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Abstract: Both ischemic preconditioning (IPreC) and ischemic postconditioning (IPostC) trigger endogenous neuro-
protective mechanisms in cerebral ischemia. IPreC is defined as a brief ischemia that protects against a subsequent 
severe ischemia, while IPostC refers to a series of brief cerebral blood vessel occlusions performed at reperfusion 
following an ischemic event. Hormesis describes a biphasic dose-response relationship in toxicology, where a low 
dose of toxicant stimulates and a high dose inhibits biological responses. In general, any minor stress will stimulate 
a biological system to generate an adaptive response; in most cases, if not all, such an adaptive response to a minor 
stress is beneficial to the biological system. Proponents of hormesis suggest that this effect is independent of any 
models, either in vivo or in vitro, from animal, plant, fungi, yeast, to bacteria, by any measurement of end points, 
survival ratio or time, growth, tissue repair, life span, cognition, learning and memory. In this review, we examine 
whether IPreC and IPostC are actually sub-forms of hormesis and whether quantitative hormetic strategies can be 
used to study IPreC and IPostC. By integrating the concepts of IPreC and IPostC with hormesis, we aim to broaden 
the avenues leading to clinical translation of IPreC and IPostC in stroke treatment. 
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Introduction

Stroke is a leading cause of death and signifi-
cant long-term disability in adults worldwide. 
No effective treatment exist, except for the FDA 
approved-thrombolytic agent, t-PA, which can 
only be applied to a small population of stroke 
patients in a short therapeutic time window 
from 3 to 4.5 hours after stroke onset [1]. 
Numerous innovative neuroprotectants have 
been proposed for clinical translation to treat 
stroke in the last few decades, including Ca2+ 
antagonists [2, 3], glutamate inhibitors [4-6], 
free radical scavengers [7-9], necrotic and 
apoptotic blockers [10-13], anti-inflammatory 
agents [14-16], induced-mild to moderate 
hypothermia [17-19], and others. Due to the 
triggering of intrinsic protective mechanisms in 
the brain, the concepts of ischemic precondi-
tioning (IPreC) and ischemic postconditioning 
(IPostC) are especially attractive as neuropro-
tectants involved in multiple cell signaling path-
ways [20, 21]. The protective effects of IPreC 

are considered the gold standard for stroke 
protection.

The primary goal of studying IPreC and IPostC 
against stroke is clinical translation to patients 
[22]. Even though none of the patterns of IPreC 
have yet been successfully translated to stroke 
patients after decades of research, our search 
continues. While the concept of IPostC is rela-
tively new, the potential for clinical application 
remains unknown. Despite the paths carved 
out by the research in IPreC and IPostC, is the 
road ahead even more difficult leading to clini-
cal application? Are the protective effects of 
IPreC and IPostC proven in the laboratory mere-
ly illusions in the clinical setting? Are there inno-
vative concepts and strategies that can broad-
en the narrow path and make clinical translation 
of ischemic pre- and post-conditioning a reali-
ty? Mindful of these concerns, we intend to 
introduce the concept of hormesis in IPreC and 
IPostC against stroke, assuming that many 
researchers are unaware of this concept. Terms 
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such as preconditioning hormesis and postcon-
ditioning hormesis have been proposed to 
describe preconditioning and postconditioning 
[23-25], but these terms are not widely used in 
the stroke field for pre- and post-conditioning 
studies and leading stroke researchers have 
not yet accepted the concept of hormesis as 
different patterns of IPreC and IPostC. We 
intend to better define hormesis as it relates to 
IPreC and IPostC in our ongoing studies. By 
integrating the concept of IPreC and IPostC 
with hormesis, we aim to broaden the avenues 
leading to clinical translation of IPreC and 
IPostC in stroke treatment. 

Both IPreC and IPostC protect against stroke 

IPreC refers to a brief ischemia that protects 
against a subsequent severe, prolonged isch-
emia. This protective phenomenon can be 
traced back nearly 50 years, when a research 
group documented increased survival times in 
rats, with reductions in hippocampal CA1 neu-
ronal loss during early exposure to brief anoxia 
[26, 27]. These findings were not recognized at 
the time as a type of IPreC. The formal concept 
of IPreC was first described in ischemic hearts 
by Murry et al. in 1986 [28]. It was later found 
that IPreC has two therapeutic time windows. 
Rapid IPreC is conducted within a few hours of 
the first ischemic event, and delayed IPreC is 
performed 24 hours or longer before the sec-
ond, prolonged ischemia [29, 30]. Many inde-
pendent studies have demonstrated the robust 
cardioprotective effect of ischemic myocardial 
preconditioning across several species tested 
with different protocols [31]. In addition to myo-
cardial ischemia, the protective effect of IPreC 
has been reproduced in other organs including 
the liver [32], kidney [33] and brain [34]. 

The formal concept of cerebral IPreC was first 
introduced in the early 1990s by Kitagawa et 
al., in a global cerebral ischemic rat model [20, 
35]. After that, many independent groups con-
firmed the protective effects of IPreC in both 
global and focal cerebral ischemia across dif-
ferent species both in vivo, including gerbils 
[36-38], rats [39-41], and mice [42], and in 
vitro experiments, including brain slices [43] 
and cell culture [44]. 

In contrast, the concept of IPostC is relatively 
new. IPostC was also initially defined in the field 
of myocardial ischemic research [45, 46]. While 

IPreC is a sublethal ischemia performed in 
advance of a severe ischemia, IPostC conven-
tionally refers to a single brief or a series of 
brief occlusions/reperfusions performed after 
ischemia/reperfusion. The protective effect of 
IPostC has also been proven against cerebral 
ischemia [21, 47], and has been shown to be 
comparable to that of IPreC. The therapeutic 
time window of IPostC against cerebral isch-
emia can vary from a few seconds to a few days 
after ischemia/reperfusion. Taken together, 
IPostC and IPreC confer significant neuropro-
tective effects on brain ischemia.

The concepts of IPreC and IPostC have expand-
ed to represent a broad range of sublethal 
insults, from ischemia, neurotoxic agents and 
pharmacological agents, to physical exercise 
[34, 48-50]. Recently, remote pre- and post-
conditioning have received particular attention, 
especially in the myocardial ischemia research 
field, due to their relative safety for clinical 
translation [51-55]. Remote pre- or post-condi-
tioning refers to an ischemia performed in a 
remote, uninvolved extremity, such as a leg or 
an arm, which generates protection against 
another ischemic event in a vital organ, such as 
the brain or heart [56-62]. Remote conditioning 
has been applied in many pilot clinical trials 
and has proven effective in myocardial isch-
emia, which may shed light on the potential 
clinical success of pre- and post-conditioning in 
stroke treatment [63-67]. 

The concept of hormesis

As reviewed previously [68], German pharma-
cologist Hugo Schulz first described such a phe-
nomenon in 1880s after observing that the 
growth of yeast could be stimulated by small 
doses of poisons. The term “hormesis” was 
coined and used for the first time in a scientific 
paper by C.M. Southam and J. Ehrlich in 1943 
[68]. Recently, Edward Calabrese has revived 
the hormesis theory through a series of his 
publications by examining hormetic phenome-
non across multiple research disciplines of bio-
logical sciences [25, 68-71]. In toxicology, three 
models exist to address dose-dependent 
response relationships: a threshold model, a 
linear model and a hormetic model (Figure 1), 
which were well addressed by Dr. Hoffmann in 
his excellent review [72]. Briefly, in the thresh-
old model, a toxicant has no effect below a 
threshold of dose response curve, but above 



Hormetic strategies for stroke research

63	 Int J Physiol Pathophysiol Pharmacol 2013;5(2):61-72

the threshold the toxicant generates a dose-
dependent toxic response. As a result, a higher 
dose corresponds to a stronger toxic effect. 
The linear model has no effect threshold. 
Instead, any toxicant dose generates a propor-
tional dose-dependent effect, producing a 
descending line when doses are reduced until a 
zero effect is reached. Both dose-response 
relationships in the linear and threshold mod-
els are monotonic. In contrast, the hormetic 
model produces a biphasic dose-dependent 
response [69, 73]. The effect does not change 
in one direction in response to dose changes. 
Rather, lower doses generate opposite effects 
to higher doses. If higher doses of an agent pro-
duce detrimental effects to a biological system, 
lower doses produce beneficial effects and, 
conversely, if higher doses generate beneficial 
effects, lower doses generate detrimental 
effects. Hormesis can therefore be defined as a 
dose-response relationship in which high and 
low doses of an agent have opposite effects. In 
the field of toxicology research, hormetic dose-
dependent effects have been shown for many 
chemicals [71, 74-77] as manifested by J- or 
U-shaped profiles [25, 72] (Figure 1). 

Whether hormesis is a universal, default phe-
nomenon for all toxicants is an issue of debate, 
but a strong proponent of hormesis, Dr. Edward 
J. Calabrese, considers it a universal phenom-
enon, not only in toxicology, but also in immu-
nology, aging biology, psychology, neurosci-
ence, ecology, plant biology, microbiology, 
radiology, and many other sub-disciplines of 

biological and medical science [25, 69, 71, 
73-76]. 

Are IPreC and IPostC forms of hormesis?

As discussed, strong proponents of hormesis 
have suggested it is a universal phenomenon 
across the kingdom of biological sciences. 
However, hormesis is not commonly recog-
nized, in part because different research fields 
use many alternate terms for it when studying 
dose-response relationships. These terms 
include non-monotonic, biphasic, U-shaped, 
J-shaped, rebound effect, bitonic, precondition-
ing, postconditioning, and adaptive response, 
among others [69, 71, 73]. Intended as an 
effort to promote communication among scien-
tists from different fields, in 2007 Dr. Calabrese 
and nearly 60 other biomedical scientists advo-
cated integrating biological stress responses in 
the hormetic context, including pre- and post-
conditioning, and recommended a terminology 
system for each stress/hormesis based on an 
interdisciplinary framework [25]. The terms pre-
conditioning hormesis and postconditioning 
hormesis were suggested to replace pre- and 
post-conditioning, respectively [25]. These 
terms, however, have not been officially adopt-
ed by researchers in the pre- and post-condi-
tioning fields, including myocardial ischemia, 
cerebral ischemia, kidney or lung ischemia, 
even 5 years after publication of the paper. 
There are several explanations for this situa-
tion. Most of the proponents for the new termi-
nology do not conduct related research, and 
many scientists who study pre- and post-condi-
tioning are unaware of the hormesis concept 
and terminology system. The concepts and 

Figure 1. Three models for a dose-response relation-
ship in toxicology (modified from [72]. 1. Linear non-
threshold model; 2. Threshold model; 3. Hormetic 
model. The control line shows the baseline when a 
biological system is not challenged by a stress. The 
“J” or “U” shaped curve in 3 shows the hormetic 
dose-response of a toxic agent on a biological system 
or organism. Lower dose ranges of the toxic agent 
are beneficial while doses above the threshold are 
inhibitive or detrimental. 

Figure 2. A single ischemia (MCA occlusion) as pre-
conditioning does not generate a hormetic response, 
but instead a threshold curve. The baseline indicates 
no infarction.
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definitions of pre- and post-conditioning may 
already be sufficient to researchers in the field, 
rendering new terms unnecessary. A careful 
and serious examination of whether pre- and 
post-conditioning truly fall within the hormetic 
context has not been experimentally tested nor 
analyzed. 

In our opinion, the concepts of IPreC and IPostC 
may differ from classic hormesis in several 
aspects. First, classic hormesis refers to low 
doses of a toxicant generating beneficial or 
stimulatory effects to a biological system. End 
points include enhanced growth, survival and 
life span. These measurements of end points 
are independent, and do not account for any 
additional insult or stress to the observed bio-
logical system. Manifestation of the beneficial 
effects of IPreC and IPostC are dependent on 
another prolonged ischemic event, which 
occurs either after or before induction of IPreC 
or IPostC, respectively. In other words, without 
the prolonged ischemia as a reference, the 
beneficial effects of IPreC and IPostC cannot be 
demonstrated. Second, IPostC is less likely to 
be listed under the hormetic context than IPreC, 
as the protective mechanisms of IPostC are 
less well understood. The effects of IPreC alone 
on a biological system can be studied. It is gen-
erally accepted that IPreC causes an adaptive 
response in the targeted organ for the subse-
quent prolonged ischemia. Thus, IPreC is more 
like a hormetic agent, except the protective out-
come of IPreC must be measured with a refer-
ence from the aforementioned subsequent pro-
longed ischemia. It seems impossible to 
separate an IPostC event from its preceding 
ischemia and use IPostC alone as a research 
subject. It seems meaningless to study how 
this IPostC event affects the brain without the 
accompanying prolonged ischemia. A series of 
very brief occlusions (from 10 to 30 seconds 
for a few times) alone may not significantly alter 
normal brain function, and investigation of this 
subject may not offer any meaningful clues for 
understanding the protective mechanisms of 
IPostC. Such forms of IPostC may not be 
“stresses” as defined for hormesis. Rather, 
IPostC attenuates a stress caused by the previ-
ous prolonged ischemia, as IPostC interrupts 
reperfusion and attenuates ROS production. If 
this is true, it is inappropriate to include IPostC 
in the context of hormesis. We believe, howev-
er, that whether IPostC generates an adaptive 
response or produces a compensatory effect 

similar to a hormetic agent requires more care-
ful study. 

IPreC alone shows features of the threshold 
but not the hormetic model when infarction is 
measured

We further examine and discuss whether IPreC 
alone generates a hormetic response in animal 
models of the preconditioned brain. IPreC is 
usually induced by a brief ischemia, which is 
arbitrarily defined in many studies as from 2 to 
15 minutes of MCA occlusion [78-83]. It is 
known that ischemia causes ATP depletion 
resulting in ischemic or anoxic depolarization 
[84]. Previous studies have shown that the 
occurrence of ischemic depolarization is pro-
portional to the degree of neuronal death [85, 
86]. It usually requires more than 2 to 3 min-
utes under normothermia to cause ischemic 
depolarization [87-90]. Previous studies often 
defined IPreC as 3 to 15 minutes of MCA occlu-
sion, which reduces infarction induced by a 
subsequent severe stroke [78-83, 91]. This 
raises the question as to whether IPreC with 3 
to 15 minutes of MCA occlusion causes any 
neuronal injury or infarction to the brain. 
Although IPreC was originally defined as a sub-
lethal ischemia, unfortunately in most studies, 
whether a brief ischemia causes brain injury or 
not was not carefully examined or reported. 
Under the threshold of less than 2 to 3 minutes 
of ischemia, no ischemic depolarization occurs, 
and no neuronal death or infarction will be 
induced, but it may also not produce protection 
as a preconditioning factor. From forebrain 
ischemia, it is known that only 3 to 5 minutes of 
ischemia is sufficient to induce delayed, selec-
tive neuronal death in the cerebral cortex, stria-
tum and hippocampus [92, 93]. In focal isch-
emia, brain injury is often measured by TTC 
staining, which cannot measure neuronal injury 
induced by 3 to 5 minutes of ischemia with 
selective, delayed neuronal death rather than 
gross infarction. Therefore, to conclude that 
IPreC with 3 to 5 minutes of focal ischemia 
does not induce any neuronal death might be 
misleading and incorrect. When the ischemic 
period is increased above the threshold of isch-
emic depolarization, it is imaginable that neuro-
nal death or infarct size will be increased along 
with the increases in ischemic period. Indeed, 
in our laboratory clear infarction can be detect-
ed after 10 to 15 minutes of MCA occlusion 
(unpublished observation). If brief ischemia 
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from 3 to 15 minutes is used as precondition-
ing period, minor brain injury is expected, at 
least in the ischemic core, where infarction is 
visible with 10 minutes of ischemia. With lon-
ger periods of ischemia, infarct sizes will be 
increased toward ischemic penumbra. 
Obviously, the dose-response relationship 
between ischemic time of preconditioning and 
infarct sizes will fall into the category of the 
threshold model (Figure 2), rather than a hor-
metic model. Therefore, it is safe to conclude 
that IPreC alone does not generate a hormetic 
response when infarction is used as a patho-
logical measurement. 

We recognize, however, that the above conclu-
sion is based on infarction measurement, and 
hormetic response may be observed at cellular 
and molecular levels. For instance, Ca2+ is 
known to be critical for neuronal death after 
stroke. When IPreC preceded a lethal 5 minute 
forebrain ischemia in gerbils, enhanced plasma 
membrane Ca2+-ATPase activity and increased 
mitochondrial sequestration Ca2+ was present 
before the subsequent test ischemia was 
induced [94]. IPreC also promotes hypoxia-
inducible factor-1 (HIF-1), a transcription factor 
that regulates the adaptive response to hypoxia 
in mammalian cells [95-97]. It promotes pro-
tein expression of excitatory amino acid trans-
porters, which helps inhibit glutamate-mediat-
ed synaptic signaling and attenuate 
extracellular glutamate levels preventing its 
neurotoxic activities [98]. Furthermore, protein 
expression and activities of anti-oxidant pro-
teins, such as SODs (Mn-SOD and Cu/Zn-SOD), 
glutathione peroxidase and catalase, are 
increased by IPreC [99]. IPreC also increases 
protein expression of heat shock proteins 
(HSPs) [99], a family of stress proteins that act 
as molecular chaperones, proven to be neuro-
protective [16, 100]. Furthermore, IPreC pro-
motes protein expression and activities in the 
Akt cell signaling survival pathway [101], and 
enhances anti-apoptotic protein levels of Bcl-2, 
Bcl-XL while inhibiting pro-apoptotic protein lev-
els of Bax, Bad in the Bcl-2 family [99]. However, 
these results are often considered controver-
sial in the IPreC study setting [99, 101], and 
whether any biphasic dose-response between 
ischemic severity and protein expression exists 
related to neuronal survival or death has not 
been quantitatively examined in detail, nor 
shown in a hormetic model for IPreC study. 

Why integrate the concept of hormesis into 
research on IPreC and IPostC?

As discussed, we cautiously accept hormesis 
as a general concept covering all patterns of 
IPreC and IPostC in stroke until thorough study 
and deep examination confirm that hormesis is 
compatible with IPreC and IPostC in stroke. 
Since the concepts of IPreC and IPostC have 
been extended to include a broad range of 
insults [22, 102, 103], we do not exclude the 
notion that some forms of preconditioning and 
postconditioning may fit perfectly into the hor-
metic context. Despite concerns, our enthusi-
asm for the concept of hormesis in stroke 
research remains undimmed [22]. We strongly 
encourage more well-designed studies to deter-
mine definitively if IPreC and IPostC are forms 
of hormesis. In addition, since hormesis is 
manifested by thousands of proven agents and 
chemicals [69-71, 74, 77], this may facilitate 
discovery of alternative tools for inducing pre-
conditioning and postconditioning against 
stroke. We believe these results should be con-
sidered when candidates are chosen for stroke 
treatment. Hormetic data banks may provide 
invaluable clues for finding neuroprotectants in 
pre- and post-conditioning. Furthermore, even 
if the concepts of hormesis and IPreC and 
IPostC cannot be fully integrated, the quantita-
tive features of hormetic models provide impor-
tant methods to re-examine critical parameters 
of IPreC and IPostC. It is our hope that this 
review article will encourage the field to employ 
these features to inform decisions for clinical 
trials of IPreC and IPostC in stroke treatment. 

As we discussed in a recent review article [22], 
whether or not IPostC or IPreC can be success-
fully translated to the clinic depends on several 
factors that must be assessed before a deci-
sion is made to commence IPreC or IPostC clini-
cal trials. First, the scientific evidence for the 
protective effects of IPreC and IPostC in experi-
mental stroke models must be presented, 
including optimal IPreC and IPostC paradigms, 
stroke models reflective of clinical stroke, and 
underlying mechanisms for these protective 
effects. Second, concerns of patients and med-
ical doctors about the safety and efficacy of 
IPreC and IPostC must be addressed, including 
the risk of additional injury when one or more 
minor strokes are induced before or after a 
major stroke. Persistent fears exist regarding 
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acceptance of IPreC and IPostC in the clinical 
setting. Below, we detail our strategies to evalu-
ate both the safety zone and the effective zone 
of IPreC and IPostC by using the quantitative 
index of hormetic models. 

generate protective or detrimental effects on 
the final infarct sizes.

A second hormesis-like pattern of the protec-
tive effect of IPreC is that IPreC can generate 

Figure 3. A typical hormetic pattern of the protective effects of IPreC 
against a test stroke. When a control ischemia is moderate, e.g., 60 
min of MCA occlusion, IPreC may generate a typical “U” shaped-hor-
metic response. 1. Representative line of infarct sizes when IPreC is 
followed with a test ischemia. 2. IPreC alone shows gradually wors-
ening effects on infarct sizes. 3. The line represents an infarct size 
when control ischemia alone is induced. ZEP, (zero equivalent point). 
In the sub-hormetic zone (below ZEP1), preconditioning has no pro-
tective effects. In the hormetic zone, preconditioning generate pro-
tection, and it is assumed a strongest protection can be measured. 
In the above hormetic zone (after ZEP2), preconditioning may worsen 
infarction. Control ischemia time (60 min) and preconditioning times 
for hormetic zones are arbitrary, the time points are given as refer-
ences, which are not based on any experimental results.

Figure 4. An alternative hormetic pattern of the protective effects of 
IPreC against a control stroke. When ischemia is greater in severity 
than the ischemia proposed in Figure 3, e.g., 100 min of MCA occlu-
sion, IPreC may generate an atypical “U” shaped-hormetic response, 
in which a hormetic zone can still be identified, but an unfavorable, 
prolonged preconditioning may not be able to worsen infarction. 

Using hormetic strategies to identify 
the safe, effective and detrimental 
zones for IPreC and IPostC against 
stroke

Although IPreC or IPostC alone shows 
a threshold feature as a function of 
infarction or neuronal death, the com-
bination of IPreC or IPostC plus a test 
ischemia may generate a typical hor-
metic pattern when measuring the 
protective effects. We predict this is 
dependent on ischemic conditioning 
periods or patterns, conditioning 
onset time, stroke models and stroke 
severity. Since we have discussed a 
hormetic strategy to study postcondi-
tioning in a recent review article [22], 
this review focuses on precondi- 
tioning. 

In a typical hormetic pattern with rep-
resentative J or U shaped profiles 
(Figure 3), three critical points are 
expected to be identified. Zero equiv-
alent point ZEP1, peak point, and ZEP 
2. In the case of IPreC, if IPreC is 
induced by a single period of brief 
ischemia, ZEP1 represents a point 
below which no protective effects are 
observed, and above which protective 
effects are detected. ZEP2 repre-
sents a point below which protective 
effects are observed and worsening 
effects are expected. A point between 
ZEP1 and ZEP2 is expected to be 
where the strongest protection 
occurs. After ZEP2, a combination of 
IPreC with a test ischemia (control 
ischemia) will produce a larger infarc-
tion and gradually reach a maximal 
infarction, thus reaching a plateau for 
the curve. For this situation, the test 
ischemia must be in a moderate 
range where brief preconditioning can 
reduce infarction, and prolonged pre-
conditioning can worsen infarction, as 
we assume that when ischemia 
reaches a certain degree of severity, 
no amount of preconditioning can 
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protection, but after ZEP2, prolonged-IPreC 
does not generate protection or detrimental 
effects (Figure 4). This situation may happen 
when the control ischemia is moderate enough 
to allow preconditioning to generate protection, 
but severe enough to prevent a prolonged-pre-
conditioning from further worsening infarction. 

A third possibility is that IPreC generates nei-
ther protection nor aggravation of the subse-
quent ischemia (Figure 5). This may happen if 
the test ischemia is too severe for IPreC to alter 
the pathological outcomes. It is also possible 
that the ischemic brain does not respond to an 
IPreC when performed in an inappropriate time 
window. 

Yet a fourth pattern may also exist (Figure 6), in 
which IPreC generates additional worsening 

if the major function of IPostC is to interrupt 
reperfusion and attenuate oxidative stress, 
rather than as an additional stimulus to the 
ischemic brain. However, some patterns of pre-
conditioning and postconditioning, which are 
induced by other neruoprotective agents, rath-
er than ischemia, may perfectly match the cri-
teria required for hormesis. These precondi-
tioning and postconditioning patterns have not 
been carefully studied using a hormetic quanti-
tative index. Regardless of whether there are 
conflicts or not between IPreC or IPostC and 
hormesis, the protective effects of IPreC and 
IPostC against brain injury in certain stroke 
models may show an ideal pattern of curve, 
identical to a hormetic model. We strongly 
advocate using the quantitative features of hor-
metic models to evaluate safe and effective 

Figure 5. A third pattern of the effects of IPreC against a control 
stroke. When a test ischemia is too severe, e.g., 120 min or longer of 
MCA occlusion, IPreC may generate minimal protective or detrimental 
effects. 

Figure 6. A fourth pattern of the effects of IPreC against a test stroke. 
When ischemia is moderate, e.g., 60 min or longer of MCA occlusion, 
IPreC may worsen ischemic outcomes performed within an unfavor-
able therapeutic time window. 

effects to the subsequent prolonged-
ischemia, thus larger infarct sizes 
may be detected. This may happen 
when using a moderate ischemia and 
conducting preconditioning in an 
unfavorable time window.

In the case of IPostC, the above 4 pat-
terns of the final pathological out-
comes may also exist. A major differ-
ence is that IPostC is performed after 
reperfusion, and is usually induced by 
a series of brief occlusions of the 
cerebral blood vessels. The number 
of occlusions, the period of occlusion, 
the onset time of IPostC, the severity 
of ischemia and the stroke models 
will influence which pattern occurs. 

Summary and conclusion

Whether IPreC and IPostC in stroke 
belong in the hormetic context or not 
based on the quantitative index of 
hormetic models has not been exam-
ined in detail. According to current 
available evidence, IPreC alone with-
out a subsequent severe ischemia 
will generate a threshold, but not a 
hormetic dose-dependent response, 
when infarct sizes are used as the 
endpoint measurement. Never- 
theless, the dose-response relation-
ship in an IPreC setting may fit hor-
metic models at molecular and cellu-
lar levels. Furthermore, IPostC may 
not match the classic hormetic model 
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zones for the clinical translation of both IPreC 
and IPostC.
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