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Microglia and ischemic stroke: a double-edged sword
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Abstract: Inflammatory processes have a fundamental role in the pathophysiology of stroke. A key initial event is 
the rapid activation of resident immune cells, primarily microglia. This cell population is an important target for 
new therapeutic approaches to limit stroke damage. Activation of microglia is normally held in check by strictly con-
trolled mechanisms involving neuronal-glial communication. Ischemic stroke is a powerful stimulus that disables 
the endogenous inhibitory signaling and triggers microglial activation. Once activated, microglia exhibit a spectrum 
of phenotypes, release both pro- and anti-inflammatory mediators, and function to either exacerbate ischemic in-
jury or help repair depending on different molecular signals the microglial receptors receive. Various ligands and 
receptors have been identified for microglial activation. Experimental tools to detect these inflammatory signals are 
being increasingly developed in an effort to define the functional roles of microglia. Fine-tuning immunomodulatory 
interventions based on the heterogeneous profiles of microglia are urgently needed for ischemic stroke.
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Introduction

Inflammation plays a critical role in mediating 
post-ischemic injury. The activation of microg-
lia, the major resident immune cells in the 
brain, is a key element in triggering the innate 
immune response [1]. When ischemia occurs, 
cessation of cerebral blood flow leads to depri-
vation of oxygen and glucose to areas supplied 
by the occluded vessel. Resultantly, vulnerable 
neurons are subject to death and the endoge-
nous signaling that inhibits inflammatory 
responses under physiological conditions com-
promises, leading to microglial activation. Once 
activated, microglia develop macrophage-like 
capabilities including phagocytosis, cytokine 
production, antigen presentation and the 
release of matrix metalloproteinases (MMPs) 
that weaken the blood brain barrier (BBB) [2]. 
As a result, peripheral leukocytes infiltrate into 
the brain and the normally immune-privileged 
brain environment is exposed to systemic 
responses that further exacerbate inflamma-
tion and brain damage.

The inflammatory response has dual effects on 
ischemic injury [3]. Stroke-induced microglial 

activation causes release of a variety of inflam-
matory mediators many of which are cytotoxic 
and/or cytoprotective [4]. Phagocytosis of cel-
lular debris and harmful substances along with 
the release of anti-inflammatory cytokines by 
microglia occurs in an effort to restore tissue 
homeostasis by clearing pathogens or necrotic 
cells, and consequently attenuate the detri-
mental effects of inflammation and aid in tissue 
repair [5, 6]. Because of their critical roles in 
the immune response to stroke, microglia have 
become a recent target of interest for many 
stroke scientists. This review focuses on cur-
rent findings, providing an update on microglial 
activation, phenotype identification, and the 
roles of microglia in the pathophysiology of 
cerebral ischemia.

Origin and development of microglia

There has been much controversy over the 
characterization of the cell lineage of microglia. 
The most significant hypotheses of the develop-
ment of microglia debate their embryonic neu-
roectodermal or mesodermal origin. Unlike the 
ectodermal development of macroglia (astro-
cytes and oligodendrocytes) and neurons, a 
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consensus in favor of the mesodermal hemato-
poietic origin of microglia is currently held [7, 8]. 
A subset of primitive myeloid precursors, local-
ized in the extra-embryonic yolk sac (YS) at 
embryonic day 8 (E8) was shown to contribute 
to the rise of yolk sac microglia that persists 
into adulthood [9]. This cellular subset of primi-
tive hematopoiesis contributes little to blood 
leukocyte development, which is largely specif-
ic to definitive hematopoiesis of hematopoetic 
stem cells (HSCs) [9-11]. Microglia precursors 
originate in the embryonic yolk sac before the 
emergence of definitive HSCs from the aorto-
gonad-mesenephros (AGM). The direct precur-
sors of microglia that travel to the neural tube 
at E8 are exclusively the CD45-cKit+ cells. This 
subpopulation of erythromyeloid cells eventu-
ally begins expressing CX3CR1 and CD45 and 
travels into the neuroectoderm in a matrix 
metalloproteinase 8 (MMP 8) and MMP 9 
dependent manner to develop into microglia 
[12, 13]. These precursor cells are seen seed-
ing the brain rudiment by E10 in rodents [9] and 
have a full microglial morphology beginning at 
E14 [12].

The transcription factor Myb is essential for the 
development of HSCs [14, 15] and can be 
found in the AGM during embryogenesis [8, 
16]. By using Myb knockout (KO)mice, Schulz et 
al. [15] found that yolk sac-derived 
CD45+CX3CR1hiF4/80hi macrophages and 
microglia still develop in normal numbers and 
remain independent of Myb into adulthood; 
however, CD45+CX3CR1+F4/80lowCD11bhi mono- 
cytic phagocytes continually replaced by bone 
marrow (BM) in an adult are unable to develop 
without Myb. The transcription factor PU.1, on 
the other hand, is necessary for myelopoiesis 
of the YS but dispensable for the development 
of definitive HSCs [11, 15]. This further sug-
gests two separate myeloid lineages of periph-
eral macrophages and resident microglia.

Moreover, colony stimulating factor (CSF) and 
its receptor CSF-1R are necessary for the dif-
ferentiation of most macrophages/microglia 
[17]. Recent studies showed that in CSF-1R KO 
mice, yolk sac-derived microglia do not develop 
and are deficient throughout life, but HSC-
derived monocytes are able to differentiate and 
circulate without dependence on CSF-1R [8, 9, 
18]. Fate mapping analysis of Flt3-Cre x RosaLSL-

YFP mice also shows that yolk sac-derived 
microglia are independent of Flt3, a chemokine 

present on multipotent hematopoetic progeni-
tors in the blood and brain [15]. Taken together, 
the separation between HSCs and yolk sac der-
ivations is evident and allows insight into 
microglial ontogeny.

Markers and methods for identification

To date, no single microglial-specific marker 
has been identified, keeping the cell type indis-
tinguishable from macrophages and various 
myeloid-derived cells that infiltrate the brain 
during pathological states [19]. Changes in 
microglial activation in response to central ner-
vous system (CNS) injury are illustrated by 
diverse phenotypes and unique expression of 
cell surface proteins. Microglial activation stag-
es can be detected by characterizations of 
these changes, but the similarities with other 
cell types pose a major hurdle for their defini-
tive characterization and detection.

Ionized calcium binding adaptor molecule-1 
(Iba-1) expression by immunohistochemistry 
(IHC)

Iba-1 is amongst the most useful proteins for 
distinguishing microglia through IHC and immu-
nocytochemistry (ICC) staining [20, 21], espe-
cially for studies of cerebral ischemia where the 
expression of Iba-1 is upregulated [22] (Figure 
1). However, Iba-1 has also been shown to bind 
various cells of monocytic lineage [20], and 
thus its specificity for microglia staining is lim-
ited in injured brain tissue where peripheral 
macrophages may infiltrate. Other markers, 
such as CD11b, Isolectin (IB4), and F4/80, 
have also been used for in vivo and in vitro 
microglial staining. Although the benefits of IHC 
include the ability to create a spatiotemporal 
and morphological profile of microglia within 
the CNS, it lacks in specificity and may be 
inconsistent depending on the type of histologi-
cal preparation.

CD45/CD11b expression by flow cytometry

Flow cytometry provides a sensitive means to 
detect various markers and create a multipa-
rameter characterization of different cell types. 
In 1991, Sedgewick et al [23] observed differ-
ences in the expression of the hematopoietic 
cell surface marker CD45 on resident microglia 
and infiltrating peripheral leukocytes. To date, 
the most common characterization profile 
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derived from flow cytometry sorting still holds 
that resident microglial cells are CD45lowCD11b+, 
while infiltrating hematogenous myeloid cells 
are CD45highCD11b+ [24]. Experimental stroke 

studies with two photon imaging [25] and IHC 
[26] also demonstrated that infiltrating leuko-
cytes in the ischemic hemisphere showed a 
higher expression of CD45, whereas microglia 

Figure 1. Microglia activation and leukocyte infiltration in the ischemic brain. A. Representative brain slice stained 
with Iba-1 (red), GFP (green) and DAPI (blue) from a chimeric mouse after stroke (10x magnification). The chimeric 
mouse model was made by transferring GFP+ bone marrow of a donor mouse to an irradiated WT mouse. Eight 
weeks after reconstitution, the chimeric mouse was subjected to 90 min MCAO. The mouse was reperfused for 72 
hours before sacrifice. GFP+ cells represent bone marrow-derived peripheral leukocyte infiltrates. Green fluores-
cence is localized to the region of injured tissue in the striatum and cortex. B. 20x magnification of the box area in 
(A). The yellow arrow indicates a large Iba1+ ameboid microglia that does not colocalize with GFP+ bone marrow-
derived cells; the white arrow indicates a cell co-labeled with Iba-1 and GFP. C. Resting microglia morphology with 
thin, ramified processes in the non-injured brain hemisphere. 63x. D. Activated microglia with large, ameboid cell 
body in the ischemic cortex. 63x.
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had a fainter CD45 immunostaining, which is 
consistent with our flow cytometry data (Figure 
2). Although CD11chigh and CD14– have some-
times been used to label microglia in flow 
cytometry, their similarity in expression on 
other peripheral cell types makes it difficult to 
justify resident microglial specificity [24, 27].

There are, however, limitations to using variable 
levels of CD45 expression to distinguish 
between microglia and other monocyte/macro-
phage populations. CD45 on microglia can be 
upregulated in mouse models of EAE in spinal 
cord towards a CD45 high phenotype [28]. 
Inflammation in the periphery of humans may 
also upregulate CD45 in CNS resident microglia 
with no changes in CD11b expression [29]. The 
possible instability of this marker’s levels dur-
ing pathological states reiterates the need for a 
better method of tracking resident microglia 
and peripheral monocyte/macrophages.

Transgenic mice

A multitude of transgenic mice can also be 
used to label cell populations by attaching a 
fluorescent reporter to a myeloid promoter. For 
example, CD11b-GFP can label all cells of 
myeloid origin including microglia in the mouse 

brain [30]. Similarly, Iba-1-EGFP transgenic 
mice have shown successful fluorescent label-
ing of CNS microglia/macrophages in tissue 
samples [31]. More recently, a fluorescent 
knock-in transgenic mice line created using 
CX3CR1-GFP and CCR2-RFP has shown to be 
the most useful to the field to differentiate resi-
dent microglia from peripheral monocytes. It is 
now known that CCR2, though differentially 
expressed, is specific to the periphery in naïve 
and EAE mice [32], and unlike CD45, is not 
upregulated significantly in pathological states. 
In addition, fractalkine receptor (CX3CR1) is 
present on microglial progenitors in the yolk 
sac and, in the CNS, remains specific to microg-
lia into adulthood [13].

Studies using systemic and region-specific 
depletion of myeloid cells or macrophages can 
be done using DTR-CD11b transgenic mice. 
These mice have diphtheria toxin receptors 
(DTR) linked to the CD11b promoter. 
Administration of diphtheria toxin will deplete 
CD11b+ (myeloid) cells [30, 33]. Another com-
monly used technique to selectively ablate 
CD11b+ cells involves treating CD11b-HSV TK 
transgenic mice with injection of ganciclovir 
(GCV) [34]. Inducible death of CD11b+ cells has 

Figure 2. Representative flow cytometry plots of resident microglia and peripheral leukocytes in the mouse brain. In 
the brains of sham mice (left), CD45lowCD11b+ (box 1) and CD45highCD11b+ (box 2) cells were identified as resident 
microglia and peripheral leukocytes respectively. 72 hours after 90 min MCAO (right), both CD45lowCD11b+ and 
CD45highCD11b+ cells were increased in the brain.
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also be altered in uninjured and isch-
emic chimeric mice compared to 
nonchimeric mice in the hippocam-
pus and the cortex [41]. Changes in 
gene regulation with higher expres-
sion of proinflammatory cytokine 
and CCL2 can also accompany irra-
diation [38, 42]. These undesireable 
effects of irradiation pose a caveat 
to the technique. However, preven-
tive measures can be taken to study 
the brain using chimeras. For exam-
ple, targeted, instead of whole body 
irradiation using lead shielding of 
mouse heads is now often used in 
an effort to prevent damage or brain 
environmental changes due to radia-
tion exposure [36, 43].

Resting microglia

Resting phenotype

Resting microglia in a healthy brain, 
more representatively known as 
“surveying microglia”, are constantly 

more recently become a useful technique in 
the field.

Chimeras

Irradiation chimera models are a popular tech-
nique to differentiate microglia from peripheral 
myeloid cells since there is no exclusive anti-
genic marker [35]. To generate a BM chimera 
(Figure 1), BM cells of a mouse with ubiquitous-
ly expressing fluorescent (GFP+, YFP+, RFP+, etc) 
protein is extracted and injected into a mouse 
of interest whose own marrow is first irradiated 
and eliminated. After weeks to months of 
reconstitution of the new cell population, it is 
possible to track the origins of cells in CNS tis-
sue, particularly after neurological diseases, 
where cells from the periphery that cross the 
BBB have been labeled with fluorescence. BM 
chimeras can be performed with transgenic 
knockout or knockin mice to selectively target 
cells of the CNS or of the periphery. 
Unfortunately, the effects of irradiation are con-
founding and have been implicated in physio-
logical alterations such as weakening of the 
BBB, potential cell death and activation of 
microglia [36-40]. Though microglia are mostly 
radio-resistant, their numbers in the CNS may 

extending and retracting their thin ramified pro-
cesses in an effort to inspect the CNS microen-
vironment [44, 45] (Table 1). As the central 
macrophages of the brain, microglia are impli-
cated in controlling synapse number and 
remodeling in the developing brain, and func-
tion to prevent accumulation of debris in the 
healthy adult CNS. They are not present uni-
formly in the adult brain and express differenc-
es in location, protein expression, and morphol-
ogy [46]. Heterogeneity of morphology and 
location of microglia translates to differences 
in microglial responses to injuries and in activa-
tion states [47]. The majority of microglia are 
found in the gray matter and express more ram-
ified structure with radial branches than those 
found in the white matter with longitudinal pro-
cesses [46]. In the ischemic lesion induced by 
MCAO modeling, the penumbral area ( the bor-
der zone of dead and living tissue) showed 
highly ramified cells (resting), while the isch-
emic core housed amoeboid bodies with thick 
ramifications (activated) [25]. To conclude, 
resting microglia are not “sleeping”; instead 
they are poised to respond to stimuli resulting 
from disturbances in the CNS environment by 
drastically altering their phenotypes and 
functions.

Table 1. Phenotypes of microglia
Phenotype Identification Markers References
Resting State Iba-1 [21, 143]

CD45int CD11b+ [23, 24]
F4/80 [46, 144]
Isolectin (IB4) [145]

Classical Activation (M1) MHCII [28, 45, 146]
CD16 (FcγR III) [147, 148]
CD 32 (FcγR II) [147]

[149, 150]
CD80 (B7-1) [149, 150]
CD86 (B7-2) [151]
CD40 (TNFR)

Alternative Activation (M2) Arg-1 [152]
CD68 (ED1) [153]
Fizz1 (Relmα) [152, 154]
Ym-1 [152, 154]
CD206 (MR) [155, 156]
Dectin-1 [155]

MHC, major histocompatibility complex; Arg, arginase; TNFR, tumor ne-
crosis factor receptor; Fizz1, resting-like molecule alpha; MR, mannose 
receptor.
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Inhibitory signaling of microglia

In the healthy brain, microglia express numer-
ous inhibitory proteins, and interact with neu-
rons to form a “brake” on inflammation [48]. 
The endogenous mechanisms in the form of 
neuronal-glial interactions may prevent exces-
sive microglial activation in the CNS. Following 
injury, these interactions may be disrupted due 
to neuronal cell death and structural tissue 
damage. Regulating these inhibitions to keep 
microglia from acquiring a proinflammatory 
phenotype has been shown to prevent uncon-
trolled damage in models of Alzheimers Disease 
(AD), multiple sclerosis (MS), and neurodegen-
eration [49-53]. Similarly, regulation of these 
inhibitory proteins may also have beneficial 
effects on ischemic stroke.

CD200/CD200R1: CD200 is a transmembrane 
glycoprotein mainly expressed on neurons [54, 
55]. The cell-cell contact between CD200 and 
its receptor (CD200R1), expressed on the sur-
face of all myeloid origin cells, provides microg-
lia with stability to remain in a resting state 
under normal CNS conditions [56, 57]. Cleavage 
of this interaction and subsequent microglial 
activation leads to the upregulation of proin-
flammatory cytokines and an inflammatory pro-
file [54]. Increased tissue damage was related 
to a decrease of CD200 level in mouse models 
of EAE, suggesting a detrimental effect of the 
activated microglia unbound from CD200/
CD200R1 interaction [58]. Aging is also associ-
ated with a reduced level of CD200 and long-
term potentiation (LTP), as well as an increased 
microglial activation in the brain; however, 
treatment of CD200R1 agonist (CD200Fc) can 
attenuate the LTP deficit and ameliorate 
microglial activation, even after Lipopoly- 
saccharide (LPS) stimulation [59]. Little is 
known about the role of CD200/CD200R1 sig-
naling in ischemic stroke, but a primarily 
descriptive study of CD200 on Iba+ cells showed 
a decrease in gene transcripts of CD200 in the 
ischemic hemisphere [60].

Fractalkine (CX3CL1)/CX3CR1: Much like the 
immunoglobulin superfamily member 
CD200R1, fractalkine receptor (CX3CR1) on 
microglia can bind the soluble and membrane 
bound forms of CX3CL1, to keep microglia qui-
escent [61]. However, under injury, neurons sig-
nificantly decrease CX3CL1 release thereby 

enabling microglial activation [62]. Loss of this 
contact has been shown to be neurotoxic in 
many disease models including Parkinson’s 
disease and ALS by exacerbating neuronal loss 
[50]. Similarly, LPS stimulation of microglia on 
CX3CR1(-/-) mice leads to greater IL1-β secretion 
compared to CX3CR1(+/-) mice [50].

However, the effect of CX3CL1/CX3CR1 signal-
ing in neuroinflammation is controversial as 
deleterious roles for the CX3CL1/CX3CR1 pair 
were reported in rodent models of AD and cere-
bral ischemia [51, 52]. Twenty four hours after 
a transient MCAO, CX3CR1(gfp/gfp) mice (GFP is 
inserted into both alleles of the CX3CR1 locus) 
were noted to have less severe cerebral infarct 
volumes than WT mice, possibly associated 
with a coinciding decrease in IL-1β and TNF-α 
gene transcripts [63], as in the case of fractal-
kine knockout mice [64]. Similar results were 
seen in a recent study by Ciprani et al with a 
pMCAO model in CX3CL1-/- and CX3CR1(gfp/gfp) 

rodents, both of which showed less severe 
ischemic damage than WT mice [52]. 
Furthermore, CX3CL1-/- animals have increased 
damage after ischemia with exogenous intra-
cerebroventricular CX3CL1 administration. 
Interestingly, WT rodents show less severe 
infarct volumes and better functional outcomes 
with the addition of CX3CL1 in a dose depen-
dent manner [52]. The disparity in the effect of 
exogenous CX3CL1 between KO and WT ani-
mals suggests that CX3CL1 may be protective 
only when microglia exhibited a normal consti-
tutive CX3CR1-mediated signaling throughout 
development in the WT brain [52].

SIRPα/CD47: Signal-regulatory protein alpha 
(SIRPα), expressed on myeloid cells including 
microglia, binds integrin associated protein 
CD47 on neurons to activate an intracellular 
immunotyrosine inhibitory motif [65, 66], keep-
ing microglia silenced and thereby suppressing 
phagocytosis [67, 68]. Human MS lesions have 
shown a decrease in CD47 expression [53], 
though little is known to date about the role of 
CD47 and SIRPα in ischemia specifically. A 
reduction of infarct was seen 24 and 72 hours 
after 90 min MCAO in CD47 knockout mice, 
potentially due to a decrease in peripheral 
inflammatory cell infiltration [69]. Wang et al 
recently also reported a reduction of infarct 
and improvement of behavior deficit after tran-
sient MCAO in SIRPα mutant mice [70].
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Triggering receptor expressed on myeloid cells 
2 (TREM2): The neuronal-microglial connection 
of heat shock protein 60 (HSP60)-TREM2 is 
important for the clearance of apoptotic neu-
rons by microglial phagocytosis [71]. Microglia, 
via its intracellular adaptor protein DAP12, pre-
vent the release of proinflammatory cytokines 
and maintain an anti-inflammatory microglial 
profile [72, 73]. In EAE, mice lacking TREM-2 by 
antibody blockage suffered worse pathology, 
but are rescued with greater recovery and tis-
sue repair by injection of myeloid cells express-
ing TREM-2 [73]. Contrarily, TREM-2 KO mice 
showed a decrease in amoeboid Iba1+ and 
CD68+ microglial activation and an overall 
decreased inflammatory response 7 days post-
reperfusion after a 30 minute MCAO model 
that did not translate into a decreased infarct 

volume [74]. The inhibitory effect of TREM-2 on 
microglial activation following stroke is still 
uncertain at this time.

Activation of microglia

A commonly held assertion is that distinct acti-
vation states (based on protein expression sig-
natures) impart defined functional roles of 
microglia and may account for heterogenic 
responses to CNS injury. These activation 
states are generally described in terms of the 
class of activating signals and selectively 
induced expression of unique markers. 
Microglia can change patterns of migration, cell 
surface protein expression, and functions in 
response to tissue damage or dysfunction 
(Figure 3). The rapid responses to altered 

Figure 3. Schematic of Microglia Activation after Ischemic Brain Injury. In the ischemic brain, microglia display 
prominent changes in morphology associated with various functional states. Activation results in upregulation of 
transcriptional machinery which serves to increase the production of inflammatory mediators. In response to che-
motaxic factors (e.g. ATP, etc.), microglia can migrate to sites of ischemic tissue injury to increase phagocytic uptake 
of cellular debris and cytotoxic substances. Depending on their activation state, microglia may promote a proinflam-
matory environment (via M1 activation) or regenerative milieu (via M2 activation). IGF-1: Insulin like growth factor 
1; IL-1β: interleukin 1 beta; IL-6: interleukin 6; IL-10: interleukin 10; MG, microglia; ROS: reactive oxidative species; 
TGFβ: Transforming growth factor beta; TNFα: Tumor necrosis factor alpha.
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homeostasis of the brain parenchyma can be 
visualized in two photon imaging to show imme-
diate (within minutes) increase in the motility of 
microglial processes towards area of injury in a 
chemical gradient dependent manner, while 
the cell bodies remain stationary [44, 45]. In 
vivo data suggest that ATP signaling of P2Y12 
receptors on the cell surface is responsible for 
such extensions and directional guidance [44, 
75, 76].

Microglial activation phenotypes: M1 and M2

Changes in microglial phenotype during activa-
tion may be analogous to that of peripheral 
macrophages, as the two cell types are indistin-
guishable without definitive surface markers 
for either. Microglial responses to stimuli from a 
changing brain environment are characterized 
as either M1, classical activation, or M2, alter-
native activation (Table 1). M1 is a proinflam-
matory cellular state associated with an 
increase in protein synthesis of pro-inflamma-
tory mediators (IFNγ, Il-1β, TNFα, Il-6, CXCL10, 
etc.), ROS and NO production, and proteolytic 
enzymes (MMP 9, MMP3) that act on the extra-
cellular matrix leading to BBB breakdown [77, 
78]. M1 phenotype can lead to increased neu-
ronal death compared to alternatively activated 
M2 microglia [79]; therefore, there is a growing 
interest to pharmacologically interfere with the 
signaling mechanisms that give rise to the clas-
sical activation phenotype of microglia. M2 
microglia release anti-inflammatory mediators 
(IL-10, TGF-β, IL-4, IL-13, IGF-1, etc.) [80], lead-
ing to enhanced expression of genes associat-
ed with inflammation resolution, scavenging, 
and homeostasis [77, 81-83]. Levels of IL-10, 
TGF-β and CD206 mRNA increased as early as 
day 1 after ischemic injury and peaked at 4-6 
days. In addition, TGF-β released by microglia 
promotes an anti-inflammatory profile associ-
ated with increased proliferation and neuropro-
tection in the ischemic brain [84]. This may be 
therapeutically relevant because TGF-β1 is spe-
cifically found in the salvageable peri-infarcted 
region of the cortex 24 hours after a 60 min 
MCAO and involved in distinct spatiotemporally 
regulated inflammatory and neuroprotective 
processes [85].

During disease progression and in normal age-
ing, microglial activation phenotypes can switch 
from M2 to M1 [86]. One recent study suggests 
that microglia are activated early after MCAO 

and morph into a reactive M1 phenotype by 7 
days [79]. The balance between the M1 and M2 
states is dynamic in inflammatory responses 
and may be offset in chronic disease states 
such as stroke, representing a novel mechanis-
tic target for therapy [77]. Several proteins have 
been identified as markers for M1 or M2. MHC 
II, implicated in antigen presentation as an 
immune reaction, is upregulated on classically 
activated microglia, and is commonly used as a 
marker for M1 [28]. The alternatively activated 
M2 cells up-regulate presentation of several 
antigens. Ym-1 (Chitinase 3-like 3), for example, 
has been found to be associated with the pro-
tective, pre-phagocytic state of macrophages 
after ischemia [25]. Some of Ym-1+ cells co-
express CD206 (mannose receptor), which is 
another marker for M2 activation known to be 
involved in antigen internalization and process-
ing [25]. CD68 (macrosialin) glycoprotein is 
another accepted marker for phagocytotic cells 
and is often used to distinguish the M2 debris 
clearing state of microglia [25]. Stroke-induced 
changes in the expression of specific cell sur-
face proteins probably reflect a continuum of 
the microglial activation spectrum. There is a 
growing need to identify subpopulations of M1/
M2 microglia versus those of peripheral myeloid 
cells and the relative percentages of each over 
time to determine the overall functional contri-
bution to stroke injury.

Migration

Microglia, as the first immune responders in 
the CNS, migrate to areas of injury through 
detection of chemoattractant gradients to sub-
sequently phagocytize debris in damaged tis-
sue, neutrophils, and apoptotic cells that have 
the potential to release damaging molecules 
[44, 87, 88]. CX3CL1 and ATP released from 
dying neurons can act on microglial receptors 
to induce chemotaxis. In addition, monocyte 
chemotactic protein-1 (MCP-1, CCL2) is a che-
mokine expressed both in the brain and in 
some peripheral organs that can induce migra-
tion of leukocytes and macrophages/microglia 
to the ischemic area [89, 90]. After MCAO, 
MCP-1 expression increases at injured region 
and peaks at 2-3 days [91] when monocytes/
macrophages also start to peak in the ischemic 
brain [92]. Transgenic CCL2 knockout mice 
show decreased ischemic injury [93], suggest-
ing that the recruitment of monocytes/macro-
phages to the injured area may be detrimental 
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and that therapies designed to block the migra-
tion of leukocytes may have translational value. 
Microglia at the border region of the infarct, 
“penumbral” microglia, may be the major target 
of therapy given their large numbers, and acti-
vated status after stroke [94]. Unlike microglia 
of the ischemic core, which appear to be dying 
with increased disease severity, penumbral 
microglia are presumably living and highly acti-
vated [47]. This suggests a regional target of 
interest to deliver treatments.

Phagocytosis by microglia and macrophages

As the primary phagocytes in the brain, activat-
ed microglia phagocytize and uptake damaging 
components in an effort to reestablish homeo-
stasis after insults [5]. Microglial phagocytosis 
of neuronal cells begins early even before 
peripheral macrophages infiltrate into the brain 
after stroke [95]. These phagocytotic cells were 
seen interacting with neurons and show neuron 
engulfment in the ischemic brain. CD68 is a 
commonly used marker of macrophage phago-
cytosis and is expressed as early as 6h after 
pMCAO on ramified CD11b+ cells in the penum-
bra, and continues to increase later in the 
hypertrophic ameboid cells of the ischemic 
core [25]. However, this phagocytosis marker 
can be expressed on both the resident and infil-
trating phagocytes, and therefore may not be 
exclusive to microglia [25].

Phagocytosis is able to attenuate inflammation 
but can also be implicated in neuronal damage. 
A recent study of primary microglial cultures 
assessed the sequence of events from microg-
lial activation to the phagocytosis of neurons 
[96]. Production of peroxynitrite during a 
microglial immune response to TLR4 and TLR2 
activation leads neurons to externalize phos-
phatidylserine on the outer membrane to act as 
an “eat me” signal to elicit phagocytosis. 
Interestingly, inhibition of this process at any 
stage not only leads to the decrease in phago-
cytosis of the neurons, as would be suspected, 
but also prevents 90% of neuronal cell death 
[96]. The potential for microglia to phagocytize 
viable neurons illustrates the importance of 
microglial modulation in ischemic stroke [96].

Purinergic receptors

Purinergic receptors (P2X7, etc.) are upregulat-
ed on microglia in the periinfarct region of injury 

[97] and have been shown to interact with ATP 
that is accumulated extracellularly in the isch-
emic brain [98], subsequently leading to 
microglial activation [99]. Activation of these 
receptors leads to cell death [100] and the 
prominent release of proinflammatory cytokine 
IL-1β through caspase-1 pathway [101]. ATP 
leaked from dying neuronal cells and released 
by astrocytes [44, 102] can act as a chemoat-
tractant on microglia by interacting with P2Y12 
receptor [103]; the microglia attracted to sites 
of ischemic injury can further amplify activation 
by autocrine signaling of ATP [104]. This posi-
tive feedback loop leads to increased prolifera-
tion and secretion of IL-1β, TNF-α, and ROS 
[99], and exacerbates inflammatory responses. 
Blocking P2X7 receptors was shown to improve 
behavior deficits in a model of transient global 
ischemia where decreases in microglial activa-
tion and proinflammatory cytokines (TNF-α, IL1-
β, and IL-6) were noted [105]. A nonselective P2 
blocker, Reactive Blue 2, was shown to reduce 
infarction in a focal pMCAO model. However, 
P2X7 receptors are also expressed on neurons 
and astrocytes. Therefore, the function may not 
be solely attributed to microglia [106].

Toll like receptor (TLR)

The stroke-induced innate immune response is 
also associated with the release of various 
damage associated molecular patterns 
(DAMPs), which can further activate pattern 
recognition receptors (PRRs), including mem-
bers of the TLR family on microglia [107, 108]. 
TLRs are important in innate immunity in both 
the central and peripheral systems. TLR4 is the 
prominent LPS receptor that can lead to activa-
tion of LPS-responsive cells, such as mono-
cytes and macrophages, and subsequently 
causes upregulation of proinflammatory genes 
via NFκB signaling [109]. The most prominent 
TLRs on microglia are TLR4 and TLR2, both of 
which are upregulated after ischemia [108, 
110-113]. TLR4 deficient mice have smaller 
infarct sizes, better neurological scores and 
decreased downstream NFκB signaling in 
experimental stroke studies [112, 114]. Recent 
studies have shown that CNS preconditioning 
with TLR4 agonist can lead to tolerance, elicit-
ing a diminished proinflammatory response 
with subsequent less ischemic injury [115, 
116]. Although there has been controversy as 
to the role of TLR2 deficiency in cerebral isch-
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emia, recent studies have shown an exacerba-
tion of injury in TLR2 KO mice [108, 111, 117]. 
Some endogenous ligands of TLRs have recent-
ly been identified. Purines and peroxiredoxin 
(prx) released to the extracellular space from 
dying cells can bind TLRs on macrophages and 
produce proinflammatory cytokines IL-23 and 
IL-17 [118]. Heat shock proteins (HSP) and High 
mobility group box 1 (HMGB1) are other endog-
enous ligands for TLRs that result in upregula-
tion of NOS and proinflammatory cytokines 
(TNF-α, IL-6, and IL-1β) [119, 120].

Functional insights of resident microglia and 
peripheral macrophages

Microglial proliferation and renewal

There is evidence that activated microglia are 
proliferative in the ischemic brain. Using car-
boxyfluorescein diacetate succinimidyl ester 
(CSFE) to intracellularly label peripheral cells 
before a 30-60 min MCAO, one study found 
higher amounts of BrdU+Iba1+CSFE- colabeling 
microglia after stroke indicating increased pro-
liferation [88]. Interestingly, accumulating data 
show microglial proliferation is beneficial after 
ischemia. In vitro studies have shown that 
increased microglial proliferation by stimula-
tion of CSF-1R, which is upregulated in isch-
emia, is neuroprotective [28, 121]. An in vivo 
study also showed that defective microglial pro-
liferation was associated with significant 
increase in the size of ischemic lesion and a 
2-fold increase in the number of apoptotic neu-
rons [122].

In addition to microglia, choroid plexus macro-
phages, perivascular macrophages, and menin-
geal macrophages inhabit various regions 
around the CNS [123]. This heterogeneous 
population of tissue macrophages is continu-
ously replenished by circulating and peripheral 
monocytes, unlike microglia that are largely 
thought to be resident in the adult CNS from 
early development [38, 124, 125]. Theories of 
another wave of microglial establishment post-
embryonic from peripheral monocytic precurs-
ers that last into adulthood are part of an ongo-
ing debate [38, 126]. It is uncertain whether 
these monocytic precursors become integrated 
into the microglial population or remain bone 
marrow-derived monocytes. Nevertheless, 
Varvel et al. [127] suggest yet another mode of 

microglial replacement apart from proliferation 
exists in the adult brain. They ablated microglia 
using intracerebroventricular ganciclovir treat-
ment in Tk+/Ccr2+/rfp mice and found abundant 
levels of CD45high monocytes in neocortical 
areas of microglial depletion before engraft-
ment. In addition, there were increased levels 
of Ccr2 RFP expression which returned to nor-
mal levels after engraftment. These infiltrating 
cells of monocytic origin are morphologically 
similar to microglia and functionally active in 
surveying the microenvironment of the brain, 
without changes in number over time [127]. It’s 
possible that a population of dying microglia in 
the ischemic brain could be replenished by 
peripheral monocyte/macrophages infiltrating 
into the injured region and downregulating 
CCR2 and CD45 to morph into microglia. The 
topic of microglial renewal and proliferation, 
however, is still controversial.

MMPS

Macrophages, including microglia, are major 
contributors to the release of MMPs (mainly 
MMP3 and MMP9) which are responsible for 
the breakdown of the extracellular matrix and 
the BBB after ischemia [88, 128]. MMP-3 and 
MMP-9 knockout mice were shown to suffer 
less neuronal injury after an ischemic episode 
[129, 130]. Since MMP-9 can be derived from 
both brain and peripheral immune cells, its ori-
gin after ischemia has been debated. Recently, 
chimeric studies showed that the increased 
damage from MMP-9 toxicity in the ischemic 
brain are attributed to bone marrow cells as 
opposed to resident microglia [130, 131]. This 
suggests that infiltrating monocytes/macro-
phages can also release MMPs and modulate 
their own entry into the CNS by weakening BBB.

TNF

TNF-α can be released from both microglia and 
peripheral leukocytes. TNF-α has been largely 
regarded as neurotoxic [132]; however, chime-
ric studies have found that TNF-α produced 
locally by resident brain microglia (but not by 
peripheral macrophages and leukocytes) exert-
ed neuroprotection in pMCAO model via TNF-
p55 signaling [133]. The disparity in implica-
tions may be attributed to different signaling 
mechanisms between the neuroprotective 
TNF-p55 and neurotoxic TNF-p75 pathways 
[134].
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iNOS

Local accumulation of nitric oxide (NO) is also 
involved in the inflammatory cascade after 
cerebral ischemia [135]. Equipped with induc-
ible nitric oxide synthase (iNOS), M1 microglia 
are partially responsible for the changes in 
expression level of NO. The role of iNOS in isch-
emia is inconsistent in literature as both pro-
tective and deleterious roles have been report-
ed [136-138]. Pruss et al [139] found that in 
chimeric iNOS-deficient mice transplanted with 
WT bone marrow (BM) cells and wild-type mice 
transplanted with iNOS-deficient BM cells, no 
difference in cerebral iNOS expression or in 
infarct volumes can be seen between the chi-
meric animals after MCAO, suggesting iNOS 
from microglia and peripheral myeloid cells 
may not be a significant regulator of ischemic 
injury.

Peroxiredoxin

The peroxiredoxin family of proteins (Prxs) are 
intracellular antioxidant enzymes that are 
needed for cell survival in the brain [140, 141] . 
However, once released from necrotic brain 
cells, extracellular Prxs promote neural cell 
death in ischemia by inducing expression of 
inflammatory cytokines including IL-23 in mac-
rophages [118]. This study also utilized chime-
ric mice models and further showed that the 
infiltrating bone marrow-derived macrophages 
but not the resident microglia, are responsible 
for increased ischemic volume and inflamma-
tory response triggered by Prxs release [118]. 
In addition, they found that neutralization of the 
released extracellular Prxs with a prx antibody 
is protective.

Summary

Despite more than one century of research 
since they were first investigated by Rio Del 
Hortega [142], “the father of microglia”, the 
precise role of microglia is still shrouded in 
mystery due to a current lack of tools and fun-
damental understanding of the heterogeneity 
of their observed activation spectrum. The 
nature of the microglial response to stroke is 
multi-faceted and complicated by the aggre-
gate immune response. The significance of the 
local and systemic inflammatory response as 
well as the interplay between the two is widely 
argued. While many studies suggested that 

anti-inflammatory agents confer neuroprotec-
tion following ischemic brain injury, others 
pointed to a requirement for pro-inflammatory 
cytokines and leukocyte activation in orches-
trating repair. Enhancing repair may be possible 
by targeting distinct populations of microglia 
with special attention to temporal and spatial 
specific therapeutic intervention in ischemic 
stroke and other neurological disorders. There 
is room for improvements of methods for better 
identification and manipulation of microglia. 
The roles of microglia in stroke-induced inflam-
matory responses merit further investigation, 
in hope that fine-tuning immunomodulatory 
therapies could be available to avoid the dele-
terious effects of total immunosuppression 
and the possible detrimental effects of chronic 
microglial inhibition.
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