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hyperalgesia in Sprague-Dawley rats
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Abstract: The mechanisms of hyperalgesia in alcoholics are not completely clear, and the development of animal 
models would therefore be necessary in investigating the underlying changes. Several studies including our own 
have demonstrated that the intermittent access to 20% ethanol two-bottle choice procedure (IA2BC) promotes 
escalation of drinking, and induces physical dependence in the Sprague-Dawley (SD) rat, one of the strains most 
commonly used in preclinical alcohol research. In this study, we investigated whether the IA2BC procedure could 
produce hyperalgesia in SD rats. We show here that, the SD rats in the IA2BC procedure significantly escalated their 
drinking within 8 weeks, which is consistent with other studies. Starting from 8 weeks of repeated chronic drinking, 
the mechanical and thermal sensitivity was significantly increased. During withdrawal, there were noticeable physi-
cal dependence signs, including tail stiffness and lower limb flexion, which started at 4 hours and lasted for more 
than 3 days after ethanol removal. Importantly, during withdrawal, the mechanical and thermal sensitivity was fur-
ther increased, which started at 12 hours and lasted for more than seven days after ethanol removal. These results 
suggest that utilizing the SD rat under the IA2BC procedure could be a useful animal model with heuristic value for 
exploring the mechanisms underlying hyperalgesia induced by chronic alcohol abuse. 
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Introduction

Each year, an estimated 116 million Americans 
suffer from persistent pain arising from a vari-
ety of sources [1]. Previous clinical and preclini-
cal studies have found that excessive chronic 
alcohol exposure and withdrawal from it 
increases the sensitivity to noxious stimuli, or 
hyperalgesia [2-6]. However, the mechanisms 
underlying this hyperalgesia are not completely 
clear, and the development of animal models 
would therefore be useful in investigating the 
underlying changes. A better understanding of 
these changes would enable possible molecu-
lar and therapeutic interventions in order to 
prevent the development of alcoholism.

In order to mimic the progressive transition 
from low to moderate alcohol consumption to 
excessive alcohol consumption in alcoholics, 
many studies examining self-administration of 
ethanol in rodents have employed the oral 
route, using operant self-administration and 

intermittent access 2-bottle choice procedures 
(IA2BC), as a partial model of alcoholism in 
humans [7, 8]. The IA2BC procedure consists of 
repeated cycles of drinking and abstinence, 
leading to a more rapid escalation in ethanol 
intake than the continuous access program 
[9-12]. Rodents in the IA2BC procedure can reli-
ably drink alcohol to pharmacologically relevant 
levels [13, 14].

The Sprague-Dawley (SD) rat is one of the 
strains most commonly used in preclinical alco-
hol research. However, unlike Long-Evans and 
Wistar rats or other alcohol-preferring rats that 
usually drink higher levels of ethanol, SD rats 
usually drink low to moderate levels [15, 16]. 
Recently, several studies including our own 
have found that SD rats with the IA2BC proce-
dure could drink excessive amounts of ethanol 
[10, 17, 18] and show signs of physical depen-
dence characterized in distal limb flexion 
response, tail stiffness and abnormal body pos-
ture during alcohol withdrawal [18]. This obser-
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vation suggests that the full potential of SD rats 
in studies examining voluntary ethanol con-
sumption has yet to be realized [17]. 

However, it is unclear whether the IA2BC para-
digm would affect the pain threshold in SD rats. 
Among a number of different methods for 
assessing alteration of pain threshold, the paw-
withdrawal assay is one of the most common 
tests [19]. In the current study, we examined 
the effect of ethanol on pain thresholds in SD 
rats trained with the IA2BC procedure. 

Material and method

Animals and housing

All animal handling procedures were approved 
by the Institutional Animal Care and Use 
Committee (IACUC) of New Jersey Medical 
School at Rutgers University and were conduct-
ed according to specifications of the NIH as out-
lined in the Guide for the care and Use of 
Laboratory Animals. Experiments were done on 
adult male SD rats (Taconic Farm, NY, 250-350 
g at the start of the experiments). The rats were 
individually housed in ventilated Plexiglas 
cages and were kept on a 12-hour light/dark 
cycle: lights on at 07:00 p.m., in a climate-con-
trolled room (20-22°C). Food and water were 
available ad libitum unless as indicated. 

Intermittent access to 20% ethanol in a 
2-bottle choice procedure (IA2BC) 

We used the IA2BC as described previously 
[10]. Briefly, after acclimation to the homecage 
environment, all animals had 24-hour concur-
rent access to two bottles, one with 20% etha-
nol (v/v) and another with water, starting on 
Monday afternoon. After 24 hours, the ethanol 
bottle was replaced with a second water bottle 
that was available for the next 24 hours. This 
pattern was repeated on Wednesdays and 
Fridays. On all other days the rats had unlimited 
access to two bottles of water. In each ethanol 
drinking session, the placement of the ethanol 
bottle was alternated to control for side prefer-
ences. Rats under this paradigm escalated 
their ethanol intake and preference [10]. 
Animals in the control group were allowed 
access to water and food without limitation. 
The mean body weight was 305 ± 11 g at the 
start of the experiments when rats were approx-
imately 3 months old and 461 ± 16 g after 2 
months’ chronic ethanol consumption. There 

was no significant difference in body weight 
between the control and the ethanol-drinking 
rats at the end of the experiments.

Mechanical and thermal pain test

To determine whether chronic ethanol con-
sumption could alter sensory sensitivity, we 
measured the paw withdrawal threshold (PWT) 
in response to mechanical or paw withdrawal 
latency (PWL) to thermal stimuli in a double-
blinded manner. We first measured the base-
line before the rats were exposed to ethanol by 
taking the mean value of 5 continuous readings 
of the PWT or PWL. We then measured the PWT 
or PWL in rats after 4, 8 or 12 weeks of ethanol 
exposure in the IA2BC program (at the end of 
the 12th, 24th or 36th drinking session). To 
overcome the possible effect of increasing 
body weight on weight on PWT and PWL, con-
trol tests were performed on 25 age-matched 
ethanol naïve SD rats at each time point. 

To determine the effect of withdrawal from 
chronic ethanol consumption, we measured 
the PWT or PWL on rats during a 1-week with-
drawal period after 12 weeks of alcohol drink-
ing, at the following time points: immediately (0 
h) and 12 h, 1 d, 3 d and 7 d after the ethanol 
bottles were removed. The rats were intro-
duced to the testing room immediately after 
ethanol bottle removal.

In the testing room, after at least 30 min accli-
mation on an elevated mesh screen, an experi-
menter who was blinded to the treatment of 
each group measured the PWT, as described 
[20]. Briefly, the unrestrained rat was placed in 
a Plexiglas chamber on an elevated mesh 
screen. A series of von Frey hairs in log incre-
ments of force (0.41, 0.69, 1.20, 2.04, 3.63, 
5.50, 8.51, 15.14 g) were applied perpendicu-
larly to the plantar surface of the hind paw for 3 
s. The 2.041-g stimulus was applied first. A 
sharp withdrawal of the hind paw indicated a 
positive response. If a positive response 
occurred, the next smaller von Frey hair was 
used; if a negative response was observed, the 
next larger von Frey hair was used. The test 
ended when (1) a negative response was 
obtained with the 15.14-g hair and (2) 3 stimuli 
were applied after the first positive response. 
The PWT was determined by converting the pat-
tern of positive and negative responses to the 
von Frey filament stimulation to a 50% thresh-
old value with the formula provided by Dixon et 
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al [21]. The 50% PWT was determined by the 
formula Xf + kð, where Xf = last von Frey fila-
ment employed, k = Dixon value corresponding 
to response pattern, and ð = mean difference 
between stimuli. Baseline mechanical nocicep-
tive thresholds were similar to those reported 
for the ages of rats employed in this study [20].

The PWL to thermal stimuli was conducted as 
previously described [22], by applying radiant 
heat (Model 336 Analgesia Meter, IITC Life 
Science, Woodland Hills, CA) by aiming a beam 
of light from the light box through the glass 
plate to the middle of the plantar surface of the 
right and left hind paws. When the animal lifted 
its foot, the light beam was shut off and the 
PWL was recorded. The PWL is defined as the 
length of time between the start of the light 
beam and the lift of the hind paw. Each trial 
was repeated five times for each paw. To avoid 
tissue damage, a 20 second cut-off time was 
used.

Evaluation of physical signs of ethanol with-
drawal

At the end of the 36th ethanol drinking session 
(12 weeks), the ethanol bottle was removed 
while the food and water were available ad libi-
tum for one week. We measured the physical 
signs of ethanol withdrawal from 4 hours to 7 
days after alcohol removal as previously 
described [10]. On the test day, the rats were 
gently transferred from the homecage to an 
empty table and carefully observed for 3 min. 
All disturbing voices or movements were avoid-
ed during the observation. The criterion for 
each physical sign is as follows:

Tail stiffness: the observer gently slid the mid-
dle and index fingers on the ventral surface of 
the rostral end of the tail of the rat towards the 
caudal end of the tail and observed the follow-
ing signs: A score of 0 showed that the tail laid 
flat on the ground or was very lowly suspended 
and there was no resistance with touch. A score 
of 1 showed the tail medially suspended, with 
increased muscle tone when touching the tail 
or the tip of the tail wrapped around the observ-
er’s finger. A score of 2 showed the tail com-
pletely suspended in the air and with touch was 
rigid with no flexibility, along with the wrapping 
of the tip of the tail around the observer’s 
finger.

Limb flexion: each rat was gently grasped by 
the scruff of their neck and observed for retrac-

tion of the hind limbs from the body. A score of 
0 showed the abduction of the hip joint and 
knee joint, with straight hind legs and paws. A 
score of 1 showed hind legs parallel to the 
ground with hind legs and ankles bent and 
abduction of the paws. A score of 2 was compa-
rable to the score of 1 with the addition of the 
hind paws being upright with digits facing the 
head (typically the feet would be retracted to 
the abdominal surface). 

Gait: observing the movement of rats assessed 
gait. A score of 0 was given to rats that showed 
a normal scurrying, which was directly com-
pared to control rats. A score of 1 was given to 
rats with a slower movement accompanied by 
stumbling. A score of 2 was given to rats that 
were not mobile. 

For each of the three physical signs, a subjec-
tive 0-2 point scale was utilized as follows: a 
score of 0 for undetectable withdrawal, 1 for 
moderately severe withdrawal and 2 for severe 
withdrawal. Summing the scores for all three 
signs and yielding a range from 0 to 6 deter-
mined the score of each rat. The same investi-
gator, blind to the treatments, did the rating of 
physical signs in order to minimize experimen-
tal bias.

Statistical analysis

Statistical analysis was performed using 
SigmaPlot 12.5 (Systat Software Inc, San Jose, 
CA). All data are expressed as mean ± S.E.M. 
(standard error of the mean). The ethanol drink-
ing data was analyzed using a one-way repeat-
ed measure ANOVA (RM ANOVA), followed by a 
Bonferroni or Tukey test for post hoc compari-
son. Comparisons of the EWS score and PWT or 
PWL tested among naïve control and IA2BC 
groups at different time points were performed 
using two-way ANOVA followed by a post hoc 
Bonferroni test. Significance was set at P < 
0.05.

Results

The intermittent-access to 20% ethanol 
2-bottle-choice paradigm (IA2BC) resulted in 
excessive ethanol consumption in SD rats

We first examined the intake of and the prefer-
ence for ethanol of SD rats under the IA2BC 
paradigm. In keeping with our previous report 
[23], SD rats under this paradigm significantly 
escalated their ethanol intake (F(36, 30) = 2.941, 
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P < 0.001, n = 30, Figure 1A). The ethanol 
intake reached a stable level of 4.38 ± 0.36 g/
kg/24 h following the 25th drinking session. 
Thereafter the ethanol intake did not signifi-
cantly increase. The elevation in ethanol intake 
was paralleled by a significant increase in pref-
erence for ethanol (F(36, 30) = 9.69, P < 0.001, n 
= 30, Figure 1B). Additionally, there was a sig-
nificant decrease in water intake on the days 
when ethanol was presented (F(36, 30) = 5.867, P 
< 0.001, n = 30, Figure 1C). Notably, there was 
no significant difference in the total fluid intake 
during all the training sessions (F(36, 30) = 1.116, 
P = 0.294, n = 30, Figure 1D). Five rats, which 
drank less than 3 g/kg of ethanol in 24 hours 
by the end of the 25th session, were excluded 
from further study.

Physical dependence induced by withdrawal 
from chronic alcohol consumption

We next characterized the physical depen-
dence signs during one-week ethanol removal 

in rats that had been in the IA2BC paradigm for 
12 weeks. As shown in Figure 2A-D, compared 
with the alcohol naïve counterparts, the SD rats 
in the IA2BC procedure presented a significant-
ly higher physical withdrawal score, which start-
ed at 4 h, peaked at 12 h and last for more than 
3 d after alcohol removal (F(1, 48) = 111.493, P < 
0.001, n = 25 rats for each group). A main 
effect of time (F(1, 240) = 20.399, P < 0.001) and 
an interaction between both ethanol and time 
(F(5, 240) = 12.064, P < 0.001) were shown. These 
results indicate mild to moderate physical 
dependence occurs in these rats (Figure 2E).

Hyperalgesia induced by chronic ethanol con-
sumption 

Withdrawal from chronic alcohol exposure 
often results in increased pain sensitivity in 
alcoholics [24]. To determine whether this also 
occurs in SD rats under the IA2BC procedure, 
we measured the PWT or PWL during alcohol 

Figure 1. Sprague-Dawley rats in the intermittent access to 20% ethanol 2-bottle choice procedure escalated the 
intake (A) of and the preference (B) for ethanol, and decreased water intake (C), without altering the total fluid intake 
(ml/24 h) (D). 
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withdrawal. The PWT in SD rats that were in the 
IA2BC procedure for 8 and 12 weeks, but not 4 
weeks, was significantly lower than that of etha-
nol naïve counterparts (Figure 3A). A two-way 
RM ANOVA indicated a main effect of ethanol 
(F(1, 48) = 34.403, P < 0.001, n = 25 rats for each 
group), a main effect of time (F(3, 144) = 15.549, 
P < 0.001) and an interaction between both 
factors (F(3, 144) = 16.251, P < 0.001). Post-hoc 
analysis revealed that no significant difference 
of PWL was found among rats before access to 
ethanol (P = 0.759) or after 4-week ethanol 
exposure (P = 0.358). 

Similarly, the PWL to the thermal stimulus in SD 
rats in the IA2BC program for 8 and 12 weeks 
was significantly lower than that of ethanol 
naïve counterparts (Figure 3B). A two-way RM 
ANOVA detected a main effect of ethanol (F(1, 48) 
= 17.972, P < 0.001, n = 25 rats for each 

group), a main effect of time (F(3, 144) = 10.898, 
P < 0.001) and an interaction between both 
factors (F(3, 144) = 3.163, P = 0.03). Post-hoc 
analysis revealed no significant difference was 
found among rats before access to ethanol (P = 
0.552) or after 4-week ethanol exposure (P > 
0.05).

To further characterize hyperalgesia induced by 
withdrawal from chronic ethanol administra-
tion, we next measured the pain threshold dur-
ing one week after ethanol removal in rats that 
have been in the IA2BC procedure for 12 
weeks. The PWT in ethanol group was signifi-
cantly lower than that of ethanol naïve counter-
parts starting at 12 h and lasted for more than 
seven days after ethanol removal (all P < 0.001, 
n = 25 rats for each group, Figure 4A). A two-
way RM ANOVA analysis revealed a main effect 
of ethanol (F(1, 48) = 305.834, P < 0.001) and a 

Figure 2. Physical dependence syndromes in SD rats withdrawn from chronic ethanol administration. After consum-
ing ethanol intermittently for 12 weeks, the physical withdrawal syndrome was observed and quantified (on a scale 
of 0-2) during one week of alcohol removal. The left panels are representative photographs showing the increased 
score derived predominantly from positive signs of lower limb flexion and tail stiffness 12 h after alcohol removal, 
when comparing to ethanol naïve SD rats. Note that the smaller angle between horizontal axis and longitudinal axis 
of lower limb indicates an obvious flexion of the hip joint in withdrawn rats (B) compared to alcohol-naïve rats (A). An 
observation of the rat tail tip wrapped around the observer’s finger (yellow arrow in D) was found in withdrawn rats 
but not in alcohol-naïve rats (C). The right panel shows the withdrawal scores, determined by summing the scores 
for all three symptoms, significantly increased at 4 hr, peaked at 12 hr and lasted for 3 days, compared to alcohol 
naïve rats. (All P < 0.001, n = 25). 
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main effect of time (F(4, 192) = 5.618, P < 0.001) 
with an interaction between both factors (F(4, 

192) = 5.618, P < 0.001). Similarly, the PWL in 
the ethanol group was significantly lower than 
the ethanol naïve counterparts starting at 4h 
and lasting for seven days after ethanol remov-

intake range varied from 3.14 to 12.82 g/
kg/24 h, with an average of 5.33 g/kg/24 h. 
We observed also a higher preference to etha-
nol (36.78 ± 3.13% at 24 h). These results are 
consistent with previous studies including our 
own [17, 18] and support the view that the full 

Figure 3. Repeated chronic ethanol drinking induces pain hypersensitivity. 
The paw withdrawal threshold to mechanical (A) and paw withdrawal latency 
to heat stimuli (B) in SD rats at 4, 8 and 12 weeks in the IA2BC program. The 
paw withdrawal threshold and paw withdrawal latency in rats that in IA2BC 
program for 8 and 12 weeks was significantly lower than that of ethanol-
naïve counterparts. Data are presented as mean ± SEM. (*)P < 0.001 com-
pared to naïve rats. (#)P < 0.001, compared to baseline (BL) or 4 weeks after 
ethanol exposure, n = 25 rats for each group. 

Figure 4. The mechanical and thermal pain thresholds further decreased 
during withdrawal in SD rats that were in IA2BC for 12 weeks. The paw with-
drawal threshold (A) and paw withdrawal latency (B) significantly decreased 
starting at 12 hours after ethanol removal and lasted for 7 days. Data is pre-
sented as mean ± SEM. (*)P < 0.001 compared to naïve rats. (#)P < 0.001, 
compared to 0 h after ethanol removal, n = 25 rats for each group.

al (all P < 0.001, n = 25 rats 
for each group Figure 4B). A 
two-way RM ANOVA analysis 
revealed both main effects of 
ethanol (F(1, 48) = 63.709, P < 
0.001) and time (F(4, 192) = 
11.849, P < 0.001) with an 
interaction between both fac-
tors (F(4, 192) = 12.081, P < 
0.001). 

Discussion

The present study demon-
strates that Sprague-Dawley 
rats, one of the strains most 
commonly used in preclinical 
alcohol research, could self-
administer 20% ethanol to 
levels that could induce physi-
cal dependence and hypera- 
lgesia. 

In the present study, we 
observed that SD rats that 
chronically self-administered 
20% ethanol under the IA2BC 
paradigm could consume 
excessive amounts of etha-
nol, in keeping with our previ-
ous report [23]. An advantage 
of this drinking paradigm is 
the repeated cycles of free-
choice ethanol drinking and 
withdrawal over a period of 
several weeks, which leads to 
a gradual escalation of etha-
nol intake and preference 
that reaches a stable level 
after several weeks. These 
features may be a step clo- 
ser to approximating human 
drinking patterns by mimick-
ing the progressive transition 
from low or moderate social-
like drinking to excessive alco-
hol consumption [7, 25]. In 
the current study, the ethanol 
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potential of SD rats in studies examining volun-
tary ethanol consumption has yet to be estab-
lished [17]. Although we did not measure blood 
ethanol levels in the current study, previous 
studies including our own have reported that 
SD rats in the IA2BC paradigm consumed etha-
nol that reached pharmacologically relevant 
blood ethanol concentrations [26]. 

As with humans, the alcohol withdrawal signs in 
rodents appear as blood and brain alcohol lev-
els drop, peak around the time when alcohol is 
completely eliminated from the body, and wane 
over the course of several days [27]. Rodents 
undergoing alcohol withdrawal demonstrate 
numerous indicators of impaired body function 
and motor activity. To validate the effect of 
withdrawal from chronic intermittent ethanol 
self-administration in SD rats, we measured 
three withdrawal signs (tail stiffness, limb flex-
ion and gait) [28, 29]. We noticed that tail stiff-
ness is the earliest withdrawal sign, which 
started at 4 h and peaked at 6-8 h after alcohol 
removal. Whereas, the ventral distal limb flex-
ion was peaked at 12-16 h after alcohol remov-
al, in keeping with a previous report [30]. These 
results indicate that the severity of the ethanol 
withdrawal syndrome in rats is time related 
[28]. Our results are in general agreement with 
the view that signs of alcohol withdrawal syn-
drome in SD rats typically develop within 4~16 
h of the last drink [28]. Interestingly, in the cur-
rent study, we found the alcohol withdrawal 
syndrome lasted for 3 d, instead of 1 d [18]. 
The difference could be caused by longer etha-
nol exposure history (4 and 12 weeks of etha-
nol exposure was conducted in Li’s and current 
study respectively), in which more repeated 
ethanol withdrawal experiences may increase 
the severity of the withdrawal syndrome [31]. 
Notably, during withdrawal from chronic etha-
nol administration, the physical dependence 
signs lasted for only 3 days, whereas the hyper-
algesia lasted for more than 7 days. While the 
mechanisms underlying this difference warrant 
further investigation, this observation suggests 
that the mechanisms underlying these two phe-
nomena may be different. Previous animal 
studies have found that during alcohol with-
drawal the γ-aminobutyric acid (GABA) central 
inhibition is down-regulation [32, 33], whereas 
extracellular glutamate levels were increased 
[34]. This appears as one of the main causes of 
insufficient central inhibition during alcohol 
withdrawal, which leads to the symptoms of 
hyper-excitation. The mechanisms underlying 

hyperalgesia induced by withdrawal from 
chronic ethanol are less clear. The current 
study reports that chronic ethanol consump-
tion under the IA2BC procedure induced hyper-
algesia, a symptom that frequently occurs in 
alcoholics [35]. The mechanical hypersensitivi-
ty occurred 4 h after alcohol withdrawal and 
lasted for 7 d, consistent with previous studies 
in other rodent strains [36, 37]. To our knowl-
edge, this is the first report on mechanical and 
thermal hypersensitivity in SD rats during with-
drawal from IA2BC drinking paradigm. Although 
it has been well documented that acute admin-
istration of ethanol can produce modest relief 
of pain [2, 38, 39], a tolerance to the anti-noci-
ceptive effects after chronic administration has 
also been reported [2]. Continued exposure 
decreases the ability of ethanol to relieve pain 
and can eventually even increase sensitivity to 
noxious stimuli [40]. Previous studies have 
reported that hyperalgesia is a result of abnor-
mal peripheral nociceptor function, including 
the decreased mechanical threshold of C-fibers 
and enhanced PKCε second messenger signal-
ing in nociceptors [41]. Several studies sug-
gested that this phenomenon might involve the 
hypothalamo-pituitary-adrenal system in the 
central nervous system [42, 43], and the acti-
vation of mGlu5 receptors [44] or the opioider-
gic system [45]. Future studies should be per-
formed to examine the possible mechanisms 
underlying alcoholic neuropathy. Additionally, 
we noted that the hypersensitivity to mechani-
cal and thermal stimuli, as well as the escala-
tion of alcohol intake occurs at the same peri-
od, suggesting that the emergence of 
hyperalgesia may relate to excessive ethanol 
intake [4]. Future studies should investigate if 
the relief of pain-induced alcohol withdrawal 
could attenuate the negative reinforcement 
and potentially stop alcohol relapse.

Conclusion

This study reveals that withdrawal from chronic 
ethanol drinking under intermittent-access to 
two-bottle choice drinking paradigm could 
induce mechanical and thermal hypersensitivi-
ty in Sprague-Dawley rats, implicating that with-
drawal induced hyperalgesia may be negative 
reinforcement for future drinking.
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