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Review Article
Optogenetics for neurodegenerative diseases
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Abstract: Neurodegenerative diseases are devastating conditions that lead to progressive degeneration of neurons. 
Neurodegeneration may result in ataxia, dementia, and muscle atrophies, etc. Despite enormous research efforts 
that have been made, there is lack of effective therapeutic interventions for most of these diseases. Optogenetics is 
a recently developed novel technique that combines optics and genetics to modulate the activity of specific neurons. 
Optogenetics has been implemented in various studies including neuropsychiatric disorders and neurodegenerative 
diseases. This review focuses on the recent advance in using this technique for the studies of common neurode-
generative diseases.
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Introduction

Optogenetics refers to the combination of 
optics and genetics to manipulate the activity 
of individual neurons. It is a novel technique for 
neuroscience research because of its spatial 
and temporal precision in controlling neuronal 
activities. The key element of optogenetics is 
light-sensitive opsins that either activate or 
inhibit neurons. 

Channelrhodopsin and Halorhodopsin are the 
two primary light-sensitive opsins used in the 
majority of optogenetic research. Channelrho- 
dopsins were discovered by Nagel and col-
leagues in 2002 [1]. They are light-sensitive 
proteins isolated from the alga Chlamydomo- 
nas reinhardtii. Nagel et al. demonstrated that 
Channelrhodopsins-1 (ChR1) and Channelrho- 
dopsins-2 (ChR2) are cation selective channels 
that allow ion influx when stimulated by blue 
light [1]. Later on, Boyden and colleagues were 
able to use a lentiviral vector to express ChR2 
in mammalian neurons. When illuminated by 
blue light, it evokes inward currents, which 
depolarize the membrane, resulting in firing of 
action potentials [2, 3]. Halorhodopsin (NpHR) 
is a light-sensitive chloride pump isolated from 
Natronomonas pharanois. When activated by 
yellow light, NpHR pumps chloride ions into the 
cell which hyperpolarizes the membrane and 

inhibits neural activity [4, 5]. Although the opto-
genetic technique only has a short history of 
~10 years, it has been rapidly and widely used 
for large number of studies. 

Parkinson’s disease

Parkinson’s disease (PD) is a common neurode-
generative disease of the central nervous sys-
tem. PD results from the death of dopamine 
neurons in substantia nigra. Traditional treat-
ments of PD include pharmacological interven-
tions to increase the level of dopamine, and 
deep brain stimulation (DBS). Because of the 
heterogeneity of brain tissues where electrodes 
are placed, it has been challenging to elucidate 
the relevant target cell types or underlying 
mechanisms of DBS. Pharmacological interven-
tions, on the other hand, have various limita-
tions and side effects. 

In 2009, Gradinaru and colleagues used opto-
genetics and solid-state optics to systematical-
ly drive or inhibit an array of distinct circuit ele-
ments in freely moving parkinsonian rodents 
and found that therapeutic effects within the 
subthalamic nucleus can be accounted for by 
direct selective stimulation of afferent axons 
projecting to this region [6]. In addition to pro-
viding insight into DBS mechanisms, these 
results demonstrated an optical approach for 
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dissection of disease circuitry and provided a 
new way for systematic deconstruction of dis-
ease circuits by selectively controlling individu-
al components. 

In addition to DBS and pharmacological inter-
vention, previous studies have suggested that 
cell replacement could be a viable therapeutic 
option for PD. The evidence of behavioral  
recovery after transplantation of human plurip-
otent stem cell-derived neural cells in animal 
models of PD has been provided [7-9]. How- 
ever, little is known about the mechanisms 
underlying graft function.

In a recent study by Steinbeck and colleagues, 
optogenetics was utilized to investigate graft 
function and graft to host connectivity [10]. The 
technique was applied to modulate the electro-
physiological and neurochemical properties of 
mesencephalic dopaminergic (mesDA) neurons 
derived from human embryonic stem cells 
(hESCs) [10]. To examine the functionality of 
mesDA neurons transplanted in lesioned stria-
tum, undifferentiated hESCs were transduced 
to express halorhodopsin eNpHR3.0-EYFP 
(called HALO) or EYFP alone under the control 
of the human synapsin promoter [11-13]. It  
was demonstrated that deactivation of HALO-
expressing grafts by light produced motor  
deficits. Pre-treating animals with apomor-
phine, an agonist for D1 and D2 dopamine 
receptors, did not result in the return of motor 
deficits when HALO-expressing grafts became 
deactivated. Electrophysiological recordings 
from acute brain slices demonstrated that 
stimulation of the corpus callosum evoked 
dopamine release from the graft and excitatory 
postsynaptic potentials (EPSPs) in striatal 
GABA neurons [10]. However, optogenetic si- 
lencing resulted in significant reduction in 
evoked EPSP. This result suggests that grafted 
neurons strengthen EPSP response of host 
striatal GABA neurons through an activation  
of D1 receptors. The findings also suggest  
the importance of graft neuronal activity and 
connectivity in behavioral recovery of PD. 

Huntington’s disease

Huntington’s Disease (HD) is a genetic neuro-
degenerative disorder that affects muscle coor-
dination with mental decline at late stages. HD 
is caused by an autosomal dominant mutation 
in a gene called Huntingtin. As the disease pro-

gresses uncoordinated body movements begin 
to occur and declines in mental abilities be- 
come apparent.

In mouse models of HD, studies have shown 
that spontaneous inhibitory synaptic activity is 
enhanced in a subpopulation of medium-sized 
spiny neurons (MSNs), which dampens striatal 
output. The sources of increased inhibition 
were, however, unclear. In a recent study, 
Cepeda and colleagues examined the poten- 
tial source(s) of increased inhibition using  
electrophysiological and optogenetic methods 
to assess feedback and feedforward inhibition 
in two transgenic mouse models of HD [14]. 

Channelrhodopsin-2 and EYFP were inserted 
into a double-floxed inverted open reading 
frame viral vector (AAV2-DIO-ChR2-EYFP) to 
selectively activate GABAergic interneurons 
and evaluate the influence on GABA synaptic 
activity in MSNs [14]. Single and dual patch-
clamp recordings were performed in MSNs of 
striatal slices and two types of GABAergic inter-
neurons were studied: the fast-spiking (FS) and 
the persistent low-threshold spiking (PLTS) 
interneurons. They observed selective altera-
tions in GABA synaptic activity in MSNs under 
the control of D1 (direct pathway) or D2 (indi-
rect pathway) promoters [15-18]. These find-
ings demonstrated that in HD multiple sources 
contribute to increased GABA activity on MSNs 
of the indirect pathway [14]. Most of the con- 
tribution comes from feedforward inhibition 
from FS and PLTS interneurons. PLTS interneu-
rons are responsible for the increased 
GABAergic spontaneous synaptic events while 
activated FS interneurons are the source of 
larger GABA-mediated synaptic responses  
[14]. PLTS interneurons can release nitric oxide 
(NO), neuropeptide Y (NPY) and somatostatin 
(SOM) which could have neuroprotective effe- 
cts [19-21]. The selective inhibition of striatal 
PLTS and FS interneurons could improve HD 
behavioral phenotype. These findings suggest 
that selectively controlling PLTS and FS inter-
neurons could be beneficial in improving be- 
havior of HD patients.

Epilepsy

Epilepsy is a common neurological disorder 
characterized by epileptic seizures. Currently 
available antiepileptic drugs have a limited effi-
cacy, and their long term use is limited due to 
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the adverse effects, withdrawal symptoms, and 
deleterious interactions with other drugs, etc. 
Furthermore, some of the available antiepilep-
tic drugs may even potentiate certain type of 
seizures. Therefore, new therapeutic interven-
tion is highly desirable [22]. 

In 2009, Tonnesen and colleagues explored the 
possibility of using optogenetics for the treat-
ment of epileptic seizures. They used lentiviral 
vector to target NpHR specifically to the princi-
pal neurons of the hippocampus in mice under 
the control of CaMKIIα promoter [23]. They 
showed that light-induced NpHR activity hyper-
polarizes the principal neurons of hippocampus 
and inhibited epileptiform activity. In this study, 
it was established that epileptiform activity can 
be directly inhibited by using hyperpolarizing 
actuators [23]. 

In 2013, Paz and colleagues were able to 
express enhanced halorhodopsin (eNpHR3.0) 
in neurons of the ventrobasal thalamus [24, 
25]. In addition, they were able to design 
closed-loop devices that can stop the seizures 
in real-time light stimulation. Subsequently, 
Sukhotinsky et al. employed adeno-associated 
virus vector (AAV) to target eNpHR3.0 to hippo-
campal pyramidal cells and demonstrated that 
constant and sporadic illumination hindered 
electrographic and behavioral onset of seizure 
activity [26].

A very recent study by Soper and colleagues 
also employed the optogenetic technique to 
examine the anticonvulsant effect of optical 
stimulation of the deep/intermediate layers of 
the superior colliculus (DLSC) [27]. In their 
experimentation, rAAV5-hSyn-ChR2 (H134R)-
mCherry was microinjected into the DLSC. They 
demonstrated that activation of DLSC can exert 
broad-spectrum anticonvulsant actions, atten-
uating seizures originating in diverse and distal 
brain networks. For example, stimulation of 
DLSC can suppress the behavioral and electro-
graphic seizures activity in the pentylenetetra-
zole induced forebrain/brainstem seizures and 
Area Tempestas induced forebrain/complex 
partial seizures. In addition, DLSC activation 
also attenuated thalamocortical/absence sei-
zures evoked by gamma butyrolactone, or 
brainstem seizures induced by acoustic stimu-
lation of genetically epilepsy prone rates [27]. 
Their findings suggested that selective, tempo-
rally-controlled activation of DLSC is a promis-

ing strategy for the therapeutic intervention of 
epilepsy [27].

Thus, optogenetics may be an ideal approach 
for controlling neurons to treat epilepsy with 
real time response.  

Alzheimer disease

Aggregation of amyloid β peptides is a hall- 
mark pathological change in the brains of 
patients with Alzheimer disease (AD) [28]. 
However, the mechanisms for the secretion 
and aggregation of amyloid β peptides re- 
mained elusive. Previous studies using ele- 
ctrical or pharmacological stimulations have 
shown that Aβ secretion from neurons is activi-
ty dependent [29-31]. However, the exact path-
ways involved were not clear. In a recent study 
by Yamamoto and colleagues, optogenetics 
was adopted to examine the selective activa-
tion of a specific neuronal pathway in APP 
transgenic mice to observe the causative role 
between synaptic activation and Aβ pathology 
[32]. Stabilized step-function opsin (SSFO), a 
channelrhodopsin designed to elicit a long-last-
ing neuronal hyperexcitability, was expressed in 
the hippocampal perforant pathway of APP 
transgenic mice. Specifically, SSFO-EYFP in 
adeno-associated virus vector driven by a 
CAMKIIα promoter was unilaterally transduced 
into the lateral entorhinal cortex to selectively 
stimulate the cortical projection neurons 
through the perforant pathway [32]. In vivo 
microdialysis revealed a ~24% increase of 
Aβ42 level in the hippocampal interstitial  
fluid immediately after acute light activation. 
Mice with chronic optogenetic stimulation for 5 
months had a dramatic 2.5-fold increase of Aβ 
deposits [32]. These findings suggest a con-
nection between hyperactivity of specific pro-
jection pathway and augmentation in Aβ  
deposition. This study also provided the foun-
dation for further research using optogenetics 
for chronic stimulation in animal models of  
neurodegenerative disorders.

Stroke

Stroke is caused by poor circulation to the brain 
resulting in injury of brain cells. It is a leading 
cause of death and long-term disabilities. 
Current treatment for stroke is limited to the 
use of tPA which has limited success and 
potential side effect of intracerebral hemor-
rhage. Thus, searching for new therapeutic 
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intervention for stroke treatment or recovery 
has been a major challenge.

In a recent study by Cheng and colleagues, 
optogenetics was used to promote stroke 
recovery by selectively increasing neuronal 
activity in the ipsilesional primary motor cortex 
(iM1) poststroke [33, 34]. Stroke recovery was 
examined in ChR2-expressing transgenic mice 
under Thy1 promoter. In their study, they 
observed the effects on functional recovery  
following optic stimulations [34]. Light-sti- 
mulated stroke mice had improved perfor-
mance on rotating beam test and stimulus-
induced cerebral blood flow, which indicates 
improved recovery [33]. It was shown that 
increased excitability in the iM1 was beneficial 
and fostered the poststroke recovery. This 
study provided strong evidence that opto- 
genetics can be used to promote stroke  
recovery and that stimulating neurons in the 
stroke hemisphere is necessary to improve the 
recovery. 

Sensory system degeneration

Retinopathies: Retinopathies are noninflamma- 
tory diseases of the retina. Damage to the 
retina results in vision impairments and in 
some cases even blindness. Retinopathies 
have various causes. Common retinopathies 
include macular degeneration and retinitis pig-
mentosa. The macula is responsible for sharp, 
center vision. Age-related macular degenera-
tion (AMD) is a leading cause of vision loss in 
people over 50 [35]. Retinitis pigmentosa (RP) 
is a group of rare, genetic disorders that in- 
volve deterioration of cells in the retina [36]. RP 
symptoms include night blindness and loss of 
peripheral vision. Current treatments for reti-
nopathies include dugs of anti-vascular endo-
thelial growth factors (VEGF), gene therapy, 
stem cells and visual assistive devices [37]. 
However, these methods have limited success 
and cannot restore visual loss of natural 
images.

In 2006, Bi and colleagues investigated the 
feasibility of using ChR2 to restore light sensi-
tivity to the retinas that have undergone rod 
and cone degeneration [38]. They transfected 
rd1 mouse retinas with ChR2. The rd1 mouse is 
a well-characterized animal model of retinitis 
pigmentosa caused by the mutation of Pde6b 
gene. They showed that long-term expression 
of ChR2 can be achieved in rodent inner retinal 

neurons in vivo and that these inner retinal neu-
rons can express a sufficient number of func-
tional ChR2 channels to produce robust mem-
brane depolarization or action potential firing 
without an exogenous supply of all-trans retinal. 
Furthermore, they demonstrated that the 
expression of ChR2 in a photoreceptor-deficient 
mouse model not only enables retinal ganglion 
cells to encode light signals but also restores 
visually evoked responses in the visual cortex. 

Later on, similar results were observed in a 
number of studies by Tomita and colleagues, 
who were able to restore visual response in 
aged dystrophic RCS rats and functional vision 
in genetically blind rats using AAV-mediated 
channelopsin-2 gene transfer to retinal gangli-
on cells [39-41]. However, in a study performed 
by Thyagarajan and colleagues, the expression 
of ChR2 in retinal ganglion cells failed to rescue 
vision [43]. Several studies have shown that 
activation of channelrhodopsin-2 targeted spe-
cifically to ON bipolar cells can also restore 
visual function in mice with retinal degenera-
tion [42, 44]. 

In 2010, Busskamp et al showed that expres-
sion of archaebacterial halorhodopsin in light-
insensitive cones can substitute for the native 
phototransduction cascade and restore light 
sensitivity in mouse models of retinitis pigmen-
tosa [45]. In this case, halorhodopsin is a bet-
ter option than ChR2 due to the fact that cones 
are usually depolarized in the dark and hyper-
polarized in response to light.

Nirenberg and colleagues stimulated blind 
mouse retinas expressing ChR2 with natural 
images processed by computational model of 
retinal encoding [46]. In this study, they  
generated a prosthetic system that incorpo-
rates the code, which dramatically increased 
the system’s capabilities. Furthermore, they 
showed that, using 9,800 optogenetically  
stimulated ganglion cell responses, the com-
bined effect of using the code and high-resolu-
tion stimulation is able to bring prosthetic  
capabilities up to the level of normal or near-
normal image representation. 

In a recent study by van Wyk and colleagues, a 
new optogenetic approach was employed by 
using next-generation optogenetic tool, Opto-
mGluR6, to target ON bipolar cells, which over-
comes limitations from traditional optogenetic 
approach such as low light sensitivity and phys-
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iological compatibility issues [47]. They showed 
that Opto-mGluR6, a chimeric protein consist-
ing of the intracellular domains of the ON-bipolar 
cell-specific metabotropic glutamate receptor 
mGluR6 and the light-sensing domains of mela-
nopsin, reliably recovers vision at the retinal, 
cortical, and behavioral levels under moderate 
daylight illumination. 

Hearing loss

Hearing loss or anacusis is a partial or total 
inability to hear. Hearing impairments can  
also affect the ability to learn language as well 
as cause work-related difficulties. Cochlear 
implants are the most successful neuroprothe-
sis which can deliver profound auditory gains  
to individuals with severe to profound hearing 
loss. An auditory brainstem implant (ABI) is an 
alternative to cochlear implants; it provide 
hearing sensations to patients who are not eli-
gible candidates for cochlear implants due to 
anatomic concerns [48]. However, ABI perfor-
mance is limited by its dependence on electri-
cal stimulation with its associated channel 
cross-talk and current spread to non-auditory 
neurons. The optogenetic technology could 
serve as new generation ABI that ameliorates 
limitations fundamental to electrical stimula-
tion [49].

In 2013, Shimano and colleagues inserted the 
AAV-mediated expression of channelrhodop-
sin-2 and halorhodopsin in brainstem neurons 
mediating auditory signaling: the dorsal cochle-
ar nucleus neurons (DCN) [50]. Their results 
indicated that expression and activation of  
rhodopsin within neurons involved in auditory 
processing does not appear to have deleteri-
ous effects on hearing even after 18 months 
following the expression. In addition, virally tar-
geted rhodopsins may be useful as tract trac-

ers to delineate as well as modulate the activity 
of auditory pathways.

Later on in 2014, Hernandez and colleagues 
used optogenetics to stimulate spiral ganglion 
neurons (SGNs) with low intensity blue light, 
using transgenic mice with neuronal expres-
sion of channelrhodopsin 2 or virus-mediated 
expression of the ChR2-variant CatCh [51, 52]. 
ChR2-expressing SGNs were stimulated with 
micro-light emitting diodes (µLEDs) and fiber-
coupled lasers through a small artificial open-
ing (cochleostomy) or the round window. The 
optogenetic auditory brainstem responses 
were assayed by scalp recordings of light-
evoked potentials or by microelectrode record-
ings from the auditory pathway and compared 
them with acoustic and electrical stimulation. 
Stimulation of SGNs activated the auditory 
pathway, as demonstrated by recordings of sin-
gle neuron and neuronal population responses. 
Furthermore, optogenetic stimulation of SGNs 
restored auditory activity in deaf mice [51, 52]. 

Recently, Darrow and colleagues investigated 
whether optical activation of the cochlear 
nucleus (CN) can evoke responses in neurons 
at higher centers of the auditory pathway [53]. 
Channelrhodopsin-2 was expressed in the 
mouse CN using viral-mediated gene transfer. 
Optical stimulation evoked excitatory respons-
es throughout the tonotopic axis of the central 
nucleus of the inferior colliculus (IC) and audi-
tory cortex. Optical stimulation also evoked an 
auditory brainstem response. 

Previous studies of the kinetics of ChR2 and its 
variants [2, 54] indicated that ChR2 could be 
too slow for optimal function in the auditory 
system. In a recent study by Hight and col-
leagues, they addressed the limitations of 
ChR2 by employing Chronos, a recently devel-

Table 1. Optogenetic studies of neurodegenerative diseases
Neurodegenerative 
Disorders Optogenetic Actuators Parameter(s) studied References

Alzheimer’s Disease Stabilized Step-Function Opsins Amyloid β peptide release [32]
Stroke Channedlrhodopsin-2 Functional recovery [33, 34]
Epilepsy Halorhodopsin Seizure suppression [23-27]
Parkinson’s Disease Halorhodopsin Graft function and graft to host connectivity [6, 10]
Huntington’s Disease Channelrhodopsin-2 Sources of increased inhibition [14]
Retinopathies Channelrhodopsin-2 Vision restore [38-40, 42, 43, 45-47]
Auditory Dysfunction Channelrhodopsin-2 Cochlear excitation [49, 51-53]

Chronos [49]
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oped opsin with faster kinetic properties [55], 
to compare the temporal characteristics of 
ChR2 and Chronos in a translational murine ABI 
model [49]. Their findings revealed that Chronos 
has the capacity to drive the auditory system at 
greater stimulation rates than ChR2 and that it 
may be a better option for controlling auditory 
pathways.

Conclusion

Steady research efforts are being made to treat 
neurodegenerative diseases. Increasing evi-
dence indicates the potential of optogenetics 
as a promising therapeutic approach (Table 1). 
However; the current optogenetic approaches 
have a few limitations. For example, optogenet-
ic technique requires the delivery of photons 
into the brain, which is achieved invasively via 
implantation of optic fiber through the skull into 
specific brain areas. This drawback may restrict 
animal’s motility, confounding the interpreta-
tion of behavioral readouts. The optic fiber 
itself is susceptible to damage caused by activ-
ity of the animal, and its implantation may 
results in tissue damage in the brain regions of 
interest. Another consideration when using 
optogenetics is the possibility that the light 
evokes modulation of fibers of passage and  
not acting exclusively on the axons or terminals 
of interest. The approach may possibly cause 
light-induced or heat-related damage to the  
tissue. The development of infrared sensitive 
opsins has the possibility of reducing light-
induced tissue damage and delivering pho- 
tons into targeted brain areas without the  
need for invasive methods. In addition, recently 
developed giant magentoresistive (GMR) bio-
sensors and nanoparticles controlled by ra- 
dio waves provide alternative non-invasive 
approaches. Although a short history, optoge-
netics has proved itself as a promising al- 
ternative approach to traditional therapeutic 
treatments.
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