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Abstract: Objective: Identifying the disease-associated interactions between different genes helps us to find novel 
therapeutic targets and predictive biomarkers. Methods: Gene expression data GSE82050 from H1N1 and control 
human samples were acquired from the NCBI GEO database. Highly co-expressed genes were grouped into modules. 
Through Person’s correlation coefficient calculation between the module and clinical phenotype, notable modules 
were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were 
conducted, and the hub genes within the module of interest were identified. Also, gene expression data GSE27131 
were acquired from the GEO database to verify differential key gene expression analysis. The CIBERSORT was used 
to evaluate the immune cells infiltration and the GSVA was performed to identify the differentially regulated path-
ways in H1N1. The receiver operating characteristic (ROC) curves were used to assess the diagnostic values of the 
hub genes. Result: The black module was shown to have the highest correlation with the clinical phenotype, mainly 
functioning in the signaling pathways such as the mitochondrial inner membrane, DNA conformation change, DNA 
repair, and cell cycle phase transition. Through analysis of the black module, we found 5 genes that were highly 
correlated with the H1N1 phenotype. The H1N1 project from GSE27131 confirmed an increased expression of 
these genes. Conclusion: By using the WGCNA we analyzed and predicted the key genes in H1N1. BRCA1, CDC20, 
MAD2L1, MCM2, and UBE2C were found to be the most relevant genes, which may be therapeutic targets and 
predictive biomarkers for H1N1 therapy.
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Introduction

The influenza virus infection is one of the most 
prevalent viral respiratory infections in the 
world, with more than one in five people suffer-
ing from it annually [1], containing single-
stranded RNA and is classified into three types: 
A, B, and C [2]. The influenza A virus is a major 
viral influenza subtype that infects 10% of the 
global population annually, and poses a signifi-
cant global health threat [3, 4]. Although most 
influenza virus infections are manageable, 
influenza epidemics are a large burden to the 
world and have substantial morbidity and mor-
tality impacts [5, 6]. Unfortunately, the patho-
genesis of influenza, which depends on both 
the immune system and viral determinants, is 
not yet fully understood. Moreover, mutation 
and drift allow influenza viruses to resist herd 

immunity and vaccination [7]. Therefore, it is 
critically important to investigate the pathogen-
esis of influenza to find effective therapeutic 
targets. 

Weighted gene co-expression network analysis 
(WGCNA) is a strong clustering algorithm that 
can be used to detect gene co-expressions 
based on the microarray database and connect 
them to the clinical phenotype [8]. Microarray 
analysis is a key technique that can systemati-
cally detect the differential expression of thou-
sands of gene expressions [9]. WGCNA can be 
used for detecting highly correlated genes 
across microarray samples based on their 
expressions which are clustered into different 
modules, these modules have different biologi-
cal significance. Also, each group activation 
stimulates various signaling pathways that reg-
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ulate multiple specific functions. WGCNA can 
identify the most phenotypic trait-related mod-
ule while also measuring module membership 
[10]. Furthermore, the correlation network and 
modules can be implemented to identify func-
tional enrichment and key hub genes [11]. 
Finding the key modules and designing the 
treatment targeting the key hub genes are cru-
cial for H1N1-targeting therapies. Moreover, 
finding candidate biomarkers is important for 
prognosis, risk assessment, and monitoring 
disease progression. 

The complex reaction mechanism of H1N1 
might be uncovered through gene regulation 
and protein-protein interactions (PPI). An influ-
enza A virus study in a mouse model shows that 
the virus could cause the differential gene 
expressions of 82 miRNAs and 3371 mRNAs in 
mice [12]. STC SWOT Analysis showed that the 
expressions of 46 miRNAs changed significant-
ly during influenza A infection, and its integrat-
ed analysis of the miRNA, gene, and pathway 
regulatory network found that 17 miRNAs were 
related to the influenza A pathways. The under-
lying molecular mechanisms and key genes 
involved in H1N1 progression remain to be fully 
explained, suggesting a complex pathogenic 
mechanism of H1N1 that needs to be con-
firmed by further research. In this study, WGCNA 
was used to analyze gene expression data from 
H1N1-infected human samples and control 
human samples from a publicly available data-
base (GEO: Gene Expression Omnibus). The 
team found 12 co-expression modules. Th- 
rough a Pearson correlation analysis between 
the module and clinical phenotype, we identi-
fied one major co-expression module. Also, 
through the GO function and pathway enrich-
ment analyses, we tested the biological rele-
vance of this module and identified key hub 
genes with the prognosis potential. Finally, we 
confirmed the expression of identified key hub 
genes using gene expression data GSE27131. 
We then presented our conclusion that BRCA1, 
CDC20, MAD2L1, MCM2, and UBE2C are the 
genes most relevant to H1N1 and could be tar-
gets for novel and effective therapeutic treat-
ments for the disease.

Materials and methods

Acquisition of gene expression data and pre-
processing

This study was performed using data obtained 
from the NCBI’s publicly available GEO data-

base (Gene Expression Omnibus, http://www.
ncbi.nlm.gov/geo). Studies were screened ba- 
sed on following inclusion criteria: (1) all datas-
ets were restricted to Homo sapiens, (2) the 
dataset was restricted to expression profiling 
by array, (3) over 15 tissues were sampled in 
the dataset. Any study that did not meet the 
above criteria was excluded from selection. We 
chose the gene expression data GSE82050 
and used the GPL21185 platform. 15 control 
and 20 H1N1 human samples were studied. To 
determine the validity of this conclusion, the 
identified hub genes were verified in the gene 
expression data GSE37131 (GPL6244 plat-
form), which was obtained from the GEO data-
base based on the above-described inclusion 
and exclusion criteria, and 7 control and 14 
H1N1 human samples were analyzed. The data 
analysis and analytical procedures are illustrat-
ed in Figure 1.

The gene expression matrix was obtained and 
quantile normalized. We excluded some genes 
with low expression, and we identified 21197 
significantly expressed genes. To avoid the 
influence of outliers, the standard deviation of 
the expression value was obtained. We select-
ed the first 5000 genes, and there every probe 
had corresponding annotation information. 
Therefore, 5000 genes were considered for fur-
ther study.

Structure of the weighted gene co-expression 
network and selection of potential biologically 
significant modules

R-Studio 3.6.0 software was used to cope with 
data and graphs. The Pearson correlation coef-
ficient was calculated, and the gene co-expres-
sion similarity was assessed and clustered into 
network modules. Hierarchical clustering was 
used to identify modules, and we choose differ-
ent colors to indicate modules. Different mod-
ules were identified using the dynamic tree cut 
method. Then, the adjacency matrix was trans-
formed into a topology overlay matrix (TOM), 
and modules were identified by cluster 
analysis. 

Gene modules and clinical phenotype correla-
tion analysis

The gene expression data and clinical data 
were matched to detect clinically meaningful 
associations between modules and the clinical 
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phenotype. Furthermore, a Pearson correlation 
analysis was used to calculate the relevance 
between the module eigengene (ME) and the 
clinical phenotype. The modules with a valid rel-
evance to the clinical phenotype were ranked 
and obtained. Finally, to verify the modules with 
valid relevance to clinical phenotype, the rela-
tionship between Module Membership (MM) 
and Gene Significance (GS) was evaluated and 
the p-values were calculated.

GO terms and KEGG pathway analyses, iden-
tification, and confirmations of hub genes, PPI 
analysis, and other analyses

GO and KEGG pathways enrichment analyses 
were performed. To better understand the 
pathogenesis, reconstruction of pathways were 
arranged additionally. GO enrichment analysis 
and KEGG pathways enrichment analyses were 
carried out using the R package clusterProfiler 
to comprehensively explore the functions of  
the black module [13]. GO terms and KEGG 
pathways with a p-value less than 0.05 were 
considered to be significantly enriched. Sub- 
sequently, we used the cytoHubba application 
in Cytoscapecto to select the key hub genes. 
Next, by the usage of GeneMANIA, we con-
structed the network through PPI analysis to 
confirm the identified hub genes. In addition, to 

further confirm the selected hub genes, 
GSE27131 was used to verify differential key 
gene expression analysis. Furthermore, we 
used CIBERSORT to evaluate the immune cells 
infiltration and the GSVA was performed to 
identify the differentially regulated pathways in 
H1N1. Finally, the ROC curves were used to 
assess the diagnostic values of the hub genes.

Results 

Sample selection and data preprocessing

Gene expression data GSE82050 contains 
21197 genes. The 35 groups of subjects were 
then analyzed by RStudio 3.6.0 software.

Weighted gene co-expression network struc-
ture and disease module recognition

WGCNA was used to construct gene co-expres-
sion networks that correlated with the H1N1 
phenotype. We performed the scale indepen-
dence and mean connectivity analysis, and our 
results showed that when the soft threshold 
power value equaled 7, scale independence 
was larger than 0.85, and mean connectivity 
was approximated to zero, so the weighted 
value was set to 7 (Figure 2). We classified the 
genes according to the expression pattern 

Figure 1. Flowchart of data collection procedures, data preprocessing, data analysis and discussion of this study.
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Figure 2. Analysis of soft-thresholding power in weighted gene co-expression network analysis. The red line repre-
sents a scale independence of 0.85 (A) and mean connectivity was approximate to zero (B) when the soft threshold 
power value equals 7.

derived from the correlation coefficient calcula-
tion, then grouped patterned genes into one 
module. We identified twelve modules in the 
range of 11 to 1116 genes, and every module 
was assigned a unique color (Figure 3; Table 1).

Identification of module of interest and corre-
lation analysis

Results showed the black module and clinical 
phenotype have the strongest association 

Figure 3. WGCNA of gene expression in H1N1 identifies modules of correlated genes.
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(r=0.64, P=3e-05). Therefore, the black mod-
ule was selected as the critical module in fol-
low-up analyses. To validate the correlation, we 
calculated the associated module membership 
values with gene significance (MMSE) via the 
Heatmap function. The Heatmap function 
showed strong relevance between module 
membership with gene significance in MMSE 
(correlation coefficient =0.46, P=6.8e-25) in 
the black module (Figure 4). Next, GO function-
al and KEGG pathway analyses were performed 
to explore the biological functions and biologi-
cal pathways of genes in the black module. In 
the KEGG pathway analysis, the mitochondrial 
inner membrane, DNA conformation change, 
DNA repair, cell cycle phase transition, and con-
densed chromosome signaling pathway were 
found to be the most valid pathways in the 
black module (Figure 5). 

The identified black module was further ana-
lyzed via GO enrichment analysis and KEGG 
enrichment analyses using the R package clus-
terProfiler. As shown in Figure 6, a high number 
of genes were significantly enriched in chromo-
some segregation, mitotic nuclear division, and 
electron transport chain in the category biologi-
cal process; mitochondrial inner membrane, 
mitochondrial protein complex, and chromo-
somal region in the category cellular compo-
nent; and structural constituent of ribosome 
and electron transfer activity in the molecular 
function category (Figure 6A). Furthermore, the 
KEGG pathway analysis (Figure 6B) revealed 
that the most significantly enriched pathways 
of the genes were related to pathways of neuro-
degeneration and oxidative phosphorylation 
(P<0.005).

Identification and confirmations of key hub 
genes, PPI analysis, and other analyses

There were 449 genes polymerized in the black 
module. Subsequently, we used Cytoscape to 
visualize the hub genes in the black module 
(Figure 7). A total of 5 genes were identified as 

genes in the black module involved 25 hub 
genes, containing the top 5 hub genes. 
Furthermore, in the GSE27131, 24502 genes 
were identified; the platform was GPL6244. 
The gene expression of 7 control samples and 
14 H1N1 samples were analyzed to verify the 
differential expression of the 5 hub genes that 
we had ascertained at the previous step. The 
results showed that there were significant dif-
ferences in the expression of these 5 hub 
genes between the control and H1N1 human 
samples (P<0.05) (Figure 9). All of these find-
ings further confirmed our identification of 
these 5 hub genes. 

In addition, the CIBERSORT was used to evalu-
ate the infiltration of the immune cells. A strong 
correlation between 5 top hub genes and 
immune cell content was noted (Figure 10). 
Moreover, GSVA was performed to identify the 
differentially regulated pathways in H1N1. 
Results showed that all 5 hub genes were 
involved in the E2F-TARGETS pathway, and 
three of the hub genes (BRCA1, MCM2, UBE2C) 
were involved in the XENOBIOTIC-METABOLISM 
(Figure 11). 

Finally, the ROC curves were used to assess 
the diagnostic values of the hub genes (Figure 
12). The time-dependent ROC analysis has the 
best capacity to predict diagnostic efficiency 
compared with that of other properties. And the 
protein-protein interaction plot was construct-
ed for correlation analysis of 5 hub genes 
(Figure 13).

Discussion

Influenza A viruses (IAVs) remain a substantial 
threat to global health, causing millions of 
cases of moderate to severe illness [14]. The 
pathogenesis of H1N1 is complex and unclear, 
and therefore, clinical prevention and treat-
ment are difficult to administer. Studies show 
that the influenza A viral infection leads to cell 
necrocytosis and apoptosis [15, 16], immune 

Table 1. Module and the corresponding gene count
Module Gene count Module Gene count Module Gene count
Black 449 Blue 1116 Brown 541
Cyan 85 Green 753 Grey 11
Midnight blue 61 Pink 206 Purple 145
Salmon 127 Turquoise 1053 Yellow 453

key hub genes, and they were 
validated and studied with 
the use of GeneMANIA. A PPI 
network was constructed to 
analyze the genes intercon-
nected with BRCA1, CDC20, 
MAD2L1, MCM2, and UBE2C 
(Figure 8). The network of 
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Figure 4. Objective modules analysis. A. Module-trait relationships. B. Correlation between module membership and 
gene significance of genes in black module.
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Figure 5. A. GO enrichment and KEGG pathway analyses. B. Interaction network of pathways. The nodes represent the pathways.

Figure 6. Functional enrichment analysis of the black module. GO enrichment analysis of genes in black module. A. GO analysis divided genes in the black module 
into three functional groups: biological process (BP), cellular component (CC), and molecular function (MF). B. KEGG pathway enrichment analysis of the genes in 
black module. The size of the dots represented the number of enriched genes. From purple to red, the P value decreased.
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Figure 7. Visualization of the correlation network from the black module: Cytoscape analysis identified 5 genes 
(BRCA1, CDC20, MAD2L1, MCM2, and UBE2C) are hub nodes in the network.

Figure 8. PPI network of the black module. Various col-
ors in the node indicate various functions as described.

dysfunction [17], and coagulation dysfunction 
[18]. Although a number of previous studies 
have investigated pathogenesis of H1N1, to the 
best of our knowledge, H1N1 has been seldom 
studied using bioinformatic analysis method. 
Among the 5 key genes we have identified in 
this study, CDC20 and MAD2L1 have never 
been mentioned in the study of the mechanism 
of human influenza. This is the novelty of the 
present study, and it deserves emphasis. 

First, we used the WGCNA to analyze the en- 
tire genome expression data and choose 
GSE82050 for the analysis of gene expression 
in this database. Then, we identified 35 co-
expressed modules to assess the biological 
information that is relevant to H1N1. Each co-
expressed module contained highly correlated 
genes. Through Pearson’s correlation coeffi-
cient calculation, we found one module (the 
black module) significantly related to H1N1. 
Furthermore, GO and KEGG pathway analyses 
showed that the mitochondrial inner mem-
brane, DNA conformation change, DNA repair, 
cell cycle phase transition, and condensed 
chromosome signaling pathway were the most 
important pathways in the black module. 
Furthermore, we identified the hub genes with 
a strong correlation in the black module. With 
further verification in the second database 

GSE27131, which was obtained from GEO, 
BRCA1, CDC20, MAD2L1, MCM2, and UBE2C 
were identified to be the key hub genes in cor-
relation with H1N1.

The analysis showed that BRCA1 plays a  
considerable role in H1N1 etiopathogenesis. 
BRCA1 was first found in human breast cancer 
cells. Further studies have found that BRCA1 is 
involved in DNA damage repair, cell cycle con-
trol, and regulation of gene transcription [19]. 
In addition, BRCA1 can be a tumor-inhibiting 
factor; it has been shown to inhibit the nucle-
ase activity in vitro [20]. Therefore, BRCA1 is a 
potential target in the prevention and treat-
ment of some tumors. The latest research 
shows that in breast cancer [21], ovarian can-
cer [22], and liver cancer [23], the BRCA1 muta-
tion is closely related to the infiltrating degree 
of immune cells, and it could be a new indicator 
to assess the condition of these diseases. In 
our study, the H1N1 group and healthy control 
group were compared in terms of their BRCA1 
expression levels. The BRCA1 expression level 
was much higher in the H1N1 group compared 
to the healthy control group, and it was associ-
ated with high infiltration of immune cells (para-
inflammation-expressing cells, B_cells, and 
human leukocyte antigen). These results sug-
gest that BRCA1 may be a key gene in the 
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Figure 9. The differential expression of 5 top hub genes between the control and H1N1 human samples (P<0.05) in the GSE27131.
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Figure 10. Correlation between 5 hub genes and immune cell content.
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Figure 11. GSVA was performed to identify the differentially regulated signaling pathways in H1N1. HExp stands for high expression and LExp stands for low expres-
sion.
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Figure 12. ROC curves of the 5 hub genes. ROC curves were used to assess the diagnostic values and predictive values of 5 hub genes.
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inflammatory response induced by the influen-
za A virus. Targeting BCRA1 may be a novel 
therapeutic strategy.

CDC20 was detected as another important fac-
tor of the H1N1 in this study. CDC20 (Cell 
Division Cycle 20) plays a vital role in cell cycle 
and chromosome dynamics during mitosis [24]. 
In addition, it is also involved in the regulation 
of apoptosis, brain development, and the occur-
rence and development of tumors. In a study of 
lung adenocarcinoma by WGCNA [19], 15 co-
expressed SRGs (CDC20, CDCA5, CDCA8, 
CCNA2, CCNB1, FEN1, KPNA2, RRM2, SPAG5, 
TOP2, MCM6, KIF2C, NUSAP1, RACGAP1, and 
TPX2) were identified, and the overexpression 
of SRGs, such as CDC20, was associated with 

reduced immune infiltration. Meanwhile, over-
expression of CDC20 predicts a poor prognosis 
in different types of lung cancer [25, 26]. In our 
study, influenza A virus-induced overexpression 
of CDC20 contributes to excessive infiltration 
of immune cells. Previous studies have shown 
that the high expression of CDC20 is related to 
the occurrence and development of tumors. 
However, it has not yet been reported whether 
CDC20 is involved in the inflammatory 
response. Our study revealed that CDC20 also 
has a pro-inflammatory effect.

In the network analysis, the MAD2L1 (Mitotic 
arrest deficient 2-like protein 1) gene was iden-
tified as another key hub gene. Previous data 
shows that MAD2L1 is essential for the survival 

Figure 13. Correlation analysis of the 5 hub genes. Protein-protein interaction of 5 hub genes of HIN1.
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of cancer cell lines. For example, the vast 
majority of cancer cell lines highly express 
MAD2L1, thereby suggesting that MAD2L1 was 
significantly associated with higher clinical 
stage and histological grade of breast cancer 
[27]. While in lung adenocarcinoma tissue, 
MAD2L1 gene expression may predict poor 
overall survival in patients and increase the risk 
of recurrence, and it may function as a prog-
nostic biomarker of lung adenocarcinoma [28]. 
In addition, it was found that the expression of 
MAD2L1 significantly correlated with several 
tumor indicators, including HER-2, Ki-67, ER, 
and P53 [27]. The overexpression of MAD2L1 
can change the structure of chromosomes and 
further lead to abnormal cell proliferation and 
cell differentiation. In this study, it was found 
that the overexpression of MAD2L1 was closely 
related to the various pathological changes of 
H1N1, and it correlated with the degree of mac-
rophage infiltration.

The minichromosome maintenance family 
(MCMs) is a group of proteins involved in DNA 
synthesis. Among them, the MCM2-7 protein 
complex functions as an essential replicative 
helicase for DNA replication [29]. Studies have 
shown that the abnormalities of MCMs contrib-
ute to tumorigenesis through regulating the cell 
cycle and DNA damage [30]. Overexpression of 
MCMs has been found in different human can-
cer cells [31]. However, no previous studies 
have evaluated the potential effect of MCM in 
inflammation, and our study indicates that 
MCM has a pro-inflammatory effect.

At last, the ubiquitin-conjugating enzyme 2C 
(UBE2C) was identified as another hub gene, 
and it has been shown that genome instability 
can be enhanced by the overexpression of 
UBE2C, which can lead to several different can-
cers [32]. In our study, UBE2C is highly 
expressed in the H1N1 group and accompa-
nied by immune cell infiltration, therefore, 
UBE2C may be a potential indicator of H1N1-
induced inflammation.

BRCA1, CDC20, MAD2L1, MCM2, and UBE2C 
are the key factors in cell cycle regulation. A 
growing number of studies have shown that 
overexpression of these key factors is associ-
ated with tumorigenesis and malignancies. In 
this study, we found that the overexpression of 
these key factors was significantly elevated in 

H1N1 patients. Inflammation is a biological 
response of the immune system that can be 
triggered by the influenza A virus. Inflammatory 
cells can be activated by inflammation, leading 
to the induction and activation of several oxi-
dant-generating enzymes, which can produce 
different oxidants and free radicals. The reac-
tion of different free radicals and oxidants 
leads to the generation of other more potent 
reactive oxygen and nitrogen species, causes 
the damage of RNA, DNA, proteins, and lipids 
by different reactions, increases mutations, 
and contributes to carcinogenesis [33]. The 
study indicated that suitable inflammation ther-
apy should be investigated for the prevention of 
cancers. Also, these genes appeared to be 
strongly associated with immune cell infiltra-
tion, and the results showed that the identified 
5 key genes significantly correlated with the 
E2F_TARGETS pathway, suggesting that these 
key genes play a critical role as a key regulator 
of the cell cycle. Through an analogical method, 
Zarei Ghobadi M, et al. have found 38 modules 
correlated to influenza infection and showed a 
sequence of key factors in pediatric influenza 
using microarray data from the pediatric influ-
enza-infected samples [33]. In the screening of 
key genes, we found many key genes in com-
mon, such as the UBE2 gene. Consistently, 
innate immune response and cell cycle events 
were observed to be functional categories that 
were enriched in pediatric influenza. Our find-
ings echo with reports in this literature.

In conclusion, through WGCNA, we discovered 
BRCA1, CDC20, MAD2L1, MCM2, and UBE2C 
as key hub genes in H1N1. Greater exploration 
of the ascertained hub genes is needed to 
comprehend the H1N1 mechanisms. These 
candidate genes and related proteins could be 
used as biomarkers and for drug targeting. 
However, further research is required to con-
firm these observations.
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