating activity-depen-
dent termination of EGFR signaling through 
endosome membrane fusion

Although the necessary machinery for mem-
brane fusion is present in both transport and 
target vesicles, membrane fusion does not 
occur spontaneously but is rather activity 
dependent. With regard to the functional role of 
endosome/lysosome-mediated receptor deg-
radation, it is known that, following EGF stimu-
lation, the EGFR signaling is then terminated 
through receptor-mediated endocytosis. The 
internalized EGFR is initially delivered to the 
sorting station early endosomes, where they 
are either recycled back to the plasma mem-
brane or transported to late endosomes and 
lysosomes for degradation [40-42]. Under cer-
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tain conditions, the altered EGFR signaling may 
leads to pathological outcomes such as 
tumorigenesis. 

The function of TIP30 in membrane fusion was 
discovered by an unbiased and non-hypothesis 
driven approach. TIP30, also called CC3 or 
HTATIP2, was initially identified as a metas- 
tasis suppressor [43]. It was independently iso-
lated as an HIV-1 Tat-interacting protein that 
may enhance Tat-activated transcription [44]. 
Tip30-deficient mice with C57BL6/J and 12- 
9SvJ mixed genetic background spontaneo- 
usly developed a spectrum of tumors, suggest-
ing TIP30 as a tumor suppressor [45]. Further, 
aberrant expression of TIP30 has been associ-
ated with a variety of human cancers, including 
human liver [45, 46], lung [47], breast [48], 
prostate [49, 50], and gastric cancers [51], as 
well as colorectal carcinoma [52]. Mechani- 
stically, TIP30 may function as a transcription 
repressor to inhibit ERα-mediated c-myc tran-
scription by interacting with ERα-interacting 
coactivator NCOA5/CIA [53]. Unrelated to its 
transcription repressor function, TIP30 is also 
found in the cytosol and regulates EGFR-
mediated Akt signaling [54]. Intriguingly, genet-
ic depletion of Tip30 causes trapping of the 
EGF-EGFR complex in early endosome and, in 
turn, results in a much-delayed EGFR degrada-
tion [54]. The data suggests a surprising new 
function of TIP30 in regulating endocytic traf-
ficking. Co-immunoprecipitation followed by 
mass spectrometric analysis reveals that  
TIP30 interacts with Rab5a, ACSL4 (acyl-CoA 
synthetase long-chain family member 4), and 
Endo B1 (Endophilin B1, also known as Bif-1),  
all of which co-exist in a complex [54]. Notably, 
within this complex, Rab5a and Endo B1 are 
known to regulate certain aspect of endocytic 
membrane fusion and trafficking [55, 56]. 
ACSL4 preferentially uses arachidonate as  
substrate and converts free long-chain fatty 
acids into fatty acyl-CoA esters, and thus may 
affect membrane lipid composition [57]. 

Rab5 is a member of the Rab GTPase family, 
which is anchored to the cytoplasmic face of  
all vesicles involved in intracellular transport 
via the prenyl groups covalently linked to two 
cysteines in the C-terminus. Based on the con-
nection between lipid and Rab, it has been pro-
posed that Rab proteins may act as identity 
tags for distinct transporting vesicles and bring 

transporting vesicles to specific recipient mem-
branes and tether those membranes by recr- 
uiting multitude of effectors [58-61]. Although 
Rab5 and its effector EEA1 are required for  
the transition from early endosome to late 
endosome, endosomal tethering, and end- 
ocytic degradation of EGFR [54, 55, 62, 63], 
Ohya et al. found that Rab5 and EEA can only 
increase endosomal fusion by 3% and 10%, 
respectively [38]. This suggests that Rab5  
and EEA may not be sufficient to trigger signifi-
cant fusion between biological intact endo-
somes. With regards to endocytic trafficking 
and degradation of EGFR, a study by Zhang et 
al. found that the TIP30-ACSL4-Endo B1 com-
plex recruits Rab5-positive vesicles [54], which 
harbor V-ATPase (vacuolar H+-ATPase) but are 
devoid of EEA1 and EGFR, to early endosomes 
in response to EGF. Fusion of Rab5-positive 
vesicles with early endosomes introduces 
V-ATPase and in turn causes acidic luminal pH 
[64] to drive EGF and EGFR dissociation and 
termination of EGFR signaling.  

Endophilins are a group of proteins that con- 
tain an N-terminal amphipathic helix, a BAR 
(Bin/Amphiphysin/Rvs) domain and a C-ter- 
minal SH3 domain. The BAR domain is highly 
conserved in many proteins that involve in 
membrane dynamics. The dimeric BAR do- 
mains of endophilins are banana shaped and 
can sense and bind membrane curvature via  
its concave face to remodel liposomes struc-
ture [65]. In Drosophila and Caenorhabditis 
elegans, endophilin is required for synaptic ve- 
sicle recycling [66-69]. In mammalian cells, 
endophilin is localized to synaptic vesicles and 
is required for neurotransmitter release from 
endocytic vesicles [56, 66, 70]. As for the func-
tion of a specific endophilin, Endo B1 along  
with TIP30 and ACSL4 recruits Rab5 vesicles in 
response to EGF stimulation. Further, knock-
down of TIP30, ACSL4 or Endo B1 suppresses 
EGF-EGFR dissociation and EGFR degradation 
via delaying the endocytic trafficking and mem-
brane fusion [54]. 

Novel function of the TIP30-Endo B1-ACSL4 
complex in mediating lipid modification and 
conversion and vesicle stacking 

It is recognized that, although reconstitution 
assays with SNAREs, Rabs and other effector 
proteins show successful fusion with artificial 
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membranes, efficient fusion of biological mem-
branes requires additional factors [3, 38] such 
as arachidonic acid and co-enzyme A [11, 12]. 
Although how arachidonic acid plays an essen-
tial role in membrane fusion is unclear, the 
TIP30 complex, which mediates the fusion of 
Rab5a-positive vesicles with endosomes, con-
tains ACSL4. Based on that ACSL4 is an acyl-
CoA ligase, which preferentially uses arachi-
donic acid as substrate [71], how the TIP30 
complex, coenzyme A, and arachidonic acid 
regulate fusion was directly tested by in vitro 
assay with endocytic and Rab5a vesicles [72]. 
The Rab5 vesicles were labeled with EYFP-
Rab5a fusion proteins and purified from  
HepG2 cells that do not express detectable 
TIP30 and EGFR. The endocytic vesicles were 
labeled with EGFR-DsRed fusion proteins and 
purified from EGF-treated HepG2 cells. The 
Rab5a and endocytic vesicles were mixed 
along with the supplement of immune-purified 
TIP30 complex, arachidonic acid and co-
enzyme A, and examined by confocal mi- 
croscopy. Efficient vesicle fusion and aggrega-
tion were observed, as indicated by the co-
localization of EGFR-DsRed and EYFP-Rab5a 
fluorescent signals, in a GTP-dependent man-
ner. This is consistent with that GTP is required 
for Rab5a function. In stark contrast, when  
the TIP30 complex, or coenzyme A, or arachi-
donic acid, or GTP was excluded from the sup-
plement, membrane fusion cannot be accom-
plished. Both endocytic and Rab5a vesicles 
remained as small particles; fluorescence co-
localization was not detected. The function of 
these molecules in membrane fusion was fur-
ther examined by transmission electron mi- 
croscopy. With the supplement of arachidonic 
acid, small vesicles (50 to 300 nm in diameter) 
fused to form larger vesicles (more than 1 µm 
in diameter). Further, membrane fusion did not 
occur when arachidonic acid was replaced by 
other fatty acids including palmitic, palmitoleic, 
oleic, linoleic, linolenic, eicosapentaenoic, and 
docosahexaenoic acids. These in vitro results 
are consistent with function of TIP30 complex 
in regulating endocytic EGFR trafficking in living 
cells [54]. 

One remaining question is how arachidonyl-
CoA, which is likely synthesized from arachi- 
donic acid and co-enzyme A by ACSL4 in the 
TIP30 complex, facilitates membrane fusion. 
Conceptually, the arachidonyl group of the syn-

thesized arachidonyl-CoA may be transferred to 
certain lipid and in turn trigger membrane 
fusion. In fact, the radioactivity of 3H-arachi- 
donic acid was transferred to a different lipid 
species when the TIP30 complex was supple-
mented. With a protein-lipid overlay assay, 
TIP30 and Endo B1 were found to specifically 
bind phosphatidic acid (PA), a lipid species 
involved in membrane fusion of various intra-
cellular vesicles [73, 74]. A preliminary an- 
alysis of the lipid profile following MS/MS  
and LC-MS/MS spectrometry suggested that 
triacylglycerols may be the product of PA  
acylation. Strikingly, lipid fraction purified from 
reaction mixture of PA and the TIP30 complex 
promoted fusion of endocytic and Rab5a vesi-
cles (as indicted by fluorescence co-localiza-
tion). A specific triacylglycerol species, 1,2- 
Dilinoleoyl-3-palmitoyl-rac-glycerol with a pal-
mitoyl tail at the sn-3 position also promoted 
vesicle fusion. However, transmission electron 
microscopy found that the PA derivatives only 
causes vesicle tethering and stacking but does 
not lead to the formation of large membrane 
fusion product (i.e. vesicles with diameter of 
>0.5 um). 

Summary and future direction

Based on previous studies, we propose that, 
upon EGF stimulation, Rab5a vesicles move to 
peripheral regions where TIP30, ACSL4 and 
Endo B1 act in concert to facilitate the fusion of 
Rab5a vesicles with early endosomes. TIP30 
presumably binds PA on early endosomes and 
tethers Rab5a, ACSL4 and Endo B1 together at 
the fusion sites. ACSL4 catalyzes the synth- 
esis of arachidonyl-CoA from arachidonic acid 
and coenzyme A. Next, the arachidonyl chain of 
arachidonyl-CoA is substituted for the phos-
phate headgroup of PA to form triacylglycerol, 
which enables attachment of Rab5a vesicles 
with early endosomes. Subsequently, Rab5a, 
SNAREs and their associated proteins facilitate 
the following membrane fusion steps. We envi-
sion that the replacement of the phosphate 
headgroup of endosomal PA with an arachido-
nyl chain not only neutralizes the negative 
charge of PA, but also provides a hydrophobic 
group to insert into the membrane of Rab5a 
vesicles and perturb the lipid bilayers. Future 
studies to identify effective endogenous triacyl-
glycerol that enables effective membrane 
fusion of Rab5 vesicles with early endosomes 
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would provide insight concerning the direct role 
of lipid to initiate membrane fusion. There are 
also challenges to elucidate mechanisms un- 
derlying fusion processes beyond the tethering 
and stacking step as well as fusion pore forma-
tion and expansion. 
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