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Abstract: The response of the kidney and its recovery following unilateral ureteral obstruction (UUO) depend on 
several factors including the duration of obstruction, the species involved and the age of the individual. In neonates, 
there is compelling evidence to indicate that even short periods of reversible UUO might lead to long-term renal 
impairment. In adults, the glomerular filtration rate returns to baseline values soon after the release of short pe-
riods of UUO. Despite this return to normal, experimental data have demonstrated that short periods of reversible 
UUO could lead to long-term renal functional alterations including tubular atrophy, interstitial fibrosis and urinary 
albumin leakage in addition to alterations in pro-inflammatory and pro-fibrotic cytokines. The concentrating ability 
of the kidney and its response to stimuli such as renal nerve stimulation and physiological doses of angiotensin-II 
were also shown to be affected at least in the intermediate-term following UUO reversal. In humans, epidemiological 
studies have also demonstrated a clear association between long-term renal impairment and ureteral obstruction. 
However, in clinical studies, it is usually difficult to precisely determine the degree and the time of onset of ureteral 
obstruction and more studies are required in this field. In conclusion, the available experimental and clinical data 
indicate that even short periods of UUO can cause long-term renal dysfunction. These findings might have clinical 
implications related to the early intervention following acute onset of UUO and to the need for long-term monitoring 
of renal functions particularly in patients with underlying chronic renal disease.
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Introduction

Obstructive uropathy refers to any structural or 
functional changes in the urinary tract that 
impede the normal flow of urine. It can be divid-
ed into upper and lower urinary tract obstruc-
tion depending on the site of obstruction 
whether it is above or below the ureterovesical 
junction. By definition, upper urinary tract 
obstruction is usually unilateral and lower uri-
nary tract obstruction is bilateral. Unilateral 
ureteral obstruction (UUO) is a relatively com-
mon form of upper urinary tract obstruction 
and is usually caused by ureteral calculi, trau-
ma, strictures and tumors.

Unilateral ureteral obstruction leads to several 
alterations in renal functions. Most of the data 
related to these changes were based on experi-
mental animal studies using clearance and 
micropuncture techniques because, in humans, 
it is usually impossible to determine the exact 

time of the onset of obstruction. Moreover, 
oftentimes, it is difficult to perform serial com-
prehensive detailed renal functional measure- 
ments.

In neonates, there is compelling evidence to 
indicate that short periods of reversible UUO 
result in long-term renal impairment [1-3]. In 
adult subjects, the presence of long-term renal 
damage following release of short periods of 
UUO is less clear. In this review, the recovery 
and long-term effects of short periods of UUO 
on the renal functions in the adult are dis-
cussed. The first part of this review deals with 
the available data from experimental animals 
whereas the clinical data related to the topic is 
discussed in the second part.

Experimental data

Ureteral obstruction results in a rise in ureteral 
pressure which leads to alterations in glomeru-
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lar and tubular renal functions. The degree of 
these alterations depends on various factors 
such as the duration of obstruction, whether it 
is partial or complete [4-6] and whether it is 
unilateral or bilateral [7-11]. In this section, the 
immediate and long-term hemodynamic and 
tubular renal functional alterations that occur 
following acute UUO, although interrelated, will 
be discussed separately.

Glomerular alterations

Hemodynamic and glomerular changes follow-
ing acute UUO

Immediately following the onset of UUO, there 
is an initial increase in ureteral pressure lead-
ing to a rise in intra-tubular pressure [12-14] 
and subsequent alterations in the renal blood 
flow (RBF). In the rat, following the onset of 
UUO, RBF passes through three phases [15]. 
During the first phase or the hyperemic phase, 
there is a transient rise in RBF which was  
shown to be mediated by several agents includ-
ing vasodilatory prostaglandins [16]. In the sec-
ond phase, which occurs two to five hours after 
the onset of UUO, RBF starts to drop. This may 
be due to the rise in the renal interstitial pres-
sure as a direct effect of the increase in ure-
teral pressure which continues to rise [17]. In 
the third phase, which starts from 5 hours 
onward, RBF decreases progressively and by 
24 hours it reaches 30-50% of the pre-obstruc-
tion value.

These changes in intra-tubular pressure and 
RBF lead to progressive deterioration in the 
GFR immediately following the onset of UUO. In 
rats, for example, the GFR falls to 2% of the 
control value by 48 hours after the onset of 
UUO and remains at this level thereafter if the 
obstruction is not relieved. The reduction in 
GFR is caused by the fall in RBF, the alterations 
in the hydraulic pressure gradient and the 
reduction in the ultrafiltration coefficient 
[18-20].

Recovery of glomerular function following re-
versal of ureteral obstruction

Following the release of UUO, the rate and 
extent of recovery of glomerular functions 
depend on several factors such as the species 
involved and the duration of obstruction [21-

26]. In rats, it has been shown that a perma-
nent degree of damage occurs beyond 72 
hours of obstruction [26] whereas shorter peri-
ods of obstruction result in complete recovery 
of GFR within few days to weeks after reversal 
[21, 23, 27]. For instance, following reversal of 
a 24-hour UUO, Bander et al demonstrated  
that the GFR of the post-obstructed kidney 
(POK) had improved gradually following UUO 
reversal, returned to values similar to the non-
obstructed kidney (NOK) within two weeks and 
continued to be comparable to the NOK up to 
60 days post-reversal [21].

In the rat also, 72-hour reversible UUO, led to a 
reduction in GFR, which recovered by 28 days 
following reversal [28]. In addition, Hammad et 
al studied renal functions serially up to 18 
months following 72-hour reversible UUO in  
the rat [29]. They demonstrated that the GFR of 
the POK was similar to the contralateral NOK 
when measured one, four and eighteen months 
following the UUO reversal. This was the lon-
gest follow-up of the GFR following reversal of 
relatively short periods of UUO in experimental 
animals and it is unknown if the GFR would con-
tinue to be normal after longer periods of 
follow-up.

Despite this apparent recovery in the total GFR 
following relatively short periods of UUO, there 
is evidence to suggest that some nephrons 
might still be non-filtering. In a 60-day follow- 
up study following 24-hour reversible UUO, it 
was demonstrated that only 85% of the neph-
rons in the POK were filtering at 60 days post-
UUO reversal i.e. almost 45 days following the 
recovery of total GFR [21]. This has indicated 
that the complete ‘recovery’ of the GFR was 
achieved at the expense of an increase in sin-
gle nephron GFR or ‘hyperfiltration’ in some 
nephrons. The filtering status of the nephrons 
has not been studied beyond 60 days post-UUO 
reversal.

Histological features of the glomeruli after UUO 
and recovery after release: Following UUO, glo-
merular structural changes tend to develop 
more slowly compared to tubular changes and, 
in most instances, there is a tendency for glo-
merular histological preservation [30]. This is 
probably due to the presence of some degree 
of filtration even with complete obstruction and 
this, in turn, results in maintaining the integrity 
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of the glomerulus [30]. It usually takes few 
weeks of obstruction for significant glomerular 
changes to be seen histologically. For instance, 
in rats, UUO led to the congestion of the glo-
merular capillaries and fusion of the foot pro-
cesses at some sites within the first few days 
following UUO but this disappeared shortly 
afterwards [31]. In addition, starting from the 
first day following obstruction, a small amount 
of eosinophilic coagulum consistent with gran-
ules and fibrillary material, was seen in the 
Bowman’s capsule. With longer periods of 
obstruction, however, significant changes ulti-
mately occur. In a canine model, four weeks of 
UUO led to a reduction in the number and diam-
eter of the glomeruli [32]. Blocked nephrons 
eventually atrophy due to disuse and reduced 
blood flow in addition to the presence of inflam-
matory changes [30, 31, 33, 34].

Following short periods of UUO, the recovery of 
the minor histological glomerular changes is 
relatively rapid. So, in rats, glomeruli looked 
normal on both light and electron microscopy 
shortly following reversal of 2-day UUO [31]. 
This recovery of glomeruli was maintained 
when the kidney was examined few weeks [28, 
35] or even up to 18 months following reversal 
of short period of UUO (Table 1) [29].

Renal tubular alterations

Alterations in tubular functions following acute 
unilateral ureteral obstruction

Alterations in tubular functions are very com-
mon following UUO and even short periods of 
obstruction could result in marked and pro-
longed alterations in tubular functions [21, 
35-37]. For instance, the fractional excretion of 
sodium (FENa) increases immediately following 
the release of 24-hour UUO in the rat [21, 35, 
38]. This is probably due to the reduced ab- 
sorption ability of the thick ascending loop of 
Henle causing a fall in medullary tonicity which 
results in an impairment in the concentrating 
ability of the POK [39, 40].

The reduced concentrating ability affects also 
the urine osmolility. So, in rats, the urine osmo-
lality of the POK following 18 hours of UUO,  
was found to be 400 mOsm/kg compared to 
more than 1800 mOsm/kg in the contralateral 
NOK [40]. Similar findings were reported by 
other researchers [21]. The reabsorption of 
other electrolytes such as phosphate [41] and 
the excretion of potassium [21, 42] and hydro-
gen [21, 43] as well as the net acid excretion 
[21] were also altered by UUO.

Table 1. Important experimental (Table 1A) and clinical (Table 1B) studies which directly addressed 
the effect of short periods of reversible unilateral ureteral obstruction on the renal functions in the 
long-term
Table 1A: experimental

UUO Duration Follow-up Species Main Findings
Bander et al [21] 24 hours 60 days Rat 1. GFR continued to be normal during follow-up

2. At 60 days, only 85% of the nephrons were filtering
3. Persistently low urine osmolality and net acid excretion

Ito et al [28] 72 hours 28 days Rat 1. GFR was normal by 28 days
2. Persistent dilation of the collecting ducts and distal 
tubules in addition to the tubular atrophy
3. Persistent and increased Interstitial fibrosis
4. Persistent rise in TGFβ-1 up to 28 days

Hammad et al [29] 72 hours 18 months Rat 1. GFR continued to be normal during follow-up
2. Albuminuria at 18 months post-UUO
3. Persistent tubular dilation and atrophy, mononuclear 
cell infiltration and interstitial fibrosis
4. Persistently raised gene expression of procollagen-
type-1, TGFβ-1, PAI-1, MCP-1 and p53

Table 1B: clinical
Follow-up Etiology Main Findings

Lucarelli et al [109] Median 60.8 months Trauma Releasing the obstruction within two weeks of UUO, significantly 
reduced the probability of developing long-term renal damage

UUO: unilateral ureteral obstruction; TGF-1: transforming growth factor-1; PAI-1: plasminogen activator inhibitor-1; MCP-1, monocyte chemoat-
tractant protein-1.
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Recovery of tubular functions following rever-
sal of ureteral obstruction

Following the release of short periods of UUO, 
tubular functions show evidence of some 
‘recovery’ if the obstruction is not very pro-
longed. Although the effect of UUO on tubular 
functions in the immediate period following 
reversal has been extensively studied, the  
long-term effect is far less investigated (Table 
1) [21, 29, 36]. In one of the early studies in a 
24-hour reversible UUO in the rat, it was shown 
that the FENa and fractional excretion of potas-
sium of the POK had returned to normal within 
the first two weeks following UUO reversal and 
continued to be comparable to the contralater-
al NOK up to sixty days post-reversal [21]. 
These findings were consistent with other 
reports when the renal functions were mea-
sured one month post-reversal in a similar 
model [36] or even at 18 months following 
72-hour reversible UUO in the rat [29]. Similar 
to the FENa and fractional excretion of potassi-
um, urine pH and bicarbonate excretion had 
also returned to normal 14 days following 
24-hour reversible UUO [21]. Nevertheless, the 
urine osmolality was persistently low at all 
times up to sixty days post release. The net 
excretion of acid was also consistently low and 
this was attributed to a decrease in the abso-
lute excretion of ammonium. These abnormali-
ties were thought to indicate a persistent func-
tional defect in the distal tubular or collecting 
duct function and/or a loss in the functional 
juxtaglomerular nephrons. It is unknown if 
these abnormalities would persist in the long-
term or if they return to normal at some stage. 
Further studies are required to address these 
points in experimental models.

Albumin leak following relief of UUO: Albumin- 
uria is the earliest marker of glomerular dis-
ease as it usually occurs before the impair- 
ment in the GFR [44, 45]. Several studies have 
demonstrated that long periods of UUO result 
in albuminuria [46-50]. Interestingly, even  
short periods of reversible UUO were also 
shown to cause significant albuminuria in the 
long-term [29]. For instance, in a 72-hour 
reversible UUO model in the rat, both 24-hour 
urine albumin and albumin creatinine ratio in 
the first day post-reversal were significantly 
higher than the pre-UUO value [29]. Both 
parameters returned to pre-UUO values when 

measured one-month post-reversal but in- 
creased again at four- and 18-months post-
reversal. These changes were associated with 
histologically normal glomeruli but abnormal 
tubules at all times post-reversal. According to 
the authors, this albuminuria could have been 
due to ultrastructural changes in the glomeruli 
which were not detected by light microscopy 
especially if one adopts the traditional view 
that albuminuria is the result of damage to an 
essentially impermeable glomerular membrane 
[51-53]. Alternatively, it could have been 
caused by the UUO-associated proximal tubular 
damage and associated impairment in the 
retrieval and handling of the absorbed albumin 
molecules [51, 54, 55].

The response of the post-obstructed kidney to 
various stimuli

Despite the recovery of the GFR following re- 
versal of short periods of UUO (vide supra) [21, 
23, 28], the response of the kidney to some 
stimuli remains alerted. For instance, in a rat 
model of reversible 24-hour UUO, the GFR 
returned to basal values when measured 14 
days post-reversal. Nevertheless, captopril 
failed to cause any increase in the GFR and 
FENa in the POK compared to the expected 
increase observed in the NOK [23]. Moreover, 
physiological doses of angiotensin-II led to 
unexpected increase in both the GFR and FENa 
in the POK whereas they resulted in significant 
reductions in these parameters in the NOK. 
These abnormal responses disappeared spon-
taneously when assessed at two months fol-
lowing UUO reversal.

There is also evidence to suggest that UUO 
might also impair the neural responses of the 
POK. So, in a 24-hour reversible UUO model in 
the rat, renal nerve stimulation led to an 
increase in the GFR by 22% in the POK whereas 
it did not alter the GFR in the NOK kidney [56].

Collectively, these data suggest an abnormal 
response of the POK to certain physiological, 
pharmacological and neural stimuli. Although 
some of these responses return to normal by 
time it is unknown if this recovery occurs in all 
abnormalities. Furthermore, the response of 
the POK to other stimuli has not been studied 
and further research is required to address this 
point.
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Histological features of the renal tubules and 
interstitium after UUO and recovery after 
release: Ureteral obstruction leads to signifi-
cant histopathological changes in the renal 
tubules and interstitium [30, 31, 34, 57-62]. It 
results in early dilatation of the tubules pre-
dominantly the collecting ducts and distal 
tubules with subsequent flattening and atrophy 
of the cells of the proximal tubules and subse-
quent release of a number of autocrine factors 
and cytokines [63-70] (vide infra). This in turn, 
leads to the infiltration of the renal intersti- 
tium with inflammatory cells. All these factors 
accelerate the development of interstitial fibro-
sis by increasing the production of extracellular 
matrix, cell infiltration, apoptosis, and accumu-
lation of activated myofibroblasts [28]. These 
changes result in further tubular dilatation, 
tubular basement membrane thickening, cell 
flattening, and cytoplasmic hyalinization [60-
62] with ultimate tubular loss.

With release of short periods of UUO, renal 
tubules show evidence of some initial recovery. 
So, in a rat model of 2-day reversible UUO, 
Shimamura and colleagues demonstrated that 
the collecting ducts dilation had started to 
decrease on the first day after release. How- 
ever, this recovery was incomplete and on the 
third day, the lining of tubular epithelial cells, 
which were flat on the second day post-rever-
sal, became swollen and projected into the 
lumen. From the fourth to seventh day, there 
were persistent focal areas of collecting ducts 
dilation [31].

In a longer follow-up after reversal of 3-day  
UUO in the rat, Ito et al demonstrated a persis-
tent dilation of the collecting ducts and distal 
tubules in addition to the tubular atrophy, which 
gradually increased throughout the 28 days 
period of follow-up despite the preservation of 
glomeruli [28]. In the immediate post-release 
period, these tubular changes were associated 
with an increase in the number of macro-
phages, which decreased by 14 days but sur-
prisingly, increased again at 28 days. Inter- 
stitial fibrosis was not immediately seen after 
release but started to appear on day 7 and this 
has increased by 28 days post-reversal.

In a rat model of 3-day reversible UUO, the kid-
ney was examined up to 18 months following 
release of the obstruction [29]. Significant 
tubular dilation and atrophy were obserbed 
even at one-month post-release. The extent  
of these tubular changes improved at four 
months, but surprisingly, they deteriorated 
again when assessed at 18 months despite  
the normal glomerular histology (Figure 1). The 
extent of mononuclear cell infiltration in the 
POK, which was significantly more severe  
than the NOK at one-month post-release, had 
gradually improved until 18 months, albeit it 
was still significantly more severe compared  
to the NOK. Similar trend was observed with 
interstitial fibrosis, the extent of which was sig-
nificant at one month. This was followed by 
some improvement although it was still more 
severe than the NOK at 18 months. This was 
associated with a persistently raised gene 
expression of procollagen-type-1. These data 
indicate the presence of ongoing tubulointersti-
tial abnormalities despite the fact that some of 
these abnormalities might show transient 

Figure 1. The scoring of various histological features 
in the post-obstructed kidney (POK) one (G-1), four 
(G-2) and eighteen (G-3) months following the re-
lease of 3-day unilateral ureteral obstruction in the 
rat; *Statistical significance between groups (Repro-
duced with permission from reference #29).
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improvement few weeks following the release 
of obstruction.

The predominance of tubular changes in the 
UUO in contrast to the interstitial changes 
observed in other models of chronic kidney dis-
ease is probably due to the differences in the 
mechanism of injury in these models. In UUO, 
several factors contribute to the tubular atro-
phy and dilatation. Firstly, the rise in tubular 
pressure causes mechanical stretching and 
flattening of the tubules [71] and leads to cell 
injury and apoptosis probably due to caspase-
dependent mechanism associated with the oxi-
dative stress injury [72, 73]. Secondly, the ini-
tial vasoconstriction generates a hypoxic envi-
ronment leading to tubular cell death [74]. 
Thirdly, the interstitial fibrosis and accumula-
tion of the extracellular matrix can further 
deprive the tubules from adequate blood sup-
ply. Lastly, the proteinuria and albuminuria 
might also lead to tubular toxicity and damage 
due to the increased lysosomal activity in tubu-
lar cells [75]. The last three factors which 
potentially lead to tubular atrophy, are present 
in almost all types of chronic kidney disease. 
However, the backpressure and tubular stretch-
ing is peculiar to this model indicating that dif-
ferent mechanisms of kidney injury might lead 
to different long-term outcomes as previously 
suggested by some authors [76].

Despite the presence of tubular changes, none 
of the experimental studies had shown a dete-
rioration of the GFR in the long-term after re- 
turn to normal following release of short peri-
ods of UUO in adult animals. This could be due 
to the lack of very long-term follow-up in experi-
mental models (maximum follow-up of 18 
months in a rat model [29]). There are several 
reasons to suggest a possible long-term dete-
rioration in the GFR. In several other renal con-
ditions, the presence of interstitial fibrosis has 
been shown to be associated with GFR de- 
terioration in the long-term [77, 78]. Interstitial 
fibrosis causes tubular atrophy, tubular isch-
emia, and ultimately obliteration of the post-
glomerular peritubular capillaries which would 
affect glomerular filtration [77, 79-81]. More- 
over, the deterioration in renal tubular histo- 
logical features observed following short peri-
ods of UUO in addition to the alterations in the 
pro-inflammatory, pro-fibrotic and pro-apoptot-
ic mediators might also contribute to the pos-
sible deterioration of the GFR in the long-term.

The role of pro-inflammatory cytokines and 
chemokines in the tubule interstitial fibrosis 
following UUO reversal

Ureteral obstruction results in the release and 
activation of several cytokines and chemokines 
[16, 18, 28, 29, 35, 38, 64, 67-69]. For 
instance, reactive oxygen species [82, 83], 
tumor necrosis factor alpha (TNF-α) [35, 82, 
84] and the apoptotic p53 gene [35, 38, 85] 
were shown to be involved in the cell injury, 
apoptosis and proliferation of tubular cells  
following UUO. Factors such as the monocyte 
chemotactic protein-1 (MCP-1) [86], interleukin 
1 beta (IL-1β) [87] and platelet activator inhibi-
tor [66] have also been associated with the 
UUO-related interstitial inflammation. Renin-
angiotensin system [38, 88-91] and transform-
ing growth factor beta-1 (TGFβ-1) [35, 65, 92, 
93] are among the factors which were linked to 
the fibroblast proliferation.

These agents and cytokines also play an im- 
portant role in the recovery following UUO rever-
sal. In a 3-day reversible UUO in the rat, it was 
demonstrated that the tissue level of TGFβ-1  
in the POK was significantly higher than the 
basal value and continued to rise up to 28 days 
post-reversal even when the GFR and FENa had 
returned to basal values [28]. This was associ-
ated with an increase in the interstitial fibrosis 
and tubular apoptosis. In addition, Western blot 
and immunohistochemistry confirmed the 
increased expression of both iNOS and eNOS  
in the POK suggesting an increase in the syn-
thesis of NO which indicated an attempt by the 
kidney to oppose the action of TGFβ-1 in the 
recovery period.

In a similar 3-day reversible UUO in the rat, the 
gene expressions of several cytokines at four 
months were significantly lower than the values 
seen at one-month post-reversal [29]. These 
include TNF-α, TGFβ-1, plasminogen activator 
inhibitor-1 (PAI-1), MCP-1 and p53 gene. 
Surprisingly, these factors remained altered or 
even significantly increased again when mea-
sured at 18 months following the UUO reversal 
i.e., longtime after all renal functions and sodi-
um excretion had returned to normal. As dis-
cussed previously, this was associated with 
deterioration in tubular dilation and atrophy 
indicating an ongoing inflammatory and fibrotic 
process long after the release of UUO.
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Clinical data which indicates a deterioration in 
renal functions following short periods of UUO

In clinical practice, UO is caused by several  
conditions such as urinary stones, ureteric 
tumors, and ureteric injury. Urolithiasis is a 
common disease worldwide and the relation-
ship between urolithiasis and long-term renal 
disease is well established [94-101]. In a 
Canadian population-based epidemiological 
study of more than 3 million adults and a medi-
an follow-up of 11 years, it was shown that a 
history of one or more stone episodes was 
associated with an increased risk of chronic 
kidney disease [94]. In another population-
based cohort study with over 25 years of  
follow-up from Olmsted County, it was demon-
strated that stone formers were at 2.1-fold 
higher risk of developing end-stage renal dis-
ease independent of the baseline renal func-
tions and other cardiovascular risk factors 
[102]. The mechanism of renal dysfunction in 
urinary stone disease is multifactorial. In addi-
tion to causing ureteric obstruction, renal 
stones are associated with urinary tract infec-
tions and inflammatory changes [103]. Pa- 
tients with urolithiasis are also more likely to 
have frequent exposure to nephrotoxic analge-
sics. Furthermore, urolithiasis share several 
common factors with chronic kidney disease 
such as low water intake, high protein diet  
[104] and urinary tract abnormalities [105]. 
Therefore, the mere finding of an association 
between urolithiasis and renal dysfunction 
might not indicate a strong clinical correlation 
between ureteric obstruction and chronic kid-
ney disease and this can only be demonstrated 
by studying patients with ureteric obstruction 
due to causes other than urolithiasis.

The association between long-term renal 
impairment and obstructive uropathy regard-
less of the etiology has been well-established 
by several epidemiological studies [106-108]. 
For instance, Kaufman and colleagues demon-
strated that urinary obstruction had accounted 
for 17% of the community-acquired acute kid-
ney injury [106]. Similarly, 10% of the com- 
munity-acquired acute kidney injury in a Spa- 
nish study, were shown to be due to obstructive 
uropathy [107]. Despite the establishment of 
the association between renal impairment and 
urinary obstruction, the majority of these stud-
ies did not specifically differentiate between 

bilateral and unilateral urinary obstruction as 
the majority of these patients had bilateral 
obstruction due to bladder outlet obstruction 
[106-108]. In addition, the exact duration of 
obstruction and whether it is partial or com-
plete was not precisely defined due to the 
inherent difficulties in determining these issues 
in humans.

These concerns were addressed by the study  
of Lucarelli and colleagues (Table 1) who  
evaluated the long-term (median 60.8 months) 
renal functions following iatrogenic renal injury 
caused by ureteric obstruction [109]. Using 
multivariable logistic regression, it was shown 
that the time elapsed before the relief of 
obstruction was the only significant predictor of 
the outcome. So, if the obstruction was relieved 
in less than two weeks, the probability of devel-
oping long-term renal damage was significantly 
less than if the release was delayed for more 
than two weeks.

The observed discrepancy between humans 
and experimental animals regarding the dura-
tion of UUO which results in long-term renal 
impairment is due to the fact that different spe-
cies have different time scale regarding their 
biological responses to various stimuli. In this 
regard, it has been estimated that one day of 
rat’s life might be equivalent to several days of 
human life in terms of biological changes [63, 
110, 111].

Despite the presence of several clinical studi- 
es which have addressed the long-term renal 
functions in patients with history of urinary 
stones episodes and in patients with bilateral 
ureteric obstruction which is usually caused by 
bladder outlet obstruction, the clinical studies 
which specifically investigated the effect of 
short periods of UUO on long-term renal func-
tions are rare and further studies are required 
to determine the exact duration of UUO which 
leads to long-term renal consequences. In the 
patient with unilateral ureteral colic due to an 
obstructing ureteral stone, there are still no 
clear clinical guidelines on the best time for  
surgical intervention to release the ureteral 
obstruction. So, despite indicating that two 
weeks of UUO might be the critical time after 
which there might be a significant increase in 
the probability of having long-term renal impair-
ment, the study of Lucarelli et al had a median 
follow-up of only 60.8 months (vide supra) 
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[109]. By extrapolating the data from experi-
mental animals, this duration of follow-up might 
not be sufficient to show long-term renal altera-
tions. Furthermore, the study did not address 
the renal histological changes which will be 
extremely difficult to perform in humans. 
Moreover, a good percentage of ureteral stone 
episodes in humas results in partial UUO which 
obviously has less impact on renal functions 
compared to complete UUO. Certainly, there is 
a need for further studies which also provide 
the risk benefit analysis in patients with UUO 
due to ureteric stones to compare between the 
benefits and risks of early versus delayed surgi-
cal intervention which is associated with poten-
tial risk of long-term renal impairment. Such 
studies might be difficult to perform in hu- 
mans due to difficulty in determining the exact 
time of onset of UUO and whether it is com- 
plete or partial. Other confounding factors such 
as the status of the baseline renal functions 
and the presence of other comorbidities and 
medications which might also affect renal 
response to UUO, need to be taken into consid-
eration. Until that time when these data are 
available in humans, these patients must be 
thoroughly counselled about the known risks 
and benefits of early surgical intervention which 
would decrease the risk of long-term effects of 
UUO on renal functions. Moreover, these 
patients might also require long-term monitor-
ing of renal functions despite the apparent ini-
tial recovery in the clinical parameters. This is 
particularly important in patients with underly-
ing primary or secondary renal diseases.

Conclusions

The available experimental and clinical data, 
despite their rarity, strongly indicate that short 
periods of unilateral ureteral obstruction in 
adults might lead to long-term renal dysfunc-
tion. Studies in experimental animals have 
shown that periods as short as 24-72 hours of 
unilateral ureteral obstruction, had led to long-
term renal dysfunction such as the impairment 
in the ability to concentrate urine, urinary albu-
min leakage, tubulointerstitial fibrosis and 
alterations in pro-inflammatory, pro-fibrotic and 
pro-apoptotic markers as well as the impair-
ment in the response of the previously obstruct-
ed kidney to various stimuli. In humans, two 
weeks of unilateral ureteral obstruction led to 
long-term renal impairment. These findings 
might change our current clinical practice in 

relation to the best time to intervene in patients 
with acute onset of unilateral ureteral obstruc-
tion such as those with obstructing ureteral  
calculi. Moreover, these patients might also 
require long-term monitoring of renal functions 
despite the apparent initial recovery after the 
release of obstruction. This is particularly 
important in patients with underlying primary or 
secondary renal diseases.
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