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Abstract: Background: Sexually dimorphic spinal motoneurons (MNs) in the dorsomedial nucleus (DMN) and dorso-
lateral nucleus (DLN) as well as those in the cremaster nucleus are involved in reproductive behaviours, and the cre-
master nucleus additionally contributes to testicular thermoregulation. It has been reported that MNs in DMN and 
DLN are extensively linked by gap junctions forming electrical synapses composed of connexin36 (Cx36) and there 
is evidence that subpopulation of MNs in the cremaster nucleus are also electrically coupled by these synapses. 
Methodology: We used immunofluorescence methods to detect enhanced green fluorescent protein (eGFP) reporter 
for Cx36 expression in these motor nuclei. Results: We document in male mice that about half the MNs in each of 
DMN and DLN express eGFP, while the remaining half do not. Further, we found that the eGFP+ vs. eGFP- subsets 
of MNs in each of these motor nuclei innervate different target muscles; eGFP+ MNs in DMN and DLN project to 
sexually dimorphic bulbocavernosus and ischiocavernosus muscles, while the eGFP- subsets project to sexually non-
dimorphic anal and external urethral sphincter muscles. Similarly, eGFP+ vs. eGFP- cremaster MNs were found to 
project to anatomically distinct portions of the cremaster muscle. By immunofluorescence, nearly all motoneurons 
in both DMN and DLN displayed punctate labelling for Cx36, including at eGFP+/eGFP+, eGFP+/eGFP- and eGFP-/
eGFP- cell appositions. Conclusions: Most if not all motoneurons in DMN and DLN are electrically coupled, includ-
ing sexually dimorphic and non-dimorphic motoneurons with each other, despite absence of eGFP reporter in the 
non-dimorphic populations in these nuclei that have selective projections to sexually non-dimorphic target muscles. 

Keywords: Neuronal gap junctions, connexin36, electrical synapses, sexually dimorphic muscles, bulbocaverno-
sus and ischiocavernosus muscles, external urethral and external anal sphincter, Cx36BAC-eGFP mice

Introduction

Electrical synapses formed by gap junctions 
composed of intercellular communicating chan-
nels consisting largely of the gap junction-form-
ing protein connexin36 (Cx36) are present and 
densely to moderately concentrated in nearly 
every major structure in the mammalian brain 
[1-4]. These synapses allow direct electrical 
transmission or electrical coupling (e-coupling) 
between neurons [5], contribute to a wide 
range of integrative capabilities in neural net-
works in which they are embedded [4, 6, 7], 
and occur at a variety of neuronal subcellular 
sites [2, 8-15]. Investigations of electrical syn-
apses in mammalian brain have led to an 
understanding of the functional importance of 

these structures in neuronal circuitry of higher 
vertebrates, particularly in conferring synchro-
nization of neuronal firing in a network of 
e-coupled cells, which is a widespread feature 
of neuronal activity in the brain [16-21]. 

Diverse populations of neurons in the spinal 
cord are also richly endowed with electrical syn-
apses based on widespread distribution of fluo-
rescent protein reporter for Cx36 expression 
[22-24], and there has been some progress in 
understanding some of the physiological roles 
of electrical synapses in modulating neuronal 
activity in the spinal neural systems [25-29]. 
Spinal cord neurons in which evidence for 
e-coupling has been reported in adult rats and 
mice include sexually dimorphic motoneurons 
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(MNs) in the dorsomedial motor nucleus (DMN; 
a.k.a., spinal nucleus of the bulbocavernosus) 
and the dorsolateral motor nucleus (DLN) locat-
ed in the lower lumbar (L) region (i.e., L5-L6) 
[30-32]. Another set includes MNs in the sexu-
ally dimorphic cremaster motor nucleus located 
in the upper lumbar spinal cord at the L1-L2 
level [33]. These motor nuclei are considered to 
be sexually dimorphic based on the relatively 
greater numbers, larger size and responsive-
ness to circulating androgens of their MNs, and 
differential degrees of development of the mus-
cles they innervate in males vs. females [34-
39]. Subsets of MNs in both the DMN and DLN 
innervate two distinct groups of striated mus-
cles located in the pelvic floor [38, 40]. Those 
in DLN project to ischiocavernosus muscle as 
well as striated muscle forming the external 
urethral sphincter around the neck of the uri-
nary bladder, while those in the DMN project to 
bulbocavernosus (a.k.a., bulbospongiosus) mu- 
scle as well as striated muscle forming the 
external anal sphincter. Similarly, cremaster 
MNs project to the single cremaster muscle, 
which is nevertheless segregated into a larger 
portion enveloping the testes and a separate 
smaller portion surrounding the spermatic 
cord. In mammals, both portions of the cremas-
ter muscle are essential for providing ther-
moregulation of the testes [41-43], while the 
larger portion in addition performs in elevation 
and protection of the testes [44]. It is generally 
accepted that MNs in both the upper and lower 
lumbar sexually dimorphic motor nuclei contrib-
ute to various parameters of sexual behavior, 
including erectile and ejaculatory functions dur-
ing copulation [41, 45-49]. 

Spinal sexually dimorphic motor nuclei appear 
to be remarkably complex in their organization 
of peripheral projections to target muscles and 
in the functional interrelationships of their con-
stituent MNs, including perhaps the organiza-
tion of e-coupling within these nuclei. Indeed, 
using transgenic mice in which enhanced green 
fluorescent protein (eGFP) serves as a reporter 
for Cx36 expression as detected by immuno-
fluorescence labelling of this protein, we recent-
ly reported that MNs in the cremaster nucleus 
are heterogeneous with respect to their eGFP 
expression, suggesting the presence of both 
e-coupled and non-coupled MN populations in 
this nucleus. Here, we document similar hetero-
geneity in eGFP expression among MNs in the 

sexually dimorphic DMN and DLN, examine the 
target muscle projections of these distinct MN 
populations as well as those in the cremaster 
nucleus, and evaluate patterns of Cx36 expres-
sion as detected by its immunofluorescence 
localization among MNs in the lower lumbar 
sexually dimorphic motor nuclei.

Materials and methods

Animals and antibodies

Adult male C57BL/6-129SvEv (Cx36BAC::eGFP) 
transgenic mice (n = 24, 1-2 months of age, 
25-29 g in weight) and matching female coun-
terparts (n = 6) were obtained from a colony at 
the University of Manitoba established with 
breeding pairs from the UC Davis Mutant 
Mouse Regional Resource Center (Davis, CA, 
USA; see also http://www.gensat.org/index.
html). Mice were selected by genotyping for 
expression of bacterial artificial chromosome 
(BAC) driven expression of eGFP under the 
Cx36 promoter. Animals were housed under 
controlled temperature and humidity on a 
12:12 hr light/dark cycle and were provided 
with standard lab chow and tap water ad libi-
tum. Considerations were taken to minimize 
animal stress and the number of animals used 
in all procedures. Animals were obtained from 
the Central Animal Care Services at the 
University of Manitoba and utilized according to 
approved protocols by the Central Animal Care 
Committee of the University of Manitoba. 
Tissues from these animals were typically 
obtained between 10:00 am to 1:00 pm.

For immunofluorescence labelling of target pro-
teins in neurons, various combinations of seven 
commercially available primary antibodies were 
used. Table 1 contains the relevant informa-
tion, including the type (polyclonal or monoclo-
nal), species of origin, commercial source, cata-
log number designation and dilutions utilized 
during incubations with tissue sections. Our 
prior investigations of mammalian CNS using 
Cx36BAC::eGFP mice revealed that many neu-
rons and their processes positively labelled for 
eGFP were also decorated with punctate Cx36 
labelling [23, 33, 50], a finding that supports 
eGFP expression in most, though perhaps not 
all, neurons as an indicator of coincident Cx36 
expression. In these studies, Cx36 labelling in 
different CNS regions, including the spinal cord, 
was detected using a mouse monoclonal anti-
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body (Cat. No. 39-4200, ThermoFisher, 
Rockford, IL, USA) raised against Cx36, whose 
specificity has been established by showing 
absence of punctate Cx36 labeling in Cx36 null 
mice [32, 33, 51, 52]. All secondary antibodies 
used were raised in donkey and included: Cy3-
conjugated anti-guinea pig, which was used at 
a dilution of 1:600 (Jackson ImmunoResearch 
Laboratories, West Grove, PA, USA); and 
Alexa488-conjugated anti-rabbit, Alexa488-
conjugated anti-chicken, Alexa555-conjugated 
anti-goat, Alexa555-conjugated anti-mouse 
and Alexa555-conjugated anti-rabbit antibod-
ies that were used at a dilution of 1:1000 
(Molecular Probes, Eugene, OR, USA). Primary 
and secondary antibody dilutions were pre-
pared in TBST (50 mM Tris-HCl, pH 7.6), 1.5% 
sodium chloride 0.3% Triton X-100 (Sigma-
Aldrich Corp., St. Louis, MO, USA) containing 
10% normal donkey serum (NDS; Jackson 
ImmunoResearch Laboratories, USA).

Tissue preparation

Mice were sacrificed with an anesthetic over-
dose of 3 ml/kg equithesin and then transcar-
dially perfused with 0.1-0.2 ml per gram body 
weight of pre-fixative composed of ice-cold 50 
mM sodium phosphate buffer, pH 7.4, 0.9% 
NaCl, 0.1% sodium nitrite and 1 unit/ml hepa-
rin, and then with 40 ml of ice-cold fixative con-
taining 0.16 M sodium phosphate, pH 7.1, 0.2% 
picric acid and 4% formaldehyde (Electron 
Microscopy Sciences, Hatfield, PA, USA). As 
previously discussed [23], the simultaneous 
immunolabelling of Cx36 and eGFP is challeng-
ing as optimal detection of Cx36 requires a 
weaker 1-2% formaldehyde fixative, while eGFP 
immunofluorescence is poor under such weak 
fixation conditions. Here, to accomplish co-

immunolabelling of these proteins in spinal 
cord MNs, some mice were transcardially per-
fused with a formaldehyde/glyoxal fixative com-
posed of 9% (w/v) glyoxal, 8% (w/v) acetic acid, 
0.4% (w/v) ethanol and 1% (w/v) formaldehyde, 
pH 5 with NaOH, as described with modifica-
tions [53-55]. The spinal cords of animals were 
dissected with L1 to L6 roots intact, which 
assisted in consistently isolating L5-L6 seg-
ments containing DMN and DLN motor nuclei in 
the ventral horn. The bulbospongiosus muscle, 
ischiocavernosus muscle, external urethral 
sphincter, external anal sphincter, cremaster 
muscle, and spermatic cord were dissected 
using approaches as described [56, 57]. All dis-
sected tissues were post-fixed at 4°C for 1 hr in 
the same fixative and then stored for 24-48 hrs 
in cryoprotectant solution consisting of 10% 
sucrose, 25 mM sodium phosphate buffer, pH 
7.4 and 0.1% sodium azide. To prepare the tis-
sue for sectioning, lower lumbar segments (L5-
L6) and muscles were embedded with OCT 
compound (VWR International, PA, USA), flash 
frozen and then transferred to a cryostat where 
tissue was sectioned horizontally at a thick-
ness of fifteen µm. Sections were collected on 
gelatinized glass slides and stored at -35°C 
before use.

Immunofluorescence labelling

For immunofluorescence labelling procedures, 
sections mounted on slides were retrieved from 
storage, washed for 20 min in TBST and prima-
ry antibodies diluted in TBST supplemented 
with 10% NDS were applied. After overnight 
incubation at 4°C the slides were rinsed at 
room temperature with TBST (3 × 20 min) and 
then incubated at room temperature for 1.5 hrs 
with appropriate combinations of secondary 

Table 1. The primary antibodies used for labelling in immunofluorescence experiments with their 
respective type (monoclonal or polyclonal), host species, commercial source, catalogue number, and 
dilution for use
Primary antibody Type Host species Commercial source* Catalogue number Dilution
Cx36 Monoclonal Mouse ThermoFisher 39-4200 1:600
eGFP Monoclonal Rabbit ThermoFisher G10362 1:100
eGFP Polyclonal Chicken Aves GFP-1010 1:1000
Peripherin Polyclonal Chicken MilliporeSigma Ab9282 1:500
vAChT Polyclonal Guinea pig Synaptic Systems 139105 1:1000
ChAT Polyclonal Goat MilliporeSigma Ab144P 1:600
*Locations of Commercial sources: ThermoFisher Scientific, Rockford, IL, USA; Aves Labs Inc., Davis, CA, USA; MilliporeSigma, 
Burlington, MA, USA; ImmunoStar, Hudson, WI, USA; Synaptic Systems, Goettingen, DE.
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antibodies diluted in TBST with NDS. Slides 
were washed with TBST (1 × 20 min), with 50 
mM Tris-HCl buffer, pH 7.4 (2 × 15 min), cover-
slipped with Fluoromount G anti-fade medium 
(SouthernBiotech, Birmingham, AL, USA) and 
then stored at -20°C. Whenever feasible, the 
immunolabelling of eGFP in tissue sections was 
amplified by utilizing a primary antibody solu-
tion that included two distinct species of anti-
eGFP antibodies: one generated in rabbit and 
the other in chicken. These anti-eGFP primary 
antibodies were used alongside other primary 
antibodies and detected using anti-chicken 
and anti-rabbit secondary antibodies conjugat-
ed to the fluorophore Alexa488. 

A Zeiss Imager Z2 fluorescence microscope 
and Zeiss Zen software (Carl Zeiss Canada, 
Toronto, ON, Canada) were used to capture flu-
orescence images from tissue samples. A Zeiss 
LSM710 laser scanning confocal microscope 
with Zen image capture and analysis software 
was utilized when higher resolution fluores-
cence imaging was required for imaging of 
ChAT/vAChT and eGFP co-labelling in synaptic 
endbulbs. Data were acquired as single scan 
images or z-stack images, with multiple scans 
capturing a thickness of 3-7 μm of tissue at 
z-scanning intervals of 0.4-0.6 µm. Figures 
were compiled from these images using Canvas 
Graphics software (ACD Systems International 
Inc., Victoria, Canada).

Quantitative approaches

To document the relative proportion of MNs in 
DLN and DMN that were eGFP+ in male (n = 5) 
and female (n = 5) Cx36BAC::eGFP mice, consec-
utive horizontal spinal cord sections containing 
the entirety of these motor nuclei were taken 
for immunostaining for ChAT or both ChAT and 
vAChT in one fluorescent channel, together with 
labelling for eGFP in the green fluorescent 
channel. In each motor nucleus, once MNs 
were identified by virtue of their labelling with 
cholinergic markers, the same sections were 
then analyzed for determination of those MNs 
that were eGFP+. To avoid including in adjacent 
sections the same MNs more than once, cells 
were tallied only when they exhibited a clear 
nucleus, which indicated for that section that 
the tissue had been sectioned close to the cen-
ter of the cell being considered for inclusion. 
For samples from male mice, counts were sep-
arately taken from the left- or the right-hand 

side of each spinal cord section. From the total 
number of eGFP+ and ChAT+ MNs for each ani-
mal, the percentage of MNs in the DLN or DMN 
that were eGFP+ for each side, for each individ-
ual animal was calculated. In female mice, 
which had fewer eGFP+ cells, the counts were 
instead pooled for the left- and right-hand sides 
together and then percentages calculated. 
Some slides were used to determine the per-
centage of MNs in the DLN and DMN of male (n 
= 5) Cx36BAC::eGFP mice that were both eGFP+ 
and Cx36+. To accomplish this, counts were 
conducted as above in adjacent horizontal spi-
nal cord sections that were simultaneously 
labelled with ChAT or both ChAT/vAChT in one 
fluorescent channel, for eGFP in the second 
channel and for Cx36 in the third channel. 

To determine the relative innervation of target 
bulbocavernosus, external anal sphinter, ischio-
cavernosus and external urethral sphincter 
muscles by the eGFP+ and eGFP- MN subpopu-
lations of DLN and DMN, we conducted counts 
of synaptic endbulbs in these muscles, which 
were identified by their immunofluorescence for 
vAChT/ChAT+, and then determined the propor-
tion of these that were eGFP+. vAChT/ChAT+ pos-
itive synaptic endbulbs were analyzed in 20 
image fields of each muscle, which were taken 
from 5 adult male Cx36BAC::eGFP mice, and 
from counts of those that were eGFP+ the per-
centage of synaptic endbulbs that were eGFP+/
field was calculated. The data for all analyses 
was compiled in Microsoft Excel software, with 
descriptive statistics and comparisons per-
formed using GraphPad Prism software (San 
Diego, CA, USA), Version 10.1.2 (234).

Results

eGFP expression in MNs of DLN and DMN in 
Cx36BAC::eGFP mice

In our earlier report on Cx36 localization in MNs 
of DLN and DMN in mice and rats as well as 
eGFP expression in these MNs of transgenic 
Cx36BAC::eGFP mice, where eGFP expression is 
driven by the Cx36 promoter, our qualitative 
observations indicated that eGFP was robustly 
expressed in only a subpopulation of MNs in 
each of these motor nuclei and only weakly or 
not at all in an additional subset [32]. At the 
time, we had reason for concern that eGFP 
reporter expression in these mice may not  
fully reveal neurons that express eGFP due to 
incomplete BAC transgene integration, which is 
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known to occur [58]. Indeed, we have found 
brain regions in which neurons are known to 
express Cx36, but which lack eGFP expression 
in the Cx36BAC::eGFP mice line [52]. Further, we 
have noted a progressive reduction in the fidel-
ity of eGFP expression in these mice due to 
excessive inbreeding, which causes reduced 
Cx36BAC transmission, according to cautionary 
notes provided by the supplier of these mice. 
Since then, we have undertaken routine back-
crossing of these transgenic mice with wild-
type mice, which has resulted in robust eGFP 
expression in electrically coupled neurons 
known to express Cx36, including retrieval of 
eGFP production in some, though not all, neur-
ons previously showing false-negative expres-
sion of this reporter. 

In the Cx36BAC::eGFP mice, we re-examined 
expression of eGFP in MNs of sexually dimor-
phic DLN and DLM in lower lumbar regions of 
male and female mice. As an immunofluores-
cence marker for MNs, we interchangeably 
used either the traditional marker ChAT with 
simultaneous labelling for vAChT, which in com-
bination was found to produce more reliable 
visualization of MNs, or alternatively, we used 
immunolabelling for peripherin. Peripherin is an 
intermediate filament protein highly expressed 
in neurons of the peripheral nervous system 
but is also found in central neurons that have 
projections to peripheral structures such as 
sympathetic preganglionic neurons (SPNs) and 
MNs, as well as in peripheral neurons that have 
projections to the CNS such as primary afferent 
neurons in dorsal root ganglia and their cen-
trally projecting fibers in the spinal cord [59-
61]. Sexually dimorphic motor nuclei at lower 
lumbar levels were identified, in part, according 
to the spinal cord atlas of Watson et al. [62], as 
well as from descriptions of MNs in these nuclei 
retrogradely labelled from the pudendal nerve 
or their target muscles [38, 40]. In horizontal 
sections of L5-S2 spinal cord segments of adult 
male Cx36BAC::eGFP mice, the DLN located in 
the ventrolateral quadrant of the ventral horn 
was readily identified by additional features, 
including the unusually tight intermittent clus-
tering of its constituent ChAT/vAChT+ motoneu-
ronal somata [40, 63], and by the prominent 
bundling of dendrites arising from those soma-
ta (Figure 1A). Within DLN, randomly distribut-
ed eGFP+ MNs were seen intermingled among 
ChAT/vAChT+ MNs that were eGFP- (Figure 1A). 

The MNs in DMN in horizontal sections of  
L5-L6 spinal cord segments of adult male 
Cx36BAC::eGFP mice (Figure 1B) were equally 
identifiable by their characteristic distribution 
on either side of the midline, and localization 
beneath and/or adjacent to the central canal 
medially and at the apex and/or flanking the 
ventral funiculus more ventrally, as well as by 
their more dispersed appearance compared 
with those in the DLN and their dendritic projec-
tions across the midline [64-66]. As in DLN, 
eGFP+ MNs in DMN were seen distributed 
among ChAT/vAChT+ MNs that were eGFP- 
(Figure 1B). The eGFP+ vs. eGFP- MNs in either 
DLM or DMN displayed no recognizable qualita-
tive morphological features, such as somal size 
or dendritic arborizations, that would distin-
guish these two subpopulations.

The DLN and DMN are termed sexually dimor-
phic because the development and mainte-
nance of their constituent MNs in males is 
dependent on adequate levels of circulating 
androgens, and because these neurons in 
females vs. males are far fewer and smaller in 
size [34, 35, 67-69]. As in male mice, our exam-
ination of labelling for eGFP in the DLN of 
Cx36BAC::eGFP female mice revealed subpopu-
lations of tightly clustered ChAT/vAChT+ MNs 
that were either eGFP+ or eGFP- (Figure 2A). In 
contrast, far fewer MNs in the DMN of female 
Cx36BAC::eGFP mice were seen to express eGFP 
or expressed this reporter weakly when com-
pared to expression levels seen in males 
(Figure 2B, 2C). Results from quantitative anal-
yses of the proportions of MNs in DMN and 
DLN of male and female Cx36BAC::eGFP mice 
are shown graphically in Figure 3. In males, the 
percentage of peripherin+ MNs that were eGFP+ 
was quantified in DMN and DLN separately on 
the left and right sides of the cord showed good 
correspondence between these sides, yielding 
mean ± s.e.m. values of 54.5 ± 6.6% and 55.4 
± 2% eGFP+ MNs in the DMN and DLN respec-
tively when counts from the two sides were 
pooled. In females, analyses of MNs in the left- 
and right-hand sides pooled together gave 
mean ± s.e.m. values for ChAT/vAChT+ MNs that 
were eGFP+ in DMN and DLN of 9 ± 3% and 28 
± 5% respectively. One way ANOVA with 
Dunnet’s post hoc test indicated that, in addi-
tion to other sexually dimorphic features these 
neurons exhibit, they show differential eGFP 
reporter expression in Cx36BAC::eGFP mice, with 
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Figure 1. Immunofluorescence labelling of eGFP reporter in subpopulations of MNs in sexually dimorphic motor 
nuclei of adult male Cx36BAC::eGFP mice. (A) Lower lumbar horizontal spinal cord section labelled for the MN marker 
peripherin (A1) and Cx36 expression reporter eGFP (A2) showing a column of MN in the DLN wherein a portion of 
peripherin+ MNs (A1, arrows) are eGFP+ (A2, arrows), while a separate sub portion is devoid of labelling for eGFP (A1, 
A2, double arrows), as evident in image overlay (A3, arrows, double arrows). (B) Double labelled horizontal section of 
lower lumbar spinal cord with medially located columns of sexually dimorphic MNs in DMN, shown bilaterally, double 
labelled for peripherin (B1) and eGFP (B2). Intermittent clusters of peripherin+ MNs on either side of the central 
canal (cc, dotted line) contain MNs that are both peripherin+ and eGFP+ (B1, B2, arrows), while some MNs in these 
clusters lack labelling of eGFP (B1, B2, double arrows), as shown in image overlay (B3). 
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significantly greater eGFP+ MNs in male mice 
vs. female mice for both the DMN (P = 0.002) 

and the DLN (P = 0.011). This result suggests 
that the eGFP+ MNs may correspond to the sex-

Figure 2. Immunofluorescence labelling of eGFP reporter in subpopulations of MNs in sexually dimorphic motor 
nuclei in lower lumbar horizontal spinal cord sections of adult female Cx36BAC::eGFP mice. (A) Image of DLN in a 
double labelled section showing ChAT+ MNs (A1, arrows and double arrows) that are either eGFP+ (A1, A2, arrows) or 
eGFP- (A1, A2, double arrows), as seen in image overlay (A3, arrows, double arrows). (B) Image of DMN in a double 
labelled section showing ChAT+ MNs bilaterally (B1, double arrows) (cc, central canal, dotted line) that are largely 
eGFP- (B1, B2, double arrows). (C) Magnification of the boxed area in (B), showing several ChAT+ MNs (C1, arrow and 
double arrow), where most are eGFP- (C2, double arrow) and one is weakly labelled for eGFP (C2, arrow) as seen in 
overlay image (C3, arrow). 
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ually dimorphic population in these nuclei vs. 
the eGFP- non-sexually dimorphic population, 
as discussed below. 

Target muscles innervated by eGFP+ vs. eGFP- 
MNs in DLN and DMN

Sexually dimorphic MNs in the lower lumbar spi-
nal cord innervate striated muscles located in 
the pelvic floor. As depicted in Figure 4, MNs in 
DLN innervate the ischiocavernosus muscle 

synaptic end bulbs at end-plates (Figure 5F) 
that also displayed a high degree of cholinergic 
marker co-localization with eGFP (Figure 5G). 
Numerous ChAT/vAChT+ synaptic end bulbs 
viewed either edge on or en face were found to 
be eGFP+ in both the ischiocavernosus (Figure 
6A, 6B) muscle and bulbocavernosus muscle 
(Figure 6C, 6D). In contrast, very few ChAT/
vAChT+ synaptic end bulbs displayed labelling 
for eGFP in the external urethral sphincter mus-
cle (Figure 6E) or the external anal sphincter 

Figure 3. Histograms summarizing the proportions of visualized and 
counted ChAT+ MNs in sexually dimorphic DMN and DLN that were eGFP+ 
in adult male and female Cx36BAC::eGFP mice. A. The total ChAT+/vAChT+ 
MNs/field was counted and the percentage of those that were eGFP+ 
was calculated separately from the right (R) and left (L) DMN and DLN of 
five adult male Cx36BAC::eGFP male mice. Average percentages of ChAT/
vAChT+/eGFP+ MNs for each side from individual mice are represented by 
a dot. Error bars represent percentage mean ± s.e.m. for the R (53.8 ± 
4.6%) and L (52.6 ± 7.8%) sides of the DMN and the R (48.8 ± 4.5%) and 
L (56.7 ± 5.6%) sides of the DLN. ANOVA indicated that the proportion of 
MNs in the DLN and DMN that expressed eGFP did not significantly differ 
between the two sides for each nucleus or between the two motor nu-
clei. B. Similar analyses were undertaken in female Cx36BAC::eGFP mice, 
where data from the left and right sides of the spinal cord were pooled 
for each nucleus. The percentage mean ± s.e.m. was (9.1 ± 3.3%) and 
(28.2 ± 5.6%) for the DMN and DLN, respectively. Two tailed Student’s t 
test analysis of this data for female mice indicated a significantly lower 
percentage of eGFP expression in MNs of DMN vs. DLN. For comparison 
of data from male and female mice, data from the right and left sides 
for males were separately pooled for the DMN and DLN and analyzed 
vs. data from the DMN and DLN of female mice (not shown) by Brown-
Forsyth and Welch’s one way ANOVA with Dunnet’s T3 post-hoc test, re-
vealing a significantly lower percentage of MNs with eGFP expression in 
both the DMN (P = 0.0016) and DLN (P = 0.011) of female vs. male mice. 
Error bars represent percentage mean ± s.e.m., * indicates P = 0.019, 
ns indicates not significant.

and the external urethral sphinc-
ter, while those in the DMN inner-
vate the bulbocavernosus mus-
cle and the external anal sphinc-
ter [38, 40]. In both the DMN and 
DLN, MNs projecting to sphincter 
muscles are considered to be 
sexually non-dimorphic [41, 70] 
and are completely intermingled 
with, and are difficult to distin-
guish from, sexually dimorphic 
MNs innervating bulbocaverno-
sus and ischiocavernosus mus-
cles, respectively, in the absence 
of retrograde labelling from those 
target muscles [38, 64]. Here, we 
sought to determine the periph-
eral target muscles of eGFP+ vs. 
eGFP- MNs in the sexually di- 
morphic nuclei by examining 
Cx36BAC::eGFP mice for eGFP lo- 
calization in synaptic end bulbs 
at motor endplates in the target 
muscles of these nuclei. Immu- 
nofluorescence labelling of ChAT/
vAChT as a maker for end bulbs 
was robustly visualized in each of 
those muscles, including the bul-
bocavernosus muscle (Figure 
5A), external anal sphincter mus-
cle (Figure 5B), the ischiocavern-
osus muscle (Figure 5C) and 
external urethral sphincter mus-
cle (Figure 5D). Fortuitously, 
labelling of eGFP was equally 
prominent in, for example, the 
ischiocavernosus muscle such 
that eGFP in axons contained in 
fiber bundles could be seen co-
localized with labelling for ChAT/
vAChT in these bundles (Figure 
5E), and individual fibers double 
labelled for ChAT/vAChT and 
eGFP could be followed to their 
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muscle (Figure 6F). Images like those shown  
in Figure 6 were used for quantitative analyses  
of the percentage of ChAT/vAChT+ synaptic end 
bulbs that displayed labelling for eGFP in  
each of the aforementioned muscles in 
Cx36BAC::eGFP mice. For quantitative analyses, 
twenty fields from each muscle type were  
taken for counts of total ChAT/vAChT+ synaptic 
end bulbs/field and those that were eGFP+/
field, with results presented in Table 2 and 
Figure 7, where 97 ± 1.6% and 95 ± 1.3% of 
synaptic end bulbs in the ischiocavernosus  
and bulbocavernosus muscles, respectively, 
were found to be eGFP+, while 1.7 ± 0.8% and 
1.1 ± 0.6% of those in the external anal and 
external urethral sphincter muscles, respec-
tively, were eGFP+. These results indicate  
differential projections of eGFP+ vs. eGFP- MNs 
in sexually dimorphic motor nuclei to their  
target muscles, with the eGFP+ population 
selectively innervating the sexually dimorphic 
ischiocavernosus and bulbocavernosus mu- 
scles.

Target muscles innervated by eGFP+ vs. eGFP- 
MNs in the cremaster motor nucleus

We recently reported heterogeneous expres-
sion of eGFP in MNs of the upper lumbar (i.e., 
L1-L2) sexually dimorphic cremaster motor 
nucleus of male and female Cx36BAC::eGFP 
mice, where a little over 60% and a little under 
50% of MNs in this nucleus expressed eGFP, 
respectively [33]. Like the lower lumbar sexual-
ly dimorphic MNs, cremaster MNs are desig-
nated sexually dimorphic based on their greater 
numbers, larger size and differential innerva-
tion density by serotonergic and peptidergic fib-
ers in males vs. female animals, and on the 
absence of cremaster muscles in females [36, 
37, 39, 71, 72], where those MNs are thought 
instead to innervate ligaments of the uterus 
[36]. Although cremaster MNs innervate a sin-
gle cremaster muscle, different portions of this 
muscle are morphologically distinct and either 
envelop the testes or surround the spermatic 
cord [49], where differential activity in these 
separate portions may serve different physio-
logical outcomes. Here, we took advantage of 
the robust anterograde transport of eGFP in 
MNs to their peripheral synaptic end bulbs in 
Cx36BAC::eGFP mice to examine the possibility 
of differential projections of eGFP+ vs. eGFP- 
cremaster MNs to their possibly segregated 
innervation of cremaster muscle enveloping 
the testes (cremaster-t) vs. that surrounding 
the spermatic cord (cremaster-sc). As in sexu-
ally dimorphic muscles innervated by DMN and 
DML, cremaster-t muscle containing ChAT/
vAChT+ synaptic end bulbs were heavily labelled 
for eGFP in Cx36BAC::eGFP mice (Figure 8A), 
and occasionally eGFP+ axons could be fol-
lowed to those end bulbs (Figure 8B). Cre- 
master-sc muscle lying adjacent to the sper-
matic cord also contained a rich investment of 
ChAT/vAChT+ synaptic end bulbs (Figure 8C). 
However, the ChAT/vAChT+ synaptic end bulbs 
in cremaster-sc muscle were entirely devoid of 
labelling for eGFP (Figure 8D). This was espe-
cially evident in sections containing both cre-
master-t muscle that displayed ChAT/vAChT+/
eGFP+ end bulbs and that was separated from 
cremaster-sc by a lamina tissue presumed to 
be the spermatic facia next to the spermatic 
cord [57], where ChAT/vAChT+ synaptic end 
bulbs were devoid of labelling for eGFP (Figure 
8E). 

Figure 4. Diagram showing the locations of the DLN 
and the DMN in the lower lumbar region of the spinal 
cord and the peripheral projections of their MNs to 
sexually dimorphic perineal muscles (ischiocaverno-
sis and bulbocavernosus, aka bulbospongiosis mus-
cles) and to non-sexually dimorphic muscles (exter-
nal anal sphincter and external urethral sphincter). 
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Immunofluorescence labelling of Cx36 and 
ChAT in Cx36BAC::eGFP mice

We have previously reported on the character-
istics of immunofluorescence labelling of Cx36 
in the DLN and DMN of mice and rats. As in 
other regions of the CNS we have examined [2, 
11, 32, 51, 56, 73-75], immunofluorescence 
labelling of Cx36 has an exclusively punctate 
appearance (i.e., Cx36-puncta) among MNs in 
the sexually dimorphic motor nuclei (Figure 9) 
and is invariably localized to the surface of neu-
ronal elements. Intracellular labelling of Cx36 
appears undetectable at least in vivo, perhaps 
due to masking of Cx36 epitopes at intracellu-
lar compartments that precludes binding of 
antibodies. This localization of immunolabelling 
at Cx36-puncta is well correlated with sites of 

ultrastructurally-defined Cx36-containing neu-
ronal gap junctions [76-82], thus allowing those 
puncta to serve as markers for such junctions 
in vivo. 

Here, we sought to determine the degree to 
which Cx36-puncta might be restricted to  
MNs in which the presence of eGFP served  
as a reporter for Cx36 expression. Using 
Cx36BAC::eGFP mice, we examined the locali-
zation of immunofluorescent Cx36-puncta in 
horizontal spinal cord sections through the dor-
sal to ventral extent of the DLN and DMN, 
where the sections were simultaneously immu-
nolabelled for both eGFP and the MN marker 
ChAT. As expected, and as shown by low magni-
fication overview of the DLN in Figure 9A, Cx36-
puncta were often seen localized to ChAT+ MN 

Figure 5. Immunofluorescence labelling of ChAT/vAChT and eGFP in muscles innervated by MNs in sexually di-
morphic DMN and DLN in adult male Cx36BAC::eGFP mice. (A-D) Appearance of ChAT/vAChT+ synaptic end bulbs 
(arrows) at motor endplates in the two muscle groups innervated by DMN: Bc, bulbocavernosus (A); EAS, external 
anal sphincter (B); and two innervated by DLN: Ic, ischiocavernosis (C); and EUS, external urethral sphincter (D). (E) 
Double immunofluorescence labelling in a field of the ischiocavernosis muscle showing bundles of ChAT/vAChT+ 
fibers (E1, arrows) that are also robustly labelled for eGFP (E2, arrows), with co-localization of labelling seen in im-
age overlay (E3, arrows). (F) Double labelling in the ischiocavernosis muscle showing ChAT/vAChT+ motor axons (F1, 
arrows) that are also eGFP+ (F2, arrows) and that can be followed to synaptic end blubs intensely labelled for ChAT/
vAChT (F1, arrowheads) co-localized with eGFP (F2, F3, arrowheads) at motor endplates. (G) Magnification of boxed 
area in (F) showing dispersed labelling of both ChAT/vAChT (G1, arrowheads) and eGFP (G2, arrowheads) within a 
synaptic end bulb reflecting its convoluted nature, and co-localization of this dispersed labelling (G3, arrowheads).
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Figure 6. Target muscle innervation by eGFP+ vs. eGFP- MNs in sexually dimorphic DLN and DMN of adult male 
Cx36BAC::eGFP mice. Images shown are examples of fields double labelled for ChAT/vAChT and eGFP and used for 
quantification of the proportion of ChAT/vAChT+ synaptic end bulbs at motor endplates that were eGFP+ in each of 
the four muscles groups innervated by DLN and DMN. (A) Ischiocavernosis muscle showing numerous ChAT/vAChT+ 
synaptic end bulbs (A1) that are also eGFP+ (A2, A3), where some end bulbs are seen in edge on view (arrowheads) 
and others in en face view (arrows). (B) Higher magnification confocal images showing the appearance of three syn-
aptic end blubs at motor endplates in the ischiocavernosis muscle, with near exact correspondence of labelling for 
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somata and dendrites that were immunola-
belled for eGFP. These puncta also frequently 
occurred at close appositions between eGFP+ 
neuronal elements, including neuronal somata 
(Figure 9B). Unexpectedly however, Cx36-
puncta in the DLN were also widely distributed 
among ChAT+ MNs that were unlabelled for 
eGFP (Figure 9A and 9B). Further, dense clus-
ters of Cx36-puncta were often observed at 
close appositions between ChAT+ MNs where 
one of the apposing cells was labelled for eGFP 
and the other was not (Figure 9A and 9C). 
Similar results were obtained in the DMN, 
where Cx36-puncta commonly occurred at 
sites of apposition between eGFP+ neuronal 
elements, such as dendro-somatic (Figure 9D) 
and dendro-dendritic (Figure 9E) appositions. 
In addition, Cx36-puncta were localized along 
eGFP+ dendrites at sites that were in close 
proximity to eGFP- MN somata labelled for ChAT 
(Figure 9F) as well as at close appositions 
between eGFP+ and eGFP- MNs (Figure 9G). 
Some eGFP- MN somata had striking clusters of 
Cx36-puncta associated with their somata 
(Figure 9H), similar to that we earlier described 
in DLN and DMN in rat [32], and such clusters 
of puncta were found localized to close apposi-
tions between MN, including those devoid of 
immunolabelling for eGFP (Figure 9I).

In images of both DLN and DMN with MNs 
labelled for ChAT such as those shown in Figure 
9, we quantitatively examined the percentage 

ChAT/vAChT (B1, arrow) and eGFP (B2, arrows), as seen in image overlay (B3, arrows). (C) Bulbocavernosus muscle 
showing edge on (arrowheads) and en face (arrow) views of synaptic end bulbs at motor endplates double labelled 
for ChAT/vAChT (C1) and eGFP (C2), with co-localization of labelling evident in image overlay (C3). (D) Higher mag-
nification confocal images of synaptic end bulbs in bulbocavernosus muscle labelled for ChAT/vAChT (D1, arrows) 
and eGFP (D2, arrows), and co-localization of labelling (D3) in these bulbs. (E, F) external urethral sphincter, EUS, 
muscle (E) and external anal sphincter, EAS, muscle (F) double labelled for ChAT/vAChT (E1, F1) and eGFP (E2, F2) 
showing ChAT/vAChT+ synaptic end bulbs at motor end-plates (E, F, arrows) that are devoid of labelling for eGFP (E2, 
F2, arrows).

Table 2. Total ChAT/vAChT+ synaptic end bulbs per image field, the number of those that were eGFP+ 
or eGFP- and the average percentage of endplates that were eGFP+ per field

Muscle Total endplates counted 
in twenty fields

Average endplates 
per field

Endplates Average % eGFP+  
endplates per field*eGFP- eGFP+

Bulbospongiosis 233 11.7 7 226 96.9 ± 1.6
External anal sphincter 258 12.9 254 4 1.7 ± 0.8
Ischiocavernosis 286 14.3 16 270 94.4 ± 1.3
External uretheral sphincter 266 13.3 263 3 1.1 ± 0.6
Cremaster 227 11.35 17 210 93.1 ± 0.02
Data was collected from twenty image fields per muscle in sections of the bulbospongiosis, external anal sphincter, ischiocav-
ernosis, external urethral sphincter and cremaster muscles taken from five male Cx36BAC::eGFP mice. *Data is expressed as 
mean % ± s.e.m.

Figure 7. Histogram displaying percentage of ChAT/
vAChT+ synaptic end bulbs at motor endplates that 
were eGFP+ in the bulbocavernosus muscle (Bc) and 
anal sphincter (EAS) innervated by DMN, and per-
centage of ChAT/vAChT+ end bulbs that were eGFP+ 
in the ischiocavernosis muscle (Ic) and external ure-
thral sphincter (EUS) innervated by DLN. Each dot 
represents an image of a muscle field in which the 
percentage of ChAT/vAChT+ synaptic end bulbs that 
were eGFP+ was examined. Analysis by Brown-Forsyth 
and Welch’s one-way ANOVA with Dunnet’s T3 post-
hoc test indicated that both Bc and Ic muscles had a 
significantly greater number of eGFP+ end bulbs com-
pared with both the EAS and the EUS muscles. Error 
bars represent percentage mean ±����������������� s.e.m., **** in-
dicates P < 0.0001. 
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Figure 8. Double immunofluorescence labelling of cremaster muscle surrounding testes (cremaster-t) and spermat-
ic cord (cremaster-sc) innervated by upper lumbar sexually dimorphic cremaster MNs in adult male Cx36BAC::eGFP 
mice. (A) Images of ChAT/vAChT+ synaptic end bulbs (A1, arrows) at motor end plates that are also labelled for eGFP 
(A2, arrows) in cremaster muscle surrounding testes, with co-localization shown in image overlay (A3, arrows). (B) 
Higher magnification showing labelling of ChAT/vAChT (B1, arrow), eGFP (B2, arrow) and their co-localization (B3, 
arrow) at a synaptic end bulb in cremaster muscle surrounding testes, and an axon weakly labelled for ChAT/vAChT, 
but robustly labelled for eGFP converging on the end bulb (arrowhead). (C) Low magnification showing cremaster 
muscle associated with and in close proximity to the spermatic cord (sc), in a section labelled for ChAT/vAChT local-
ized to numerous synaptic end bulbs at motor end plates (arrows). (D) Higher magnification image showing ChAT/
vAChT+ synaptic end bulbs at motor endplates (D1, arrows) in cremaster muscle surrounding spermatic cord, where 
end bulbs are devoid of labelling for eGFP (D2, arrows), with the inset showing a magnified single ChAT/vAChT+/
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of eGFP+ and eGFP- MNs that were decorated 
with Cx36-puncta around their somata and/or 
initial dendrites where these could be followed 
back to their somata of origin. Among 381 MNs 
examined in the DLN, which included 207 that 
were eGFP+, 98 ± 0.8% of all MNs and 99 ± 
0.9% of those MNs that were eGFP+ harbored 
Cx36-puncta. Among 385 MNs in the DMN, of 
which 192 were eGFP+, Cx36-puncta were 
associated with 93 ± 1.4% of the total MN pop-
ulation and with 95 ± 1.4% of the eGFP+ 
subpopulation. 

Discussion

Our results demonstrate the presence of rough-
ly equal numbers of eGFP+ and eGFP- MNs in 
lower lumbar sexually dimorphic nuclei of adult 
male Cx36BAC::eGFP mice, and a much lower 
percentage of eGFP+ MNs in these nuclei of 
female Cx36BAC::eGFP mice. Further, we find in 
male mice that the eGFP+ population of MNs in 
both the DMN and DLN project almost exclu-
sively to sexually dimorphic bulbocavernosus 
and ischiocavernosus muscles, respectively, 
while the eGFP- MNs in the DMN and DLN pro- 
ject preponderantly to the sexually non-dimor-
phic external anal sphincter and external ure-
thral sphincter, respectively. Our finding that 
eGFP+ MNs in the DMN and DLN project to sex-
ually dimorphic peripheral muscles in male 
mice, which are absent in female mice, is con-
sistent with the far fewer eGFP+ MNs in these 
nuclei of female mice. Similarly, we found dif-
ferential projection patterns of MNs displaying 
what we previously reported to be heteroge-
neous eGFP reporter for Cx36 expression in the 
cremaster motor nucleus [33], such that MNs 
representing slightly greater than 60% of the 
population in this nucleus that were eGFP+ proj-
ect to cremaster muscle surrounding the tes-
tes, while the remaining eGFP- MNs project to a 
portion of the same muscle, but which is asso-
ciated with an anatomically separate region, 
namely the spermatic cord. Based on these 
results, together with the high correspondence 
between eGFP reporter expression in distinct 
neuronal populations of Cx36BAC::eGFP mice 

with those same neurons known to be e-cou-
pled [2, 22, 50, 83], it might be considered that 
sexually dimorphic motor nuclei contain both 
e-coupled and non-coupled MNs. This possibil-
ity, however, is excluded by our quantitative 
analysis of Cx36 expression in the DLN and 
DMN of Cx36BAC::eGFP mice, where we found 
Cx36-puncta associated with nearly all MNs, 
suggesting that the vast majority of these MNs 
have e-coupling capability. We previously found 
Cx36-puncta associated with similarly high per-
centages of MNs in the DLN and DMN of rats 
and wild-type C57BL/6 mice [32]. This is con-
sistent with observations of gap junctions link-
ing these MNs and electrophysiological evi-
dence for their e-coupling [30, 31, 84]. Thus, it 
appears that lack of eGFP in a subset of MNs in 
DLN and DMN represents false-negative 
reporter expression despite our efforts to opti-
mize breeding protocols to achieve robust eGFP 
expression in the Cx36BAC::eGFP mice. 

The sexually dimorphic DLN and DMN are 
unusual in that they are known to receive very 
little if any excitatory primary afferent innerva-
tion [38, 85, 86], which is reflected by a paucity 
of sensory afferent nerve terminals containing 
vesicular glutamate transporter-1 (vglut1) con-
tacting MNs in these nuclei, as we previously 
reported [32]. In contrast, nearly all other MNs 
along the spinal cord, including those in the cre-
master nucleus, are richly innervated by gluta-
matergic vglut1-containing terminals that are 
principally of primary afferent origin [87]. We 
also previously reported that Cx36-puncta are 
localized at most if not all vglut1+ terminals on 
MNs, forming what are termed mixed chemical/
electrical synapses [74]. The absence of vglut1+ 
terminals and their associated Cx36-puncta on 
MNs in DLN and DMN allowed our documenta-
tion of Cx36-puncta localized to gap junctions 
linking various combinations of eGFP+ and 
eGFP- MNs. A similar analysis was not possible 
in the cremaster nucleus due to the con������found-
ing presence of Cx36-puncta at mixed synap-
ses on cremaster MNs. Hence, it remains to be 
determined whether the eGFP- population of 
MNs in the cremaster nucleus are devoid of 

eGFP- end bulb. (E) Double labelling of ChAT/vAChT and eGFP in cremaster muscle surrounding spermatic cord 
where ChAT/vAChT+ synaptic end bulbs are eGFP- (double arrow), and outside of which separated by a laminar 
sheath (spermatic fascia, arrowheads) lies cremaster muscle associated with testes where ChAT/vAChT+ synaptic 
end bulbs display robust labelling for eGFP (arrows), as seen in the boxed area magnified in the inset showing end 
bulbs labelled for both ChAT/vAChT and eGFP (arrows). 
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Cx36 or whether this represents false-negative 
eGFP expression in the Cx36BAC::eGFP mice. 
Nevertheless, given the multiple and diverse 
functions in which lower lumbar sexually dimor-
phic muscles and upper lumbar cremaster 
muscles are engaged, e-coupling of their con-
stituent MNs may be considered in relation to 
the physiological processes governed by the 
muscle they innervate.

Musculature supporting sexual behaviour

We have previously speculated on the organiza-
tion of electrical coupling between the dimor-
phic vs. non-dimorphic MN populations in the 
DMN and DLN with respect to patterns of their 
muscle innervation [32]. This can now be fur-
ther addressed with: i) our finding of a fortu-
itous complete segregation of projections by 
eGFP+ MNs in these nuclei to sexually dimor-
phic ischiocavernosus and bulbocavernosus 
muscles, and projections of eGFP- MNs to the 
non-dimorphic external anal sphincter and 
external urethral sphincter muscles; and ii) our 
observations of Cx36-puncta indicative of  
electrical synapses formation between eGFP+, 
between eGFP- and between eGFP+/eGFP- 
motoneuronal elements in both the DMN and 
DLN. Consideration of these points suggest the 
occurrence of e-coupling between the dimor-
phic MNs in each nucleus, between the non-
dimorphic MNs in each nucleus and between 
the dimorphic and non-dimorphic MNs in each 
nucleus, as depicted in Figure 10. 

It has been previously suggested that synchro-
nous activity of sexually dimorphic MNs con-
ferred by their e-coupling could be required to 
maintain concerted action of perineal muscles 
that support the physiology and behaviour of 
copulation in males [88]. Indeed, manipula-
tions that allow activation of the urethrogenital 
reflex in spinalized male rats elicited various 
features of copulation in the intact male, includ-
ing penile erection, pelvic muscle activation 
and ejaculation, and electrophysiological re- 
cordings from the pudendal nerve that contains 
axons of MNs arising from DMN and DLN as 
well as recordings from the four target muscles 
of these two motor nuclei revealed that all the 

Figure 9. Immunofluorescence localization of Cx36 in relation to immunolabelling for ChAT and eGFP among MNs 
in the DLN and DMN. (A) Low magnification overview of densely distributed Cx36-puncta associated with MNs that 
are both eGFP+ and ChAT+ (A1, A2, arrows) and with ChAT+ MNs that are eGFP- (A1, A2, arrowheads) in the DLN. (B) 
Higher magnification of the DLN showing Cx36-puncta (B1, arrowheads) localized at close appositions of two eGFP+ 
MNs (B1, arrows) and, in the same field, numerous Cx36-puncta (B2, arrowheads) among ChAT+/eGFP- MNs (B2, ar-
rows). (C) Image of an eGFP+ MN (C1, large arrow) in DLN that is in close apposition with a portion of a ChAT+/eGFP- 
MN (C1, C2, small arrow), showing a large cluster of Cx36-puncta at the site of apposition (C1, C2, arrowheads). 
(D, E) Images of eGFP+ MNs (D, arrows) and their dendrites (E, arrow) in DMN showing Cx36-puncta localized at 
a dendro-somatic apposition (D, arrowhead) and at dendro-dendritic appositions (E, arrowheads). (F, G) Images of 
eGFP+ MNs (F, G, large arrows) and eGFP- MNs (F, G, small arrows) in the DMN, showing Cx36-puncta along an eGFP+ 
dendrite in close proximity with a ChAT+/eGFP- MN somata (F, arrowhead), and Cx36-puncta (G1, G2, arrowheads)
between two adjacent eGFP+ (G1, G2, large arrows) and eGFP- (G1, G2, small arrows) MNs. (H, I) Images of ChAT+ 
MNs that are eGFP- in the DMN, showing a large cluster of Cx36-puncta (H, arrowhead) localized at a MN somata 
(H, arrow), with the cluster shown in the inset, and a similar cluster of Cx36-puncta (I, arrowheads) at an apposition 
between to eGFP- MNs (I, arrows).  

Figure 10. Summary diagram indicating the pro-
posed configuration of electrical synapses mediated 
by neuronal gap junctions (red bars) linking MN in 
the DLN and DMN. Sexually dimorphic MNs (green) 
in these motor nuclei that innervate the ischiocaver-
nosis (Ic) and bulbocavernosus muscle (Bc) couple 
with each other as well as with sexually non-dimor-
phic MNs (grey) that innervate the external urethral 
sphincter (EUS) and the external anal sphincter 
(EAS), and the non-sexually dimorphic MNs innervat-
ing the EUS and EAS are themselves coupled.
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perineal muscle contractions were synchro-
nous [89-91]. The concerted activity of the 
dimorphic muscles was suggested to be 
required for erectile and ejaculatory functions, 
while tonic activity in the sphincter muscles 
contribute to closure of the external anal and 
external urethral sphincters during sexual activ-
ity [89]. In analogy with the lower lumbar dimor-
phic motor nuclei, networks of cremaster MNs 
in males also appear to activate their target 
musculature during sexual behaviour as reflect-
ed by elevation of the testes during ejaculation 
[92], and strong, fast contractions of the cre-
master muscle were suggested to support this 
process [42, 49]. Like the ischiocavernosus 
and bulbocavernosus muscles, the cremaster 
muscle is also activated to elevate the testes 
during micturition [93] and during threatening 
behavioural situations where protection of the 
testes may be required [73]. Further, the more 
complex sequelae of perineal muscle activity 
seen in normal male rats during sexual activity 
[47, 48] suggests that moment-to-moment pat-
terns of coupling between motoneuronal pools 
in these nuclei may be subject to strict 
regulation.

Muscles supporting thermoregulation

Besides its support of sexual activity, the cre-
master muscle has been more intensively 
investigated with respect to its contribution to 
thermoregulation of the testes, which in mam-
mals are kept 2-7°C below body temperature to 
allow normal spermatogenesis [37, 41-43], and 
to generation of the cremaster reflex that is 
elicited by stimulation of the inner pelvic skin 
area, causing elevation and protection of the 
testes [44]. Thermoregulation of the testes 
involves both striated cremaster muscle envel-
oping the testes and more superficial smooth 
muscles, where the former serves to control 
the proximity of the testes to the rest of the 
body and the latter adjusts scrotal surface area 
to conserve or dissipate heat. However, less 
generally known is an equally powerful ther-
moregulatory system associated with the sper-
matic cord that, in addition to other structures, 
contains an arterial and venous plexus provid-
ing blood flow to and from the testes, and that 
is surrounded by portions of cremaster muscle. 
This plexus performs as a highly efficient coun-
ter current heat exchanger, where arterial blood 
flowing distally is cooled to scrotal temperature 

and venous return is warmed to body tempera-
ture [94, 95]. Thus, blood flow in the spermatic 
cord is diminished by cremaster muscle con-
traction upon scrotal cooling and increased by 
its relaxation upon scrotal warming [96], where 
the contraction prevents excessive precooling 
of arterial by venous blood in cold conditions. 
Because activity in the cremaster muscle is 
invoked during sexual behaviour to facilitate 
ejaculation as discussed above and during tes-
ticular thermoregulation, it is likely that sepa-
rate populations of cremaster MNs control dif-
ferent portions of cremaster muscles involved 
in these somewhat distinct physiological pro-
cesses, which is further suggested by evidence 
for differential projections of cremaster MNs to 
anatomically distinct regions of cremaster mus-
cle [49].

Conclusions

Electrical synapses are generally considered 
low pass filters because they are especially 
adept at transmitting currents from cell to cell 
that are subthreshold for action potential gen-
eration [3, 18]. Such current flow serves to 
equalize the subthreshold depolarization state 
of neurons in an e-coupled network, such that 
any excitatory input now enables firing thresh-
old to be reached nearly simultaneously, creat-
ing synchronous activity in the network [5, 7, 
20, 21]. In the CNS, such synchronous activity 
impacts the correlated discharge of down-
stream targets of the e-coupled network. In the 
case of e-coupled MNs, near simultaneous 
recruitment of their action potential firing would 
promote correlated activity of motor units in 
their target muscles, which is relevant to estab-
lished principles where greater speed of MNs 
recruitment is one major contributing factor to 
rapid muscle force generation [97-100]. Thus, it 
may be considered that synchronous activity 
conferred by e-coupling between MNs in DMN 
and DLN projecting to bulbocavernosus and 
ischiocavernosus muscles, respectively, would 
promote high speed and more forceful contrac-
tion of these muscles when physiologically 
required during penile erection, copulation and 
ejaculation, and such patterns of synchronous 
activity would be equally essential in the two 
sphincter muscles receiving projections from 
e-coupled MNs in these nuclei to prevent mic-
turition and defecation during sexual activity. 
Similarly, e-coupling between MNs in the cre-
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master nucleus projecting to cremaster muscle 
enveloping the testes would be of benefit for 
rapid testicular retraction when the protective 
action of this muscle is called upon, as during 
fight or flight responses. It remains to be deter-
mined whether e-coupling occurs between 
MNs projecting to cremaster muscle surround-
ing the spermatic cord and whether such cou-
pling would benefit the testicular thermoregula-
tory functions of this portion of the cremaster 
muscle. 
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