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Abstract: Cellular structures that perform essential homeostatic functions include tight junctions, gap junctions, 
desmosomes and adherens junctions. The aqueous humor, produced by the ciliary body, passes into the anterior 
chamber of the eye and is filtered by the trabecular meshwork (TM), a tiny tissue found in the angle of the eye. This 
tissue, along with Schlemm’s canal (SC) inner wall cells, is thought to control intraocular pressure (IOP) homeostasis 
for normal, optimal vision. The actin cytoskeleton of the tissue plays a regulatory role in maintaining IOP. One of the 
key risk factors for primary open angle glaucoma is persistent elevation of IOP, which compromises the optic nerve. 
The ZO-1 (Zonula Occludens-1), extracellular matrix protein integrins, and gap junction protein connexin43 (Cx43) 
are widely expressed in many different cell populations. Here, we investigated the localization and interactions of 
ZO-1, α3 integrin, β1 integrin, and Cx43 in cultured porcine TM and SC cells using RT-PCR, western immunoblot-
ting and immunofluorescence labeling with confocal microscopy, along with co-immunoprecipitation. ZO-1 partially 
co-localized with α3 integrin, but not with β1 integrin, and co-immunoprecipitated with Cx43, as well as with α3 
integrin. The association of ZO-1 with α3 integrin and Cx43 suggests that these proteins may form a multiple protein 
complex in porcine TM and SC cells. Since integrins interact with the actin cytoskeleton via scaffolding proteins, 
these results implicate junctional and scaffolding protein ZO-1 as a potential control point in regulation of IOP to 
normal levels for glaucoma therapy.
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Introduction

Primary open-angle glaucoma (POAG) is the 
major form of glaucoma worldwide [1], and is 
one of the leading causes of blindness, espe-
cially in the elderly, as well as those of African 
and Hispanic ancestry at younger ages [2, 3]. 
Approximately 70 million people are thought to 
be afflicted worldwide [4]. Intraocular pressure 
(IOP) elevation, common in POAG, results from 
increased resistance to aqueous humor (AH) 
outflow, and is one of the key risk factors for 
optic nerve damage [5]. Although progress has 
been made in understanding the pathogenesis 
of this disease, the regulation of IOP is complex 
and is not fully understood. Trabecular mesh-
work (TM) cells, along with the inner wall cells 
of Schlemm’s canal (SC), are aqueous humor 
(AH) drainage structures, and play a pivotal  
role in regulating aqueous flow resistance and 
intraocular pressure (IOP) [6]. TM cells sense 

elevated IOP as mechanical stretch [6, 7]. TM 
cells are attached to multiple layers of be- 
ams; these beams contain extracellular matrix 
(ECM), composed of structural and functional 
connective tissue components that interact 
with TM cells via integrin proteins [8]. Integrins 
comprised of α and β subunits serve as the 
major receptors that connect the cytoskeleton 
to the ECM. To date, more than a dozen integ-
rins have been detected in human TM cells, 
and these integrin receptors may play a func-
tional role in TM-ECM interactions [9, 10]. 

ZO-1, also called tight junction protein 1 (TJP1), 
is widely expressed and associated with vari-
ous cellular junctions, including tight junctions, 
gap junctions and adherens junctions in many 
cell types and tissues [11-17]. Former studies 
showed that ZO-1 is intimately associated with 
the actin cytoskeleton network [18], and integ-
rins may be involved in regulating gap junction 
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expression and communication between cells 
[19]. Gap junction protein connexinx 43 (Cx43), 
a well known ZO-1 interacting protein, is associ-
ated with α5 integrin in bone cells [20], and as- 
sociates with α5β1 integrin in lung cancer cells 
[21]. Recently, evidence showed that ZO-1 in 
TM cells [22, 23], and integrins interact with 
the actin cytoskeleton via ZO-1 associated mol-
ecules such as actinin, focal adhesion kina- 
se (FAK), and junctional adhesion molecule 
(JAM) in other tissues [18]. Considering these 
disparate facts, we hypothesized that there 
may also be an association of ZO-1 with integ-
rins and Cx43 in TM and SC cells. Since such an 
association could result in stimulatory or inhibi-
tory control of the actin cytoskeleton and regu-
lation of IOP in glaucomatous optic neuropathy, 
we investigated the expression and association 
of α3β1 integrin, Cx43, and ZO-1 in TM and SC 
cells using various molecular techniques.

Materials and methods

Antibodies

Monoclonal antibodies against α3 integrin  
(Cat. No. NBP1-97692), and β1 integrin (NBP2-
22191) were obtained from Novus Biologicals 
Laboratories (Littleton, CO, USA). Rabbit anti-
ZO-1 (Cat. No. 40-2200), and anti-Cx43 (Cat. 
No. 71-0700) antibodies were purchased from 
Life Technologies (Invitrogen, Carlsbad, CA, 
USA) and the specificity of ZO-1 and Cx43 antibo- 
dies was previously reported [24-26]. 

Cell culture

Porcine eyes were obtained from a local abat-
toir (Carlton Packing Co., Carlton, Oregon), and 
the eyes were dissected and cultured in Dul- 
becco’s Modified Eagle’s Medium (DMEM, con-
taining 50/50% high and low glucose, Sigma-
Aldriceh, St. Louis, MO). Supplemented with 
10% fetal bovine serum (FBS, Hyclone, Logan, 
Utah) and 1% penicillin-streptomycin-fungizone 
(Sigma-Aldrich, St. Louis, MO), as described 
previously [27, 28]. 

Schlemm’s Canal (SC) Cells Isolation. Since SC 
cells express endothelial cell marker PECAM-1 
(CD31) [29, 30], we used Dynabeads® CD31 
magnetic beads to isolate porcine SC (angular 
aqueous plexus cells) cells from porcine TM 
cells as described in detail by the manufac- 
turer (Invitrogen, Carlsbad, CA, USA). These 

studies were conducted in accordance to the 
tenets of the Declaration of Helsinki and the 
postmortal porcine eyes are not considered 
animal research.

RT-PCR

Total RNA was isolated from PTM cells using 
Trizol reagent (Cat. No. 15596018) from Invi- 
trogen. The Reverse Transcription (RT) reaction 
was conducted as we previously described [31, 
32]. Briefly, 1 μg of total RNA was mixed in a 
solution containing 2 μL of 5 × RT buffer, pH 
8.6, 0.1 M dithiothreitol, 2.5 mM dNTP, 0.01% 
bovine serum albumin, 0.5 μL dimethylsulfox-
ide, 10 units of RNAguard (Pharmacia Corpor- 
ation, Peapack, NJ), 500 ng oligo-(dT) primer, 
and 20 units of RT in a total volume of 10 μL. 
The mixture was incubated for 1 hour at 37°C 
and then for 10 minutes at 95°C. The PCR was 
carried out in 20 μL of solution containing 2 μL 
of 10 × PCR buffer, 0.8 μL of 50 mM MgCl2, 0.8 
μL of 2.5 mM dNTP, 0.5 μL of 20 uM sense and 
antisense primers (some with 0.5 μL of dimeth-
yl sulfoxide), one unit of TaqDNA polymerase 
and 1 μL of reverse transcript cDNA. The PCR 
conditions were 94°C for 3 min, then 40 cycles 
of amplification at 94°C for 45 s, 59°C for 30 s 
and 72°C for 45 s. This was followed by a final 
extension at 72°C for 10 min for T-A cloning. 
PCR products were separated by electrophore-
sis in a 2-3% agarose gel, stained with ethi- 
dium bromide. The following primers were used 
for RT-PCR. α3 integrin sense: 5’-TCC TCA ACC 
AGG CAC AGG CTC-3’, α3 integrin antisense: 
5’-GTC ACG TTG ATG CTC AGG AG-3’ with pre-
dicted PCR product length at 227 base pars; β1 
integrin sense: 5’-CTG TGA TGC CTT ACA TTA 
GC-3’, β1 integrin antisense: 5’-TGG AAA ACA 
CCA GCA GCC GTG-3’, the predicted PCR  
product length is 164 base pairs.

Western immunoblotting

The procedures for western blotting were de- 
scribed previously [33, 34]. Briefly, cells were 
rinsed in cold PBS buffer (50 mM sodium phos-
phate buffer, pH 7.4, 0.9% saline) and were 
lysed in an IP buffer (20 mM Tris-HCl, pH 8.0, 
140 mM NaCl, 1% Triton X-100, 10% glycerol,  
1 mM EGTA, 1.5 mM MgCl2, 1 mM dithiothrei- 
tol, 1 mM phenylmethylsulfonyl fluoride, and  
5 µg/ml each of leupeptin, pepstatin A, and 
aprotinin). Homogenates were centrifuged at 
20,000 × g for 20 min at 4°C, and the superna-
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tants were taken for protein determination 
using the Bradford reagent (Bio-Rad Labo- 
ratories, Hercules, CA). Proteins were boiled  
for 5 minutes and were separated by SDS-PAGE 
(50 µg of protein per lane) using 7.5% (for ZO-1) 
or 9% (for α3 and β1 integrins) gels according 
to predicted molecular weight of the targeted 
proteins followed by transblotting to polyvinyli-
dene difluoride (PVDF) membranes (Bio-Rad 
Laboratories) in standard Tris-glycine transfer 
buffer. Membranes were blocked for 2 h at 
room temperature in a blocking buffer, rinsed 
for 40 minutes four times in a TBSTw buffer 
(TBS +0.05% tween 20), and incubated over-
night at 4°C with polyclonal or monoclonal pri-
mary antibodies diluted at 1:500 to 1:1000 in 
PBS buffer containing 0.05% Tween-20. The 
PVDF membranes were again washed four 
times in TBSTw for 40 min at RT, incubated with 
specific secondary antibodies (Li-Cor Bio-sci- 
ences, Lincoln, NE) for 1 h at RT. Membranes 
were once again washed four times using the 
same TBSTw buffer, then scanned on an imag-
ing system (Odyssey Infrared; Li-Cor) utilizing 
companion software (Odyssey 2.0; Li-Cor). 

Immunohistochemistry

Immunofluorescence procedures were descri- 
bed in detail previously [35-37]. Briefly, PTM 
cells or isolated SC cells grown on glass slides 
were fixed with 2% cold formaldehyde (PA) for 
10 min, and washed with PBS. For immunola-
beling, Cells on slides were incubated in 50  
mM Tris-HCl, pH 7.4, containing 1.5% sodium 
chloride (TBS) and 0.3% Triton X-100 (TBSTr) 
and 5% normal goat serum (NGS) for 24 h at 
4°C with primary antibody. For double immuno-
fluorescence labelling, slides were incubated 
simultaneously with two primary antibodies. 
Slides were then washed for 1 h in TBSTr and 
incubated for 1.5 h at room temperature simul-
taneously with appropriate combinations of 
secondary antibodies, which included: Alexa 
Fluor 488-conjugated goat anti-rabbit IgG to- 
gether with Alexa Fluor 594-conjugated goat 
anti-mouse IgG or Alexa Fluor 594-conjugated 
goat anti-rabbit IgG together with Alexa Fluor 
488-conjugated goat anti-mouse IgG diluted  
at 1:1000 (Molecular Probes, Eugene, Oregon). 
All antibodies were diluted in TBSTr containing 
5% normal goat serum. Following incubation 
with secondary antibodies, slides were sequen-
tially washed in TBSTr for 40 min, in 50 mM 
Tris-HCl buffer, pH 7.4, for 30 min, and then 

coverslipped using antifade medium. To test  
for inappropriate cross-reactions between pri-
mary and secondary antibodies or between  
different secondary antibodies, control proce-
dures included omission of one of the pri- 
mary antibodies with inclusion of each of the 
secondary antibodies. Conventional immuno-
fluorescence images were acquired on a fluo-
rescence microscope. Confocal immunofluore- 
scence images were gathered on a Fluoview 
confocal microscope with z-stacks of six to ten 
scans at 0.5 µm intervals.

Immunoprecipitation

Immunoprecipitations (IPs) were carried out as 
described previously [38, 39]. Briefly, porcine 
TM cell lysates in an IP buffer were sonicated 
and centrifuged at 20,000 × g for 20 min at 
4°C. After protein determination of sample 
supernatants, volumes containing 500 μg of 
protein porcine TM cells were pre-cleared for 1 
h at 4°C using 20 µl of protein-A-coated aga-
rose beads (Santa Cruz Biotechnology Inc., 
Dallas, Texas), centrifuged at 20,000 × g for 10 
min at 4°C, and incubated with 2 µl of poly-
clonal anti-alpha3 or anti-Cx43 antibodies for  
2 h at 4°C. Beads with cell lysates and primary 
antibody omission served as negative controls. 
The mixture was incubated for 1 h at 4°C with 
20 µl of protein-A-coated agarose beads and 
centrifuged at 20,000 × g for 10 min, and the 
pellet washed five times with 1 ml of wash  
buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 
and 0.5% NP-40). Samples were mixed with an 
equal volume of SDS-PAGE loading buffer (125 
mM Tris-HCl, pH 6.8, 20% glycerol, 0.3 mM bro-
mophenol blue, 0.14 M SDS, and 10% β-mer- 
captoethanol). Finally, samples were subjected 
to electrophoresis and transferred to be immu-
noblotted with the anti-ZO-1 antibody. 

Results

Porcine TM cells express α3 and β1 integrin 
mRNA and protein 

Expression of mRNA for α3 and β1 integrin in 
porcine TM cells was detected using RT- 
PCR. As shown in Figure 1, the two sequence-
specific primer pairs used for PCR amplification 
of α3 and β1 integrin from porcine TM cDNA 
gave rise to products of 227 base pairs for α3 
integrin and 164 base pairs for β1 integrin us- 
ing 3% agarose gel electrophoresis. For each 
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primer pair, only a single PCR product with pre-
dicted molecular weight was generated. Using 
sterilized water instead of porcine TM cDNA as 
a negative control, no band other than the prim-
er-dimer was detected. 

Western immunoblotting

We examined α3 and β1 integrin protein ex- 
pression using lysates of cultured porcine TM 
cells by western blotting. As shown in Figure 2, 
monoclonal anti-α3 integrin antibody detect- 
ed a band migrating at 150 kDa, and monoclo-
nal anti-β1 integrin antibody identified a band 
migrating at 130 kDa (Figure 2). The weak low- 
er molecular weight bands in the α3 integrin 
immunoblot may correspond to the degrada-
tion products of α3 integrin protein. The results 

demonstrate the specificity of these antibo- 
dies. 

Co-localization of ZO-1 with α3 integrin in cul-
tured porcine TM cells 

Double immunofluorescence labeling combin- 
ed with confocal microscopy was used to de- 
termine the co-localization of ZO-1 with either 
α3 integrin or β1 integrin in cultured porcine  
TM cells. As shown in Figure 3, labeling of α3 
integrin was mostly found at cell-cell contacts 
with a punctate appearance, and some weak 
labeling appeared intracellularly (Figure 3A). 
Labeling for ZO-1 typically appeared as fine 
puncta at cell-cell contacts (Figure 3C and 3D). 
Double immunofluorescence labeling of α3 
integrin and ZO-1 imaged by confocal micros-
copy showed that these two proteins were par-
tially co-localized at cell-cell contacts of porcine 
TM cells (Figure 3E). Weak labeling of β1 integ-
rin was found both at cell-cell contacts and 
intracellularly (Figure 3B). Double immunofluo-
rescence labeling of β1 integrin and ZO-1 
showed minimal co-localization of these two 
proteins at cell-cell contacts of porcine TM  
cells (Figure 3F). 

Partial co-localization of ZO-1/α3 integrin in 
Schlemm’s Canal (SC) cells

We examined whether there was ZO-1/α3 inte-
grin co-localization in cultured SC cells. As 
shown in Figure 4, immunofluorescence label-
ling of PECAM-1, which was used as a marker 
for SC cells [29, 40, 41], was found with a punc-
tate appearance intracellularly in SC cells 
(Figure 4B), but was undetectable in porcine 
TM cells (Figure 4D). Immunofluorescence 
labeling of α3 integrin was found at cell-cell 
contacts, which it had a punctate appearance, 
and was also present intracellularly (Figure 4A). 
ZO-1 labeling typically appeared as fine puncta 
at cell-cell contacts (Figure 4C). Double immu-
nofluorescence labeling of α3 integrin and ZO-1 
showed partial co-localization of these two pro-
teins at contacts between SC cells (Figure 4E), 
while Cx43 (red) and ZO-1 (green) showing par-
tial co-localization in TM cells (Figure 4F).

Co-IP of α3 integrin with ZO-1

Since α3 integrin appeared to co-localize with 
ZO-1 in porcine TM and SC cells, we sought to 
determine whether these two proteins directly 
interacted in these cells. Cx43, a protein estab-

Figure 1. RT-PCR showing detection of α3 and β1 
integrin mRNA transcripts in trabecular meshwork 
cells. 

Figure 2. Western Blotting showing detection of α3 
integrin and β1 integrin in trabecular meshwork 
cells. The weak lower molecular weight bands in α3 
integrin immunoblotting may correspond the degra-
dation products of α3 integrin protein.
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lished to interact with ZO-1, was used as posi-
tive control. As shown in Figure 5, after IP of 
Cx43 and α3 integrin from lysates of porcine 
TM cells, immunoblots of IP material using 
anti-α3 integrin probed with anti-ZO-1 antibody 
revealed the presence of ZO-1 (lane 2), which 
co-migrated with ZO-1 in lysates of porcine TM 
cells (lane 1) and from IP materials using anti-
Cx43 that were included as positive controls for 
ZO-1 detection (lane 3). ZO-1 was absent from 
IP material after omission of anti-α3 integrin 
during the IP procedure, which was included as 
a negative control (lane 4). 

Discussion

The present results demonstrate that (1) ZO-1 
co-localized with α3 integrin in cultured porcine 
TM and SC cells, but not with β1 integrin; (2) 
both α3 integrin and gap junction protein Cx43 

rect association of ZO-1 with α5 integrin occurs 
in other cell types and that this interaction 
plays an important role in the regulation of 
Cx43 hemichannel function [20]. 

Integrins are ECM cell surface receptors that 
are widely distributed in TM cells [9, 10, 50, 
51]. Recently, changes in expression of some 
integrins in glaucoma has been reported [52]. 
In addition, manipulation of αvβ3 integrin ex- 
pression in mouse anterior eye also changes 
IOP [53]. 

Cx43 is the first gap junction protein found to 
directly associate with ZO-1, and the interac-
tion involves the second PDZ domain of ZO-1 
and the C-terminal amino acid sequence of 
Cx43. This interaction is important for main-
taining gap junction Cx43 size and organiza-
tion. Recently, mutations in Cx43 were found to 

Figure 3. Partial co-localization of α3 integrin with ZO-1 in TM cells. Double 
immunofluorescence labeling showing α3 integrin (red, A) and ZO-1 (green, 
C) with partial co-localization in overlay (yellow, E) in TM cells, while β1 integ-
rin (red, B) and ZO-1 (green, D) showing lack of co-localization in overlay (F).

interact with ZO-1, as indicat-
ed by their co-IP with ZO-1. 
These findings provide the 
molecular basis for consider-
ing scaffolding protein ZO-1 
and its associated proteins  
to be involved in the regulati- 
on of extracellular cell matrix 
function in TM cells.

ZO-1 was originally cloned in 
1986 [42]; it was considered  
a tight junction protein, but 
later was also found in some 
cell lines that are devoid of 
tight junctions [43, 44]. Sub- 
sequently, it was found that 
ZO-1 also associates with ad- 
herens and gap junctions [18]. 
To date, with more than 40 
proteins have been found to 
interact with different doma- 
ins of ZO-1 [18, 45-47]. ZO-1  
is considered to be a key play-
er in mammalian cell develop-
ment, which was demonstrat-
ed by the lethal embryonic 
phenotype after knockdown of 
ZO-1 in mice [48]; and recent-
ly, ZO-1 gene mutations were 
found to be associated with 
arrhythmogenic cardiomyopa-
thy [49]. In addition, it has 
been demonstrated that di- 
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α3 integrin raises the possibility that these  
proteins may engage in a triple complex in TM 
cells and SC cells. The disassembly of the com-
plex under Cx43 mutation conditions may dis-
rupt the integrity of these cells and further con-
tribute to disease progression.
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