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Review Article
The effects of anesthetics on tumor progression
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Abstract: More and more cancer patients receive surgery and chronic pain control. Cell-mediated immunosup-
pression from surgical stress renders perioperative period a vulnerable period for tumor metastasis. Retrospective 
studies suggest that regional anesthesia reduces the risk of tumor metastasis and recurrence. This benefit may be 
due to the attenuation of immunosuppression by regional anesthesia. On the other hand, accumulating evidence 
points to a direct role of anesthetics in tumor progression. A variety of malignancies exhibit increased activity of 
voltage-gated sodium channels. Blockade of these channels by local anesthetics may help inhibit tumor progres-
sion. Opioids promote angiogenesis, cancer cell proliferation and metastasis. It will be interesting to examine the 
therapeutic potential of peripheral opioid antagonists against malignancy. Volatile anesthetics are organ-protective 
against hypoxia, however; this very protective mechanism may lead to tumor growth and poor prognosis. In this re-
view, we examine the direct effects of anesthetics in tumor progression in hope that a thorough understanding will 
help to select the optimal anesthetic regimens for better outcomes in cancer patients.
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Introduction

Anesthesiologists treat cancer patients in two 
main areas: perioperative anesthesia/analge-
sia for surgical tumor removal and manage-
ment of chronic cancer pain. As more and more 
cancer patients receive surgery and cancer 
pain control, a comprehensive understanding 
of potential implication of anesthetics in tumor 
biology will significantly impact the long term 
well-being of cancer patients.

Surgery is the most effective treatment for 
solid tumors; however, surgery poses signifi-
cant risks for tumor spreading. While invisible 
at macro-level, micrometastases may have 
already existed at the time of surgery. Tumor 
manipulation during surgery will lead to the 
release of tumor cells into vascular and lym-
phatic circulations [1-3]. Positive perioperative 
circulating tumor cells are an independent risk 
factor for poor prognosis [3-5]. Surgical stress, 
together with subsequent neuroendocrine, 

metabolic, inflammatory responses, results in 
significant suppression of cell-mediated immu-
nity [6]. The combination of compromised host 
immune defense and tumor seeding renders 
the perioperative period particularly suscepti-
ble to tumor metastasis.

Retrospective studies suggest a beneficial role 
of regional anesthesia in reducing tumor recur-
rence in various cancers [7, 8]. If these observa-
tions are true, it is important to clarify whether 
the anesthetic techniques per se, anesthetic 
agents, pain control regimens, or all of them 
contribute to this favorable outcome.

The purpose of this review is 1) to summarize 
the current body of evidence for the relation-
ship between anesthesia and oncological out-
come; 2) to examine the direct roles of anes-
thetics in tumor invasion and metastasis with 
emphasis on molecular and cellular biology; 3) 
to identify appropriate direction for future 
research and clinical management.
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Clinical outcome

A number of retrospective studies suggest that 
regional anesthesia reduces tumor metastasis 
and recurrence. A chart review of 129 patients 
with breast cancer undergoing mastectomy 
and lymph node clearance shows that paraver-
tebral block reduces cancer recurrence by a 
factor of 4 compared to systemic morphine for 
postoperative analgesia [9]. Similar observa-
tions are made from patients with prostate can-
cer undergoing prostatectomy and from 
patients undergoing colon cancer surgery [10, 
11]. However, several follow-up retrospective 
studies do not find apparent benefit of epidural 
analgesia compared to systemic opioid admin-
istration for tumor recurrence [6]. A randomized 
clinical trial examines the effect of epidural 
block on a variety of abdominal cancer surger-
ies and finds no difference in the duration of 
disease-free survival with epidural block [12]. 
In a more recent study, patients with colorectal 
carcinoma either receive epidural/spinal anal-
gesia or morphine patient-controlled analgesia 
for postoperative pain after abdominal laparo-
scopic surgeries; no overall survival benefit is 
observed in the regional analgesia group [13]. 

Possible explanations for this discrepancy are 
different tumor types, patient demographics, 
variable anesthesia protocols such as the 
usage of supplemental opioids with regional 
anesthesia, and small sample sizes. As a mat-
ter of fact, for the above-mentioned colon can-
cer patients, the beneficial effect of survival is 
only observed in the first 1.5 years in patients 
without macro-metastasis at the time of sur-
gery [11]. Gottschalk et al. have detected a 
favorable tendency of epidural analgesia in 
elderly patients with colorectal carcinoma 
recurrence, although the result is not statisti-
cally significant [14]. With a larger patient sam-
ple, the difference of recurrence may be 
significant.

Studies to examine whether different approach-
es of chronic pain management affect tumor 
progression are very limited. Optimal pain con-
trol significantly improves the quality of life for 
the terminally ill cancer patients. Patients with 
unresectable pancreatic cancer, when receiv-
ing alcohol splanchnicectomy, achieve a 
marked improvement in survival [15]. A ran-
domized trial of 100 patients with pancreatic 
cancer shows a better tendency of survival for 

patients who receive neurolytic celiac block 
than these treated with systemic analgesia 
[16]. In patient with refractory oncological pain, 
intrathecal pain therapy with implantable deliv-
ery system provides better six-month survival 
than comprehensive medical management 
[17]. Do these results give a hint that chronic 
regional pain regimen is better than systemic 
approach to curb tumor progression? The situa-
tion is very complicated: the improved survival 
may be due to better pain control and less pain-
induced immunosuppression, less drug toxicity 
due to decreased systemic opioid usage, and 
improved nutrition.

Anesthetic techniques on cell-mediated  
immunity

The interaction among anesthesia, malignancy, 
and the immune system has been extensively 
discussed [7, 18] and is beyond the scope of 
this review. A leading theory for the beneficial 
effect of regional anesthesia on tumor progres-
sion is that regional block attenuates perioper-
ative immunosuppression. During a major sur-
gery, there is a measurable decrease of 
cytokines for cell-mediated immunity such as 
IL-2, IL-12, and IFN-γ. The number of circulating 
natural killer (NK) cells, cytotoxic T lympho-
cytes, and the ratio of T-helper 1 (Th1) to 
T-helper 2 (Th2) are also significantly reduced 
[7]. Regional anesthesia blocks the afferent 
sensory transmission, efferent sympathetic 
activation, and the associated endocrine and 
metabolic responses. Intraoperative use of 
regional anesthesia lowers the plasma levels of 
cortisol [19] and catecholamines [20]. Under 
spinal analgesia, the function of NK cells and 
the balance of Th1/Th2 are better preserved 
[21]. In addition, most intravenous and volatile 
anesthetics are immunosuppressors [22]; 
regional anesthesia decreases systemic opioid 
use and the amount of general anesthetics 
required. All these aspects of regional anesthe-
sia help to maintain NK function and cell-medi-
ated immunity, the first line and the most 
important defense against malignancy.

Anesthetics and cancer cell biology

The effect of anesthetics on tumor progression 
is two-folded: most anesthetics are immuno-
suppressive and this renders patients more 
liable to tumor progression [23]; recently, accu-
mulating evidence points to a direct role of 
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anesthetics in malignant growth and invasion 
(Table 1).

Local anesthetics and voltage-gated sodium 
channels

Local anesthetics mainly block voltage-gated 
sodium channels (VGSC) in excitable cells. 
VGSCs are transmembrane proteins composed 
of one pore-forming α-unit and one or more 
auxiliary β-units. Tumor cells have been found 
to express an array of ion channels that their 
terminally differentiated counterparts don’t 
[38]. One of the major players is VGSC. VGSC 
are highly expressed in a variety of carcinomas 
in vitro and in vivo, including breast cancer, 
prostate cancer, cervical cancer, colon cancer, 
melanoma, mesothelioma, neuroblastoma, 
ovarian cancer, non-small cell lung cancer, 
small-cell lung cancer, glioma, lymphoma, and 
leukemia cells [24, 25, 39].

An important aspect of VGSC expression in 
cancer cells is that these VGSCs are often 
embryonic/neonatal splice variants [24]. There 
are nine subtypes of VGSC α-units. Most of the 
tumor cells express Nav1.5 and Nav1.7 [24]. 
Nav 1.5 is a neonatal variant of VGSC [39] . 
Neonatal VGSCs are found to be more sensitive 
to lidocaine and phenytoin than the adult forms 
[40, 41]. The level of VGSC α-unit correlates 
highly with the metastatic potential of the 
tumors [25, 26]. VGSC in tumor cells tend to be 
constitutively active. Cancer cells have high 
concentration of intracellular sodium and are 
usually more depolarized than the terminally 
differentiated cells. The activity of VGSC 

α-subunits is regulated by positive feedback; 
blockade of the channel activity by local anes-
thetics may have exponential benefit to curb 
VGSC-dependent metastatic behaviors [42]. 
The regulating β-subunits are structurally simi-
lar to cell adhesion molecules of immunoglobin 
family. They appear to regulate the expression 
of α-subunits, cell adhesion, and cell migration 
[43].

Evidence of local anesthetics to curb tumor pro-
gression through VGSC is very limited. However, 
inhibition of VGSC with non-local anesthetic 
blockers does affect tumor metastasis. The 
highly selective VGSC blocker, tetrodotoxin 
(TTX), inhibits the metastatic behavior in 
breast, prostate, and lung cancer cells [24-26, 
44, 45]. Anticonvulsant phenytoin at therapeu-
tic concentrations suppresses Na+ current and 
the metastatic behaviors of breast cancer cells 
[46]. Phenytoin also inhibits the production of 
interleukin-6 and the migration of prostate can-
cer cells [47]. Down-regulation of VGSC gene 
expression suppresses the migration and inva-
sion for multiple tumor cells, while overexpres-
sion of tumor-prone VGSC Nav1.5 converts a 
weakly invasive prostate cancer cell line into a 
highly invasively one [39]. In small-cell lung can-
cer cells, lidocaine and phenytoin inhibit VGSC-
dependent enhancement of cell endocytic 
membrane activities, an important feature of 
metastatic cell behaviors [48]. In human umbil-
ical vein endothelial cells, VGSC regulates 
angiogenic properties of endothelial cells, 
including vascular endothelial growth factor 
(VEGF)-induced proliferation, tubular differenti-
ation and adhesion [49]. VEGF is one of the 

Table 1. Anesthesia Factors and Tumor Progression
Anesthetic  
factors

Potential effects 
on tumors

Cell-mediate Immunity [7, 18] Proposed Mechanisms

Regional anesthesia Inhibition Attenuate immuno-suppression Decrease perioperative stress responses
Decrease systemic opioid use
Decrease the use of volatile agents 

Local anesthetics Inhibition Attenuate immuno-suppression Act through VGSC to inhibit metastasis [24-26]
Inhibit cell proliferation [27]
Inhibit motor machinery of cancer cells [28]
Inhibit Src signaling and cancer cell migration [29]

Opioids Activation Immuno-suppression Promote angiogenesis [30]
Co-activate with EGFR [31]
Act through NET1 pathway for cell migration [32]

Volatile agents Activation Immuno-suppression Activate HIF-1α [8, 33]
Inhibit TNF-induced apoptosis [34]
Inhibit antiapoptotic Bcl-2 down-regulation [35]

Propofol Inhibition None Decrease MMP expression [36]
Modulate RhoA and stress fiber for cell migration [37]
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most important signaling pathways for tumor 
progression. 

Besides tumor metastasis, local anesthetics 
also affect cell proliferation. Lidocaine and ropi-
vacaine impair proliferation, differentiation, 
and are cytotoxic to mesenchymal stem cells in 
vitro. Mesenchymal stem cells are key players 
of tumor growth and metastatic formation [27]. 
In vitro exposure of human fibroblasts to sev-
eral amide local anesthetics impairs cell growth 
[50]. 

Local anesthetics also act through a VGSC-
independent pathway. Lidocaine and tetracaine 
are inhibitors of kinesin motor machinery and 
their application to breast cancer cells leads to 
the collapse of microtubule protrusions. These 
dynamic protrusions are very important for cir-
culating tumor cells to attach to blood vessel 
walls in the distant tissues [28]. Amide-linked 
local anesthetics inhibit inflammatory Src sig-
naling and the migration of lung adenocarcino-
ma cells; however, this effect is not abolished 
by TTX [29]. Lidocaine infiltration protects 
against tumor cell invasion at concentrations 
used in surgical operation. The blockade of 
VGSC does not attenuate this protection [51]. It 
seems that the anti-proliferative effect of local 
anesthetics is largely VGSC independent. While 
VGSC activation promotes invasive changes in 
prostate and breast cancer cells, no significant 
proliferation is observed [25, 52]. Local anes-
thetics not only block VGSC, but also block 
potassium channels and calcium channels. It is 
possible that some of the VGSC-insensitive 
effects act through potassium or calcium 
channels.

Opioids

The interest in opioids’ roles to directly promote 
tumor progression is largely sparked by the 
ability of opioids to stimulate angiogenesis. 
Opioid receptors, particularly µ opioid recep-
tors (MOR) are found in vascular endothelial 
cells [53]. Activation of these opioid receptors 
leads to VEGF- dependent angiogenesis [53, 
54]. 

Several lines of evidence support a pro-tumori-
genic role of opioids. In an early study, breast 
cancer xenoplant is transplanted into model 
animals. When stimulated by morphine at clini-
cally relevant concentrations, these trans-

plants grow larger sizes and exhibit increased 
tumor neovasculation [30]. In a later laboratory 
study, methylnaltrexone, a peripheral opioid 
antagonist, when infused into model animals, 
attenuates tumor growth and lung metastasis. 
When lung cancer cells are introduced into ani-
mals with no MOR, these animals do not devel-
op significant tumors compared to their wild 
type counterparts [55]. There is substantially 
increased expression of opioid receptors in 
non-small cell lung cancer cells; these MORs 
co-activate epidermal growth factor receptor 
(EGFR) and promote tumor cell proliferation 
and survival [31].

In addition to angiogenesis, morphine is found 
to act on cytoskeleton system in a line of breast 
adenocarcinoma cells. The addition of mor-
phine into the tumor cells leads to the up-regu-
lation of NET1 and increased cell migration. 
NET1 is a key organizer of cytoskeleton and 
mediates cancer cell migration. Silencing of 
NET1 expression reverses this effect of mor-
phine on migration [32]. In contrast, in colon 
cancer cells, morphine inhibits adhesion, inva-
sion and pulmonary metastasis of colon tumor 
cell line. This effect is mediated by regulating 
matrix metalloproteinase (MMP), an extracellu-
lar matrix peptidase that promotes cell migra-
tion by dissolving extracellular matrix and adhe-
sion complexes [56]. 

Besides the studies in cell-based systems and 
animal models, a recent human study exam-
ines the genetic polymorphism of MOR in breast 
cancer patients. The authors identify several 
MOR variants in this group. The most common 
one, A118G, is associated with a reduced bind-
ing affinity to µ-opioids. Patients harboring this 
polymorphism, when in pain, require high opi-
oids. The most interesting part is that patients 
with one or more copies of this G allele have 
decreased breast cancer-specific mortality 
[57]. 

Despite that regional anesthesia decreases the 
use of systemic opioids, systemic opioid admin-
istration is still inevitable. One approach to 
minimize their pro-tumor effect is to co-admin-
ister a peripheral opioid inhibitor. Regular opi-
oid receptor blockers such as naloxone act 
both peripherally and centrally. Its use can lead 
to severe side effects such as pain aggravation 
and withdrawal. Peripheral opioid inhibitors, on 
the other hand, do not cross blood-brain barrier 
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and presumably have minimal central side 
effects. There is evidence that endogenous opi-
oids may also promote tumor progression [58]. 
It will be interesting to explore the therapeutic 
potential of peripheral opioid blockers in coun-
tering the tumorigenic effect of both exogenous 
and endogenous opioids.

Others anesthetics

Except propofol, volatile anesthetics and intra-
venous anesthetics are known to depress all 
aspects of immunity system. This depression 
augments the surgically-induced immunosup-
pression [8]. However, most of the studies con-
cerning the direct effect of anesthetics on 
tumor progression are focused on opioids and 
VGSC. Such studies on volatile anesthetics and 
intravenous induction agents are scarce. 
Isoflurane is found to protect colon cancer cells 
from tumor necrosis factor (TNF)-induced 
apoptosis [34]. In neuroblastoma cells, isoflu-
rane attenuates neurotoxicity imposed by opi-
oid peptide [35]. Animal studies suggest that 
halogenated volatile anesthetics are organ-pro-
tective against ischemia [59]. Unfortunately, 
this very effect may be detrimental in the con-
text of cancer. Under hypoxic conditions, halo-
genated volatile anesthetics up-regulate the 
expression of hypoxia-inducible factor 1α (HIF-
1α) in the heart and brain [33, 60]. HIF-1α is 
regarded as a master mediator for ischemic 
protection [33]. Interestingly, HIF-1α is over-
expressed in a variety of carcinomas and their 
metastases [61]. The level of HIF-1α protein in 
the primary tumor correlates with early relapse 
of breast cancer [62]. On the other hand, sev-
eral studies show the opposite results. 
Sevoflurane and desflurane inhibit MMP-9 
release and subsequent migration of colorectal 
cancer cells in vitro [63]. In a cell-based sys-
tem, sevoflurane reduces the invasion and 
migration of lung cancer cells by down-regulat-
ing MMP-2 and MMP-9 [64]. 

For nitrous oxide, a very early study in mice 
shows it is associated with accelerated devel-
opment of post-surgical metastasis in the lung 
and liver [65]. However, a recent randomized 
follow-up study finds no increased risk of recur-
rence in 4-8 years after colorectal cancer sur-
gery in patients who have received nitrous 
oxide anesthesia during the operations [66]. 

Propofol may have anti-tumor effect. Propofol 
promotes cytotoxic T lymphocyte activities and 

inhibits lymphoma growth [67]. Propofol also 
decreases the expression of extracelluar matrix 
protein and the invasiveness of colon cancer 
cells [36]. Similar anti-invasive phenomena are 
observed in a few other cancer cells at clinically 
relevant concentrations [37]. For benzodiaze-
pines, despite that early epidemiological stud-
ies suggest their use is associated with 
increased occurrence of tumors [68, 69], large 
scale analysis, adjusted with confounders, 
finds no association between benzodiazepine 
use and cancer risk [70, 71]. Among all intrave-
nous anesthetics, ketamine is the most potent 
agent for lung cancer metastasis in animal 
models. This effect is mediated mainly by 
strong immunosuppression from ketamine 
[22].

Discussions

The likelihood of tumor metastasis depends on 
the balance between human anti-malignant 
defense and the ability of tumor to grow and 
spread. The former mainly relies on NK and 
cell-mediated immunity. For the latter, the main 
determinant is the innate aggressiveness of 
the tumors. Exogenous factors can act as facili-
tators or suppressors.

Surgery creates a profound perioperative 
stress that manifests in neural, endocrine, met-
abolic, inflammatory, and immunological 
changes. These changes result in significant 
immunosuppression. Meanwhile, tumor cells 
are released into circulation during surgery. 
This double punch makes perioperative period 
highly conducive to tumor metastasis. General 
anesthesia suppresses cerebral and thalamus 
functions while preserving the function of low 
brain and spinal circuits [72]. In contrast, 
regional anesthesia, due to direct nerve block, 
attenuates or abolishes the reflex circuit 
between noxious afferents and sympathetic 
efferents at the surgical level and thus attenu-
ates the surgical stress and immunosuppres-
sion. Blockade of sympathetic activity can pro-
duce a similar effect. In fact, ketamine-induced 
lung cancer cell invasion is markedly reduced 
by the pretreatment of nadolol, a β-adrenergic 
antagonist [22]. 

Retrospective human studies suggest that 
regional anesthesia is an independent benefi-
cial factor for tumor recurrence [6, 9]. The main 
problem of these studies is that perioperative 
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anesthesia is multimodal and it is difficult to 
lineate the contributions of each individual fac-
tor. No standardization of anesthetic applica-
tions is available. A variety of general anesthe-
sia methods can be used for induction and 
maintenance; the protocols of regional anes-
thesia can also be very different. In addition, no 
follow-up is possible to assess the long-term 
outcome. Randomized clinical trials with more 
specific stratifications and long-term follow-up 
are needed for further clarification.

Anesthetics act on neoplasms both directly and 
indirectly. Past studies have been focused 
more on the indirect aspect, the immune sup-
pression [73]. Recently, growing evidence dem-
onstrates that anesthetics directly regulate 
tumor molecular and cell biology. First of all, 
there is a positive correlation between VGSC 
and tumor metastasis [24, 25]. This provides 
excellent theoretical rationale to further investi-
gate the role of local anesthetics in tumor inhi-
bition. One interesting finding is that often 
tumors express a neonatal form of VSGC [39]. A 
specific blocker against this VGSC subtype may 
provide better targeting and less systemic tox-
icity. For opioids, one of the theories that 
regional anesthesia has better outcome is 
because less systemic opioids are used under 
regional anesthesia. Tumor cells are equipped 
with opioid-responsive molecular machinery to 
promote angiogenesis and invasion. This opioid 
sensitivity provides a therapeutic opportunity 
for peripheral opioid blockers. Alvimopan, a 
peripheral opioid receptor blocker, has been 
approved in clinical use to mitigate opioid side 
effects such as ileus [74]. Further investiga-
tions are warranted to evaluate the efficacy of 
similar blockers in oncotherapy. Finally, tumors 
are exposed to the lowest oxygen environments 
[75]; halogenated volatile agents are able to 
activate hypoxic mediators for ischemic protec-
tion and tumor progression [62]. It may be 
advisable to reduce volatile agent use in favor 
of propofol anesthesia in cancer patients.

In spite of the growing evidence, the signifi-
cance of these studies is still very limited. Most 
of them are cell-based or simple animal model 
studies. A better approach is to test the theo-
ries in animal models closely mimicking human 
pathology. Ultimately, controlled clinical trials 
are needed to demonstrate whether there is a 
significant effect of each individual anesthetic 
on tumor progression. For now, scientific evi-

dence is not sufficient to compile a definite 
strategy for optimal anesthesia management in 
cancer patients. Fortunately, most procedures 
can accommodate multiple anesthetic choices. 
A good approach is to avoid regimens that are 
potentially harmful and favor these potentially 
beneficial. The former includes volatile anes-
thetics, systemic opioids, and ketamine; while 
the latter includes regional block, local anes-
thetics, and propofol. In addition, multidisci-
plinary strategies need to be implemented to 
reduce perioperative stress.

In summary, regional anesthesia is a beneficial 
technique in cancer patients. Basic science 
studies indicate an encouraging role of local 
anesthetics in attenuating tumor recurrence; 
while systemic opioids are more likely to be pro-
tumorigenic. A shared mechanism of volatile 
anesthetics may exist between ischemic organ-
protection and tumor progression. Further 
studies at different levels are urgently needed 
for a better clinical guide.
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of Anesthesiology Downstate Medical Center, 450 
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2098, USA. E-mail: jun.lin@downstate.edu
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