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Abstract: Multiple sclerosis is a chronic inflammatory disease of the central nervous system (CNS). Although the ex-
act etiology of multiple sclerosis is unknown, researchers suggest that genetic, environmental, and microbial factors 
play a central role in causing multiple sclerosis. Pathology of multiple sclerosis is based on inflammation as T cells 
enter the brain via disruptions in the blood-brain barrier, recognizing myelin as foreign antigen; and as a result, the T 
cells attack myelin and start the inflammatory processes, enhancing inflammatory cytokines and antibodies. Since 
previous studies show ethanol can suppress the immune system such as innate, humoral, and cellular immunity 
and increases the production of anti-inflammatory cytokines, we hypothesized maybe ethanol also have ameliorat-
ing effects on multiple sclerosis symptoms. Although alcohol induces apoptosis in oligodendrocytes and neurons, 
causing demyelination and affects CNS directly, in this study we will investigate ethanol’s effects on some aspects 
of the immune system in multiple sclerosis.
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Introduction

Multiple sclerosis is a chronic inflammatory 
demyelinating disease of the central nervous 
system (CNS) [1, 2]. Briefly, MS can be described 
with demyelination that mostly affects CNS 
including spinal cord and brain and in few 
cases; it has been found that MS has affected 
the peripheral nervous system (PNS). Although 
many investigations have been done to deter-
mine the relationship between MS and some 
possible factors such as environment, genet-
ics, and infection history until now there has 
been no exact evidence about etiology of MS 
[3, 4]. Studies on viruses such as HBV, EBV, 
HSV, and HHV indicate that perhaps viral infec-
tion increases susceptibility to MS [5]. HLA 
genes, especially HLA B1501, are the genes 
that associate with MS strongly [6]. Also, there 
are other genes such as cytokine gene which 
attention about them has increased [7]. Vitamin 
D and also histamine is also proven to have a 
significant association with MS [8, 9]. Along 

with the mentioned factors, weather, environ-
mental pollution, job, diet, smoking, and life-
style are other factors, which affect the epide-
miological distribution of MS [10]. The most 
widely recognized mechanism for the pathogen-
esis of MS is based on auto-reactivity of T cells 
against glycoproteins of myelin [11]. Normally, 
the immune system protects the body against 
internal and external risk factors. Internal viola-
tors are cells that their proliferation is out of 
control, and external factors mostly include 
infectious agents. Although recessive tolerance 
prevents entrance of auto-reactive lympho-
cytes into the peripheral lymphoid organs, 
sometimes, recessive tolerance cannot recog-
nize a few of these auto-reactive lymphocytes 
[12, 13]. Specific auto-antigens activate auto-
reactive lymphocytes and when the condition of 
the immune system is appropriate for auto-
reactivity, they develop autoimmune disease 
[14]. One of the T cell subtypes, which is named 
T regulatory cell (Treg), is responsible for promi-
nent tolerance [15]. Tregs suppress auto-reac-
tive lymphocytes mainly by cytokine production 
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[16]. Differences in types of alcohol, duration of 
alcohol consumption, gender, and age cause 
different effects of alcohol on the immune sys-
tem [17]. Furthermore, nutritional deficiency, a 
common manifestation of alcohol consump-
tion, weakens the immune system [18]. Alcohol 
weakens many parts of the immune system 
such as thymus, spleen, humoral and cellular 
immune responses [19]; it induces apoptosis in 
brain neurons and is also associated with cell 
damage in the CNS, and interfering with myelin 
synthesis of oligodendrocytes [18, 20]. 

As the aforementioned data suggest, we 
observe the role of auto-reactive T cells and B 
cells, inflammatory cytokines and an increase 
in activities of natural killer cells and APC in 
multiple sclerosis patients. The above data fur-
ther suggest that chronic alcohol consumption 
has adverse effects on the immune system by 
weakening it. As a result, it can be suggested 
that alcohol consumption can ameliorate mul-
tiple sclerosis symptoms. Although alcohol has 
direct effects on the CNS, in the present review, 
we briefly describe some immunological effects 
of alcohol on multiple sclerosis.

Lymphocytes

The detection of myelin-specific T cells in both 
MS patients and healthy group in previous 
researches suggest a new concept based on 
these cells’ relevance in MS. These myelin-spe-
cific T cells of MS patients are observed as hav-
ing a phenotype like TH1 cells, validating the 
idea that these cells might have a pathogenic 
role in multiple sclerosis disease [21]. Based 
on several observations, myelin-specific T cells 
were found in healthy groups; however, they 
were shown to be naïve lymphocytes; with acti-
vated and memory cells of this type of T cells 
found in MS patients. This data indicates that 
myelin-specific T cells had been activated in 
vivo long before the onset of the symptoms. It 
has been indicated that inflammatory destruc-
tion in the patients’ CNS is driven by antigen-
specific targeting of myelin and other CNS com-
ponents; based on the presence of the auto-
reactive lymphocytes within bordering areas 
and plaques [22]. Adaptive immune responses, 
which are occurring by T lymphocytes particu-
larly, are thought to mediate the damage of 
myelin and nerves within the cerebrospinal 
fluid (CSF) in MS pathogenicity [23]. Huge 
investigations have been promoted to under-

stand the potential CD4 T cell targets in MS to 
determine whether EAE can be mediated by 
CD4 T cells or not.

Providing an altered peptide ligand of MBP 
designed for therapeutic suppression of CD4 T 
cell, responses marked the importance of anti-
gen-specific CD4 T cell responses in MS, the 
results of which showed disease exacerbations 
in multiple patients [24]. Auto-reactive cells, 
particularly, and in general, T cells from MS 
patients them can recognize a variety of myelin 
protein targets, including MBP, PLP, MOG and 
MOBP [25], among others. Non-myelin T cell 
antigens have also been described, including 
αB crystalline 6 and neuronal proteins such as 
contactin-2 [26]. Auto-reactive CD8 T cell is 
also observed [27], in addition to myelin-specif-
ic T cell avidity and activation profiles appear to 
be elevated in MS patients, although similar 
frequencies of auto-reactive T cells are demon-
strated in MS patients and healthy group [28].

There are oligoclonal bands In MS, found in the 
cerebrospinal fluid (CSF) [29], presenting 
Immunoglobulins which are locally produced by 
plasma cells. The mechanism by which these 
antigens are being recognized by immunoglob-
ulins that present the oligoclonal bands is still a 
mystery and a lot of work has been done to 
clarify their pathophysiological impact [30]. The 
oligoclonal bands have been helpful biomark-
ers for diagnosis, So far. Presence of B cell fol-
licles has been noted in the meninges of some 
patients [31]. In serum and CSF of some 
patients, Myelin-specific autoantibodies can be 
tracked as well [32]. In addition, autoantibodies 
can be associated with myelin debris in situ 
[33]. Macrophages phagocytize opsonized 
myelin debris. Amazingly, in many lesions in the 
CNS, immunoglobulin and complement activa-
tion is seen [34]. Additionally, it has been sug-
gested that some patients respond clinically to 
plasma exchange, suggesting that B cells have 
an important role in MS pathogenesis, impor-
tantly anti-CD20 mAb treatment leads to dis-
ease amelioration [35]. Decreased lymphocytic 
cell numbers in the circulating blood have been 
consistently shown in researches indicating 
lymphocytes and lymphocyte subpopulations 
in chronic alcoholics [36]. Likely, decreased the 
size and cell number in the thymus, spleen, and 
lymph nodes were the results of chronic alcohol 
feeding of mice [37]. A suggested mechanism 
for this phenomenon is programmed cell death 
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(apoptosis), even though the mechanism of 
decreasing lymphoid cell count by alcohol is 
still unknown [38]. Increased apoptosis of thy-
mocytes is the result of acute ethanol treat-
ment [39]. Following acute ethanol treatment, 
increased apoptosis was also seen in human 
blood mononuclear cells [40]. A decrease in 
lymphoid cells count has been demonstrated in 
addition to weakened proliferation procedures, 
which lead to the idea that ethanol-exposed 
lymphocytes might have less power for prolif-
eration and differentiation in response to an 
antigenic challenge [41]. Effects of ethanol on 
protein kinase C were demonstrated as a prob-
able mechanism for defects of T cell prolifera-
tion [42]. In chronic alcoholics, creased delay- 
ed-type hypersensitivity response and immune 
abnormalities have been demonstrated [43]. 
While the function of B lymphocytes appear to 
be impaired in alcoholics, increased mitogen-
inducing in a murine model of acute alcohol 
intake in vivo showed immunoglobulin produc-
tion in the alcohol-treated group [44]. The exact 
number of B cells is the same in non-alcoholic 
individuals [18].

NK cells

Considering higher NK cell activity, it might lead 
to a higher risk of developing active lesions in 
relapsing-remitting multiple sclerosis (RRMS) 
patients [45, 46]. In addition, enhancement of 
T-cell activation can occur in the development 
of NK cells, which is promoted by IL-12, which is 
produced by astrocytes. Furthermore, increa- 
sed IFN-γ secretion by NK cells occurs by the 
production of IL-18 during the primary injection 
of antigens [47]. Auto-reactive Th1 responses 
are activated by IFN-γ, whereas a weakened 
potential of NK cells to release IFN-γ is a major 
mechanism underlying resistance to EAE [48, 
49]. It has been observed in several types of 
research that depleting NK cells with specific 
antibodies lead to decreased EAE clinical dis-
ease [50]. Chronic exposure of rodents to etha-
nol has been shown to results in a reduction of 
the amount and activity of large granular lym-
phocyte/NK cells. Presence of ethanol in vitro 
can suppress the activity of NK cells [51]. 
Declined frequency of activated NK cells has 
been reported in peripheral blood in chronic 
alcoholic humans.

APCs

For pathogenesis of murine models of MS, anti-
gen-presenting cells (APCs) are essential. APCs 

present antigen to naïve T cells into lymph 
nodes, where they mature and travel. This phe-
nomenon is used for example in encountering 
myelin antigens [52]. Two signals from APCs are 
needed for T cell activation and survival: pre-
sentation of antigen by the major histocompat-
ibility complex to the T cell receptor and a sec-
ondary signal provided by the interaction of co-
stimulatory molecules such as CD80 and CD86 
with CD28 on T cells. Actually, T cell differentia-
tion into mature effector CD4+ T cell subsets 
(Th1, Th2, Th17, Treg) during the activation 
period, relies on the cytokines which are pro-
duced by APCs [53]. Recent data demonstrates 
that both TH1 and TH17 subsets are the factors 
that cause MS to be driven, though each one 
differs mechanically from the other [54]. As 
soon as activation happens, T cells travel to the 
brain and cross the blood-brain barrier (BBB) 
where monocytes, macrophages, and dendritic 
cells are meaningfully more potent in antigen 
presentation and antigen-specific T-cell activa-
tion [54]. Alcohol consuming individuals have 
been indicated with Impaired delayed-type 
hypersensitivity response [55] and it also has 
been shown in a mouse model of chronic alco-
hol administration. It has been recently sug-
gested that In humans, after one occasion of 
alcohol intake, a decrease in monocyte anti-
gen-presenting cell function has been obser- 
ved. Mitogen stimulation or super antigens 
induce T-cell proliferation, and this induction 
declined after alcohol consumption and these 
effects were mediated by alcohol exposure of 
the antigen presenting cells, monocytes. In 
humans, after acute alcohol intake or in vitro 
alcohol treatment, classical antigen presenta-
tion by monocytes becomes impaired. Also an 
inhibitory effect of alcohol on dendritic cell 
function has been found based on recent 
researches on various dendritic cell (DC) types. 
It is observed in human studies that both acute 
alcohol intake and prolonged in vitro alcohol 
treatment, inhibited monocyte-derived myeloid 
dendritic cell capacity to induce T-cell activa-
tion. There was also an association between 
this phenomenon and increased the produc-
tion of IL-10 and decreased production of IL-12 
by alcohol-exposed DCs. In addition, T-cell 
anergy induced by alcohol-treated dendritic 
cells resulted in impaired T-cell proliferation 
even with subsequent stimulation with normal 
DCs; however, by addition of exogenous IL-12, 
this T-cell anergy could be ameliorated. Affected 
functions in the mice skin have been shown to 
be due to chronic alcohol consumption. There 
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were also declined amount and migration of 
Langerhans cells (skin DCs) and dermal DCs in 
mice with chronic alcohol consumption [56]. 
Decreased bone marrow-derived DC genera-
tion has also been reported to be due to alco-
hol consumption in mice, as well as decreased 
expression of the co-stimulatory molecules 
CD80, CD86, and DCs and impaired induction 
of T-cell proliferation and IL-12 production [57]. 
These matters were in a correlation with 
increased DC production of IL-10, a cytokine 
with inhibitory actions on DC maturation, anti-
gen presentation, and T-cell proliferation. 
Chronic alcohol consumption altered CD11c+, 
CD8+, DC function, and antigen presentation 
that was associated with decreased levels of 
IL-6, IL-12 and increased levels of IL-13 cyto-
kine production, which was found on another 
research [58]. All in all, acute or chronic, alco-
hol consumption appears to inhibit differentia-
tion and functions of various types of dendritic 
cells which are concluded from all these results 
based on recent studies.

Cytokines

Different cytokines participate in Th1 and Th2 
responses; for example, Th1 cytokines mostly 
derive from Th1 cells and macrophages and 
include IL1, IL2, IL6, IL12, IFN gamma, and TNF 
alpha; on the other hand, IL4, IL5, IL10, and 
IL13 have a role in Th2 reactions [12, 59, 60]. 
Since Th1 cells affect many aspects of MS 
pathogenesis, such as demyelination and 
inflammation, they play a significant role in MS 
[61, 62]. In contrast with Th1 cytokines, Th2 
cytokines such as IL4, IL5, and IL10 improve 
MS clinical symptoms by suppressing Th1 
effects in inflammation and demyelination 
[63-65].

Inflammatory cytokines

Presence of inflammatory cytokines such as 
IFN-gamma in CNS and involvement of them in 
demyelination proposes the possible role of 
IFN-gamma in the pathogenesis of multiple 
sclerosis and other neuroimmunological dis-
eases [66]. Although the presence of IFN-
gamma in the CNS of multiple sclerosis was 
shown, there is no evidence for the detection of 
it in the CNS of healthy people [67, 68]. 
Neutralizing IFN-gamma with anti-IFN-gamma 
antibodies can reduce disability in MS patients 
and it can be chosen as a treatment, and using 
IFN-gamma for MS patients has a direct effect 

on CNS inflammation and worsens symptoms 
of the disease [69]. Elevated levels of IFN-
gamma in the CNS affect myelin formation and 
oligodendrocyte death [70, 71]. Although IFN-
gamma causes inflammation in MS patients, 
recently one study showed that low levels of 
IFN-gamma during the recovery phase of EAE 
inhibit myelin formation and oligodendrocyte 
regeneration [72]. On the other hand, there is 
no significant relationship between IFN-gamma 
gene or its receptor gene integrity and risk of 
EAE, and in some cases these mutations in 
IFN-gamma gene increase number of deaths 
among EAE mice [73, 74]. Some studies have 
shown that prevention of axonal damage, demy-
elination and oligodendrocyte death can be 
possible through neutralization of IFN-gamma 
in CNS before initiation of EAE [75].

Studies that have been done on CNS of human 
and mice have shown that TNF-alpha like IFN-
gamma results in inflammation, and it can also 
exacerbate demyelination. Surveys on CNS of 
MS patients detected macrophages and astro-
cytes that produce TNF-alpha, most of them 
being in plaques [76]. Similarly, another study 
clarified that T cells and microglia plaques, and 
also TNF-alpha and TNF-beta were found in MS 
plaques. There are many relationships between 
TNF-alpha and MS, such as high levels of TNF-
alpha in both blood and CNS of MS patients 
causes blood brain-barrier damage, therefore 
making it possible for auto-reactive T cells to 
enter CNS as a result [65, 77]. Antibodies 
against TNF-alpha can preclude the ability of 
encephalitogenic T cells to distribute EAE 
among mice [78]. Entrance of inflammatory 
cells into the CNS, myelin damage and symp-
toms of EAE can be reduced with the consump-
tion of a soluble type of TNF-r1 [79]. TNF-alpha 
affects many types of CNS cells such as astro-
cytes, oligodendrocytes, endothelial cells of the 
brain, so it intervenes in many aspects of CNS 
functions. In vitro studies have shown that TNF-
alpha has a significant role in the inhibition of 
myelin formation and oligodendrocyte regener-
ation [80, 81]. All the effects of TNF-alpha on 
MS are carried out by direct roles of it in myelin 
formation and oligodendrocyte regeneration 
[82]. Chronic alcohol consumption reduces IFN-
gamma levels; making this role considered as 
an important factor for the immune system.

Cooperation between IL-12, which is produced 
by macrophages and IFN-gamma, is essential 
for activation of cellular immune responses, 
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especially Th1-type reactions [83]. Furthermore, 
a study that was carried out on IL-12 showed 
that chronic alcohol consumption can reduce 
Th1-type immune responses and IFN-gamma 
levels. Another study in this regard showed that 
IL-12 improves delayed-type hypersensitivity 
response in mice that consumed alcohol chron-
ically [84]. Although chronic alcohol consumers 
show decreased response to the pathogens, 
acute alcohol consumption stimulates these 
responses. Experiments on humans and mice 
have shown that bacterial pathogens cannot 
induce the production of inflammatory cyto-
kines in acute consumers like healthy people 
[85]. Almost all types of bacteria, including 
gram-positive and gram-negative bacteria, 
stimulate the production of IL-1, IL-6, and TNF-
alpha at a lower level in cases with alcohol 
exposure as ethanol reduces their protein and 
mRNA synthesis [86].

Anti-inflammatory cytokines

It has been shown that IL-10 can protect blood-
brain barrier against damages [87] and also 
inhibit the progression of EAE in mice [88, 89]. 
Perhaps IL-10 has a role in the remission phase 
of multiple sclerosis patients as IL-10 levels 
were higher in proteolipid protein stimulate the 
culture of MS patients who were in remission 
phase than MS patients who were in progres-
sive phase or control subjects [89]. IL-4 is 
another cytokine, which can play a protecting 
role against autoimmune diseases especially in 
cooperation with IL-10 [90]. Another finding in 
this regard is that IL-4 production by T cells 
from remitting MS patients is higher than pro-
gressive MS patients [91].

IL-4 and IL-10 have adverse effects on IFN-
gamma, hence it has been demonstrated that 
IL-10 changes the activity of macrophages and 
its role in Ag presenting, so they can decrease 
Th1 cytokines production [92]. IL-4 decreases 
IFN-gamma levels differently by suppression of 
cells that produce IFN-gamma in response to 
pathogens and also by improving Th2 differen-
tiation. It has been observed that elevated lev-
els of TGF beta as Th2 cytokines will be accom-
panied by improving conditions of EAE in mice 
and rats [93]. Detection of IL-10 mRNA was car-
ried out in a survey on CNS of diseased animals 
and results demonstrated elevated IL-10 levels 
at the remission phase of the disease. It has 
been shown that inducing the immune system 
to produce IL-4 by some stimulation can have 

ameliorating consequences in EAE [94]. How- 
ever, another study observed that susceptibility 
to EAE in mice is independent of IL-4 produc-
tion; therefore we cannot simply judge the role 
of IL-4 in the regulation of EAE. IL-4 and IL-10, 
based on the time of production, especially at 
first stage and reverse condition of disease, 
can stimulate the proliferation of Th2 clones 
and in this manner; they have an inhibitory role 
in EAE. Th2 cells regulation of EAE and inhibi-
tion of immune disease is possible by induction 
of Th2 cells, especially through cytokine pro-
duction in response to auto-antigens [95]. 
There are some genetic methods for prevention 
or reversion of EAE by transduction of auto-
reactive T cells with IL-10 and IL-4 genes which 
were placed in plasmids [96, 97].

TGF beta is another anti-inflammatory cytokine 
that has protecting effects against autoim-
mune diseases through inhibition of the 
immune system. TGF beta affects immunologi-
cal disorders by changing and moderating the 
activity and proliferation of immune cells [98]. 
TGF beta can suppress many aspects of the 
immune system including cytokines and im- 
mune cells to affect the pathogenesis of neuro-
immunological diseases, especially multiple 
sclerosis [99]. Results from studies on EAE 
have shown that TGF beta can inhibit relapsing 
in mice. The entrance of autoimmune T cells to 
CNS via blood-brain barrier can be inhibited by 
TGF beta. It also affects pathways of cytokine 
production and mostly suppresses the produc-
tion of pro-inflammatory cytokines, and cyto-
kines that are released in response to adhe-
sion molecules stimulations. Some interesting 
studies have been done on the possible role of 
TGF beta in decreasing duration of acute and 
relapsing EAE by inhibiting TGF beta with anti-
bodies and results from these studies showed 
that elevated levels of TGF beta can be consid-
ered as a factor that reduces susceptibility to 
MS [100].

IL-4, IL-10, and IL-13 are some Th2-type cyto-
kines, which have adverse effects on Th1-type 
responses, especially Th1-type cytokines [101]. 
Currently, few studies have been done to deter-
mine the aspects of acute or chronic alcohol 
consumption, which can affect Th2-type cyto-
kines. Chronic alcohol consumption can reduce 
inflammatory cytokines production such as 
IFN-gamma and this condition is appropriate 
for Th2-type cytokines to be dominant.
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Table 1. Effect of alcohol on different immune cells and MS
Cell type Effect 
Lymphocytes decreased the size and cell number of lymphocyte (T cell) in the thymus, spleen, and lymph nodes [21, 22]
NK cell reduction of the amount and activity of large granular lymphocyte/NK cells, suppress the activity of NK cells [51]
APCs Impaired delayed-type hypersensitivity response, decrease in monocyte antigen-presenting cell function [55]
DC inhibited monocyte-derived myeloid dendritic cell capacity [106]
Cytokines Inflammatory reduces IFN-gamma levels [75]

Auto-inflammatory increase in IL-10 levels, release TGF beta (inhibiting T cell proliferation and decreasing cytokine production in monocytes) [103]

Table 2. Effects of acute and chronic alcohol consumption on immune cells
Cell Acute alcohol consumption Chronic alcohol consumption 
Monocyte Increasing of IL-10

Decreasing of IL-6, IL-12, TNFα, and effercytosis [54]
Increasing TNF-α, IL-6 and phagocytic activity [56]

Dendritic cell - Increasing of IL-10 [57]
Decreasing of IL-12 and CD80/CD86

T lymphocyte Increasing of apoptosis [39] Increasing of IL-2, IL-4, IL-10, vaccine response, and memory T cell
Decreasing of IFN-γ, IFN-γ/IL-10 ratio, Naïve T cell, and antigen-specific responses [41]

B lymphocyte Increasing of apoptosis and IgA [44] Increasing of IgA and IgM [44]
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IL-10 is produced by Th2 cells and has different 
effects on humoral and cellular immune re- 
sponses. IL-10 strengthens humoral immune 
responses but it suppresses many aspects of 
cellular immune reactions such as inflammato-
ry responses and Th1 cytokines and antigen-
specific T cell amounts [102]. An increase in 
IL-10 levels in vitro, which is produced by mono-
cyte in response to bacterial stimulation, is 
another effect of acute alcohol consumption. 
TGF beta is also an anti-inflammatory cytokine 
which can reduce immune system responses to 
inflammation and antigen-specific T cell count. 
Monocytes release TGF beta especially in 
response to bacteria in-vitro and elevated alco-
hol levels, which similar to physiological con-
striction can increase TGF beta production 
[103]. Improving Th2-type immune responses, 
inhibiting T cell proliferation and decreasing 
cytokine production in monocytes are some 
effects of elevated TGF beta level in response 
to alcohol consumption.

Other beverages

Although alcoholic beverages can have harmful 
effects on the immune system, there are other 
groups of beverages that can protect immune 
cells against damages; since they have antioxi-
dants components. It has been shown that 
exposure to alcohol as ethanol in mice causes 
a decrease in baseline cell number. Significant 
variations have not been observed in baseline 
cell numbers between mice in case and control 
group that consume alcohol like wine and 
water, respectively. There are, however, differ-
ences in lymphocyte response to lipopolysac-
charide between mice consuming alcohol and 
mice consuming alcohol as wine due to the fact 
that ethanol has inhibitory effects on lympho-
cyte response [104, 105] (Tables 1 and 2).

Conclusion

MS is an autoimmune disease, in which autore-
active T cells and B cells and inflammatory cyto-
kines are involved. Therefore many therapies 
for multiple sclerosis disease are based on 
reducing inflammation and suppressing the 
immune system. Acute and moderate alcohol 
consumption suppresses the general condition 
of the immune system and its responses to 
pathogens. Chronic alcohol consumption also 
suppresses the general condition of the im- 
mune system, but increases immune respons-

es to the pathogens. Unfortunately, we are 
unable to recommend any therapeutic dosage 
or frequencies of alcohol use for immune sys-
tem suppression due to lack of pieces of evi-
dence. We suggest that more studies on large 
populations should be performed. We also 
believe that search for alternatives of alcohol 
with much less side effects should be per-
formed. So in most cases, alcohol consumption 
has an inhibitory effect on immune responses 
and this effect needs further studies to take 
into consideration as a therapeutic factor.
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